An Exploration Framework Characterising the Public Blockchain Generations, Specifically for Business Use-Cases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P2P Business Applications: Future and Directions
Communications and Network, 2012, 4, 248-260 http://dx.doi.org/10.4236/cn.2012.43029 Published Online August 2012 (http://www.SciRP.org/journal/cn) P2P Business Applications: Future and Directions Pankaj Pankaj, Micki Hyde, James A. Rodger MIS and Decision Sciences, Eberly College of Business & Information Technology, Indiana University of Pennsylvania, Indiana, USA Email: [email protected] Received May 20, 2012; revised June 18, 2012; accepted July 17, 2012 ABSTRACT Since the launch of Napster in June 1999, peer-to-peer technology (P2P) has become synonymous with file sharing ap- plications that are the bane of the recording industry due to copyright infringements and consequent revenue losses. P2P promised a revolution in business computing which has not arrived. It has become synonymous with illegal file sharing and copyright violations. Meanwhile the information systems industry has undergone a paradigm change, and we are supposedly living in a world of cloud computing and mobile devices. It is pertinent to examine if P2P, as a revolution- ary technology, is still relevant and important today and will be in future. One has to examine this question in the con- text of the fact that P2P technologies have matured but have however had limited adoption outside file-sharing in the consumer space. This paper provides a detailed analysis of P2P computing and offers some propositions to answer the question of the relevancy of P2P. It is proposed that P2P is still a relevant technology but may be reshaped in the com- ing years in a different form as compared to what exists today. -
Peer Co-Movement in Crypto Markets
Peer Co-Movement in Crypto Markets G. Schwenkler and H. Zheng∗ February 4, 2021y Abstract We show that peer linkages induce significant price co-movement in crypto markets in excess of common risk factors and correlated demand shocks. When large abnormal return shocks hit one crypto, its peers experience unusually large abnormal returns of the opposite sign. These effects are primarily concentrated among smaller peers and revert after several weeks, resulting in predictable returns. We develop trading strategies that exploit this rever- sal, and show that they are profitable even after accounting for trading fees and frictions. We establish our results by identifying crypto peers through co-mentions in online news using novel natural language processing technologies. Keywords: Cryptocurrencies, peers, co-movement, competition, natural language pro- cessing. JEL codes: G12, G14, C82. ∗Schwenkler is at the Department of Finance, Santa Clara University Leavey School of Business. Zheng is at the Department of Finance, Boston University Questrom School of Business. Schwenkler is corresponding author. Email: [email protected], web: http://www.gustavo-schwenkler.com. yThis is a revision of a previous paper by the two authors called \Competition or Contagion: Evidence from Cryptocurrency Markets." We are grateful to Jawad Addoum (discussant), Daniele Bianchi (discussant), Will Cong, Tony Cookson, Sanjiv Das, Seoyoung Kim, Andreas Neuhierl, Farzad Saidi, and Antoinette Schoar, seminar participants at Boston University and the Society for Financial Econometrics, and the participants at the 2020 Finance in the Cloud III Virtual Conference, the 2020 MFA Annual Meeting, the 3rd UWA Blockchain, Cryptocurrency and FinTech Conference, and the 2020 INFORMS Annual Meeting for useful comments and suggestions. -
From Technology to Society: an Overview of Blockchain-Based DAO
