<<

1 SUPPLEMENTARY INFORMATION

2 A MEASUREMENTS

3 We used laser (Creaform Handyscan 300) and white light (Artec Eva) surface scanners to acquire 4 additional measurements on 3D models, using the software GOM Inspect 2019. We laser scanned all 5 the elements of the holotype of Congosaurus bequaerti (MRAC 1741–1743, 1745, 1796, 1797, 1799, 6 1802, 1803, 1806, 1809–11, 1813–1819, 1822–1832 (A, B & C), 1835 (A, B & C)-1841, 1844–1846, 7 1848–1858, 1860–1874, 1876, 1877, 1879, 1882–1884, 1887–1896), at resolution ranging from 0.3 to 0.5 8 mm, depending on the size of the element. We surface scanned natator (NJSM 23368) using 9 structured white light with error down to 0.5 mm, and this scan was complemented by digital caliper 10 measurements of the cast replica of both femora and humeri and from measurements gathered prior to the 11 mounting of the specimen (W. Callahan pers. comm. 14 August 2019).

12 B CROCODYLIFORM HABITATS

13 The habitat of the crocodyliforms analyzed (’thanatocoenosis’ on our graphs) were either directly 14 taken or inferred from literature. Here is a list of our species and the corresponding literature for their 15 habitat:

16 • Anthracosuchus balrogus in Hastings et al. [2014]

17 • Cerrejonisuchus improcerus in Hastings et al. [2010, 2011]

18 • maghribensis in Jouve et al. [2006] (plus Yans et al. [2014])

19 • Hyposaurus natator (Hyposaurus rogersii is now a nomen dubium see Jouve et al. [2020]) from 20 Denton et al. [1997], Wilberg et al. [2019]

21 • browni [Osborn, 1904] in Wu et al. [2001], Adams et al. [2011], Wilberg et al. [2019]

22 • Congosaurus bequaerti Schwarz et al. [2006], Schwarz-Wings et al. [2009], Wilberg et al. [2019]

23 • neocesariensis (De Kay, 1842) in Carpenter [1983], Wilberg et al. [2019]

24 • Gavialosuchus/Thecachampsa americana in Lara [2012]

25 • moreli in Buffetaut [1981], Young et al. [2010], Wilberg et al. [2019]

26 • Suchodus durobrivensis in Buffetaut [1981], Young et al. [2010], Wilberg et al. [2019]

27 • Lemmysuchus obtusidens in Buffetaut [1981], Wilberg et al. [2019]

28 • bollensis in Buffetaut [1981], Wilberg et al. [2019]

29 • Metriorhynchus cultridens in Buffetaut [1981], Young et al. [2010], Wilberg et al. [2019]

30 • Suchodus superciliosus in Buffetaut [1981], Young et al. [2010], Wilberg et al. [2019]

31 Cerrejonisuchus improcerus is interpreted as ’less aquatic than Acherontisuchus guajiraensis’ ac- 32 cording to Hastings et al. [2011], so we placed it under the ’terrestrial’ label but only to oppose it to the 33 