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1 From Technology to Society: An Overview of Blockchain-based DAO Lu Liu, Sicong Zhou, Huawei Huang1, Zibin Zheng1 Decentralized Autonomous Organization (DAO) is believed to play a significant role in our future society governed in a decentralized way. In this article, we first explain the definitions and preliminaries of DAO. Then, we conduct a literature review of the existing studies of DAO published in the recent few years. Through the literature review, we find out that a comprehensive survey towards the state-of-the-art studies of DAO is still missing. To fill this gap, we perform such an overview by identifying and classifying the most valuable proposals and perspectives closely related to the combination of DAO and blockchain technologies. We anticipate that this survey can help researchers, engineers, and educators acknowledge the cutting-edge development of blockchain-related DAO technologies. Index Terms—Blockchain, Contracts, DAO, Fault Tolerant System, Governance I. INTRODUCTION Blockchain-based technologies have been deeply adopted by User multiple applications that are closely related to every corner of User Contract our daily life, such as cryptocurrencies, tokenomics, business User applications, Internet-of-Things (IoT) applications, and etc.. Decentralized Autonomous Organization (DAO), as one of the Exchange blockchain applications shown in Fig. 1, is growing rapidly Miner Developer and drawing great attention from both academia and the Contract governments around the world. Although DAO has brought Developer a lot of opportunities to blockchain technologies, we are sur- prised to find out that an overview of DAO in the perspective Contract Exchange Miner of blockchains is still missing. -
Blockchain Healthcare & Policy Synopsis
Blockchain Healthcare & Policy Synopsis AN EXECUTIVE REPORT OF THE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES & NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY’S BLOCKCHAIN CHALLENGE October 2016 digitalchamber.org Table of Contents PART I: Blockchain in Healthcare and Research Workshop | 3 | I. Overview & Key Takeaways | 3 | II. Introduction: The White House II.I. Tim Polk, The White House, Office of Science and Technology Policy | 4 | III. Blockchain Level Setting III.I. John Kelsey, National Institute of Standards and Technology | 4 | III.II. Lily Chen, National Institute of Standards and Technology | 5 | IV. Blockchain Reality Check - Alternative IV.I. Evaluating Blockchain and Alternatives: Mance Harmon, Ping Identity | 5 | IV.II. Blockchain Challenges in Real Life: Stephen Wilson, Constellation Research | 6 | IV.III. “Fit for Purpose” Distributed Ledger Technology: Drummond Reed, Respect Network | 6 | V. Blockchain Reality Check - Challenges V.I. DHS Identity Innovations Grants: Many Sporny, Digital Bazaar | 7 | V.II. IoT Device Identity: Tiana Laurence and Andrew Yashchuk, Factom IRIS | 7 | V.III. Decentralized Identifiers (DIDs): Solving the Root Identity Problem, Drummond Reed, Respect Network | 7 | V.IV. Decentralized Certification Service, Adam Migus, XCELERATE Solutions | 8 | VI. Blockchain Challenge Presentations VI.I. Blockchain: The Chain of Trust and its Potential to Transform Healthcare – IBM’s Point of View Srini Attili and Shahram Ebdollahi, IBM Global Business Service Public Sector | 8 | VI.II. Blockchain: Securing -
The Magnificent Seven
The Magnificent Seven A closer look at functional attributes of blockchain platforms The Magnificent Seven1 Following a whitepaper published in late 2008, the Bitcoin system came into being in 2009, and the underlying technology became what we refer to as Blockchain today. 1 The top seven cryptocurrencies covered a good variety of attributes that are essential to gain a more thorough understanding of the potentials offered by this new technology. The Magnificent Seven 1 Since then, a variety of different cryptocurrency platforms have been created, and based on data from CoinMarketCap (https://coinmarketcap.com/), as of 27 March 2021, there were 8,964 crypto tokens in existence, with a total Market Cap of over USD$1.6 Trillion. The top seven cryptocurrencies made up around 80% of the global market capitalisation: Market Cap Token Symbol (billion USD) % Bitcoin BTC 1,026.8 59.23 Ethereum ETH 0,196.2 11.32 Cardano ADA 0,040.2 02.32 Binance Coin BNB 0,039.1 02.25 Tether USDT 0,038.5 02.22 Polkadot DOT 0,030.4 01.75 XRP XRP 0,025.8 01.49 80.58 Rest of 8,957 tokens 19.42 Bitcoin alone represents nearly 60% of the total cryptocurrency value, with Ethereum being the second highest by value. However, these cryptocurrencies are not in fact the same: value aside, they differ in some interesting ways, which in turn affect their “function” and value proposition. Asset Smart Token Year Type Minable Consensus2 Limit Backed Contract BTC 2009 Native Yes POW No 21m ETH 2012 ERC-20 Yes / No3 POW | POS No Y none ADA 2017 Native No POS No Y 45bn BNB 2017 ERC-20 No Tendermint No 100m Multiple Forms: USDT-Omni, USDT 2014 USDT-TRON, No NA USD none USDT-ERC20 and USDT-EOS DOT 2017 Native NPOS No Y none Ripple XRP 2012 Native No Transaction No 100bn Protocol Source: https://icorating.com/ and https://coincodex.com/ 2 In simple terms, consensus mechanism is a means of authenticating and validating transactions on a Blockchain (or distributed ledger) without having to trust or rely on a central authority. -
Chancen Und Herausforderungen Von DLT (Blockchain) in Mobilität Und Logistik
Chancen und Herausforderungen von DLT (Blockchain) in Mobilität und Logistik FRAUNHOFER-INSTITUT FÜR ANGEWANDTE INFORMATIONSTECHNIK FIT CHANCEN UND HERAUSFORDERUNGEN VON DLT (BLOCKCHAIN) IN MOBILITÄT UND LOGISTIK Prof. Dr. Gilbert Fridgen Prof. Dr. Nikolas Guggenberger Prof. Dr. Thomas Hoeren Prof. Wolfgang Prinz (PhD) Prof. Dr. Nils Urbach Johannes Baur, Henning Brockmeyer, Wolfgang Gräther, Elisaweta Rabovskaja, Vincent Schlatt, André Schweizer, Johannes Sedlmeir, Lars Wederhake Vielen Dank den weiteren Mitwirkenden: Matthias Babel, Martin Brennecke, Patrick Camus, Benedict Drasch, Tobias Guggenberger, Luis Lämmermann, Jannik Lockl, Sven Radszuwill, Alexander Rieger, Marco Schmidt, Nico Thanner, Patrick Troglauer, Florian Vogt, Malte Weißert, Felix Würmseher Inhalt 1 Management Summary .......................................................................................................... 1 1.1 Zielsetzung des Gutachtens ..............................................................................................................1 1.2 Allgemeine Analyse..........................................................................................................................2 1.2.1 Technische Betrachtung ...................................................................................................................................... 2 1.2.2 Gesellschaftlich-ökonomische Perspektive ......................................................................................................... 3 1.2.2.1 Status quo ...................................................................................................................................................... -
The Technology Copyright © ${Date}
1 The Technology Copyright © ${Date}. ${Publisher}. All rights reserved. © ${Date}. ${Publisher}. Copyright Copyright © ${Date}. ${Publisher}. All rights reserved. © ${Date}. ${Publisher}. Copyright 1 Blockchains, Bitcoin, and Decentralized Computing Platforms At their core, blockchains are decentralized databases, maintained by a dis tributed network of computers. They blend together a variety of dif er ent technologies— including peer-to-peer networks, public-private key cryptography, and consensus mechanisms—to create a novel type of database. We provide he re a short description of how blockchains work, and unpack and contextualize their key technological components. UNTIL THE BIRTH of the Internet, computers suffered in isolation. They were islands, lacking a way to connect to one another except by using cumber- some cables. That all changed in the late 1950s. With the Soviets successfully launching Sputnik into space, and with fears of the Cold War mounting, re- searchers at the Rand Corporation began to explore a new computing para- digm—in hopes of developing a system that would be able to withstand a nuclear catastrophe.1 In August 1964, af ter years of research, Paul Baran, one of the Rand researchers, reported a breakthrough. By relying on a technology called packet switching, Baran was able to send fragments of information from one computer to another and have these fragments reassembled, almost like magic.2 Armed with Baran’s research, the Advanced Research Proj ects Agency Copyright © ${Date}. ${Publisher}. All rights reserved. © ${Date}. ${Publisher}. Copyright (ARPA) at the U.S. Department of Defense used this new technology to 13 14 BLOCKCHAIN AND THE LAW create the first network of computers, ARPAnet, later renamed DARPAnet after “Defense” was added to the beginning of the agency’s name, helping researchers and academics to share files and exchange resources with one an- other. -
User Manual Ledger Nano S
User Manual Ledger Nano S Version control 4 Check if device is genuine 6 Buy from an official Ledger reseller 6 Check the box contents 6 Check the Recovery sheet came blank 7 Check the device is not preconfigured 8 Check authenticity with Ledger applications 9 Summary 9 Learn more 9 Initialize your device 10 Before you start 10 Start initialization 10 Choose a PIN code 10 Save your recovery phrase 11 Next steps 11 Update the Ledger Nano S firmware 12 Before you start 12 Step by step instructions 12 Restore a configuration 18 Before you start 19 Start restoration 19 Choose a PIN code 19 Enter recovery phrase 20 If your recovery phrase is not valid 20 Next steps 21 Optimize your account security 21 Secure your PIN code 21 Secure your 24-word recovery phrase 21 Learn more 22 Discover our security layers 22 Send and receive crypto assets 24 List of supported applications 26 Applications on your Nano S 26 Ledger Applications on your computer 27 Third-Party applications on your computer 27 If a transaction has two outputs 29 Receive mining proceeds 29 Receiving a large amount of small transactions is troublesome 29 In case you received a large amount of small payments 30 Prevent problems by batching small transactions 30 Set up and use Electrum 30 Set up your device with EtherDelta 34 Connect with Radar Relay 36 Check the firmware version 37 A new Ledger Nano S 37 A Ledger Nano S in use 38 Update the firmware 38 Change the PIN code 39 Hide accounts with a passphrase 40 Advanced Passphrase options 42 How to best use the passphrase feature 43 -
2016-05-31 Overview of Swirlds Hashgraph
Overview of Swirlds Hashgraph Leemon Baird [email protected] May 31, 2016 The hashgraph data structure and Swirlds consensus algorithm provide a new platform for distributed consensus. This paper gives an overview of some of its properties, and comparisons with the Bitcoin blockchain. In this paper, the term “blockchain” will generally refer to the system used in Bitcoin, rather than the large number of variants that have been proposed. The goal of a distributed consensus algorithm is to allow a community of users to come to an agreement on the order in which some of them generated transactions, when no single member is trusted by everyone. In this way, it is a system for generating trust, when individuals do not already trust each other. The Swirlds hashgraph system achieves this along with being fair, fast, provable, Byzantine, ACID compliant, efficient, inexpensive, timestamped, DoS resistant, and optionally non-permissioned. This is what those terms mean: The hashgraph is fair, because no individual can manipulate the order of the transactions. For example, imagine a stock market, where Alice and Bob both try to buy the last available share of a stock at the same moment for the same price. In blockchain, a miner might put both those transactions in a single block, and have complete freedom to choose what order they occur. Or the miner might choose to only include Alice’s transaction, and delay Bob’s to some future block. In the hashgraph, there is no way for an individual to affect the consensus order of those transactions. The best Alice can do is to invest in a better internet connection so that her transaction reaches everyone before Bob’s. -
Research Problems of Decentralized Systems with Largely Autonomous Nodes
RESEARCH PROBLEMS OF DECENTRALIZED SYSTEMS WITH LARGELY AUTONOMOUS NODES by Jerome H. Saltzer Massachusetts Institute of Technology A currently popular systems research project is to explore the possibilities and problems for computer system organization that arise from the rapidly falling cost of computing hardware. Interconnecting fleets of mini- or micro-computers and putting intelligence in terminals and concentrators to produce so-called "distributed systems" has recently been a booming development activity. While these efforts range from ingenious to misguided, many seem to miss a most important aspect of the revolution in hardware costs: that more than any other factor, the en_~ cost of acquiring and operating a free-standing, complete computer system has dropped and continues to drop rapidly. Where a decade ago the capital outlay required to install a computer system ranged from $150,000 up into the millions, today the low end of that range is below $15,000 and dropping. The consequence of this particular observation for system structure comes from the next level of analysis. In most organizations, decisions to make capital acquisitions tend to be more centralized for larger capita] amounts, and less centralized for smaller capital amounts. On this basis we may conjecture that lower entry costs for computer systems will lead naturally to computer acquisition decisions being made at points lower in a management hierarchy. Further, because a lower-level organization usually has a smaller mission, those smaller-priced computers will tend to span a smaller range of applications, and in the limit of the argument will be dedicated to a single application. -
The Performance, Interoperability and Integration of Distributed Ledger Technologies
LICENTIATE T H E SIS Emanuel Palm Palm Emanuel Department of Computer Science and Electrical Engineering Division of EISLAB The Performance, Interoperability ISSN 1402-1757 The Performance, Interoperability and Integration of Distributed Ledger Technologies and Integration Interoperability of Distributed Ledger The Performance, and Integration of ISBN 978-91-7790-402-1 (print) ISBN 978-91-7790-403-8 (pdf) Luleå University of Technology 2019 Distributed Ledger Technologies Emanuel Palm Industrial Electronics The Performance, Interoperability and Integration of Distributed Ledger Technologies EmanuelK.Palm Dept. of Computer Science and Electrical Engineering Lule˚a University of Technology Lule˚a, Sweden Supervisors: Ulf Bodin, Olov Schel´en and Jerker Delsing Printed by Luleå University of Technology, Graphic Production 2019 ISSN 1402-1757 ISBN 978-91-7790-402-1 (print) ISBN 978-91-7790-403-8 (pdf) Luleå 2019 www.ltu.se To my beloved wife, Sofia. iii iv Abstract In the wake of the financial crisis of 2008, Bitcoin emerged as a radical new alternative to the fiat currencies of the traditional banking sector. Through the use of a novel kind of probabilistic consensus algorithm, Bitcoin proved it possible to guarantee the integrity of a digital currency by relying on network majority votes instead of trusted institutions. By showing that it was technically feasible to, at least to some extent, replace the entire banking sector with computers, many significant actors started asking what else this new technology could help automate. A subsequent, seemingly inevitable, wave of efforts produced a multitude of new distributed ledger systems, architectures and applications, all somehow attempting to leverage distributed consensus algorithms to replace trusted intermediaries, facilitating value ownership, transfer and regulation. -
BLOCK by BLOCK a Comparative Analysis of the Leading Distributed Ledgers
BLOCK BY BLOCK A Comparative Analysis of the Leading Distributed Ledgers Table of Contents EXECUTIVE SUMMARY 3 PRELIMINARY MATTERS 4 A NOTE ON METHODOLOGY 4 THE EVOLUTION OF DISTRIBUTED LEDGERS 5 SEC. 1 : TECHNICAL STRUCTURE & FEATURE SET 7 PUBLIC OR PRIVATE? 7 PERMISSIONED OR PERMISSIONLESS? 8 CONSENSUS MECHANISM 9 LANGUAGES SUPPORTED 10 TRANSACTION RATES 11 SMART CONTRACTS 12 ADDITIONAL FEATURES 13 SEC. 2 : BUSINESS CONSIDERATIONS 14 PROJECT GOVERNANCE 14 LICENSING 16 THIRD PARTY SUPPORT 16 DEVELOPER SUPPORT 17 PUBLISHER SUPPORT 18 BLOCKCHAIN AS A SERVICE (BAAS) PROVIDERS 19 PARTNERSHIPS 21 ASSOCIATED COSTS 22 PRICING 22 COST PER TRANSACTION 23 ENERGY CONSUMPTION 24 SEC. 3 : HEALTH INDICATORS 25 DEVELOPMENT ACTIVITY 25 MINDSHARE 27 PROJECT SITE POPULARITY 28 SEARCH ENGINE QUERY VOLUME 29 FINANCIAL STRENGTH INDICATORS 30 MARKET CAP 30 24 HOUR TRADING VOLUME 31 VENTURE CAPITAL AND INVESTORS 32 NODES ONLINE 33 WEISS CRYPTOCURRENCY RANKINGS 34 SIGNIFICANT DEPLOYMENTS 35 CONCLUSIONS 36 PUBLIC LEDGERS 37 PRIVATE LEDGERS 37 PROJECTS TO WATCH 40 APPENDIX A. PROJECT LINKS 42 MERCY CORPS 2 EXECUTIVE SUMMARY Purpose This report compares nine distributed ledger platforms on nearly 30 metrics What’s Included related to the capabilities and the health of each project. The analysis looks at a broad range of indicators -- both direct and indirect -- with the goal of Bitcoin synthesizing trends and patterns that define the market leaders. Corda Ethereum Audience Hyperledger Fabric Multichain This paper is intended for readers already familiar with distributed ledger NEO technologies and will prove most useful to those that are currently evaluating NXT platforms in order to make a decision where to build or deploy applications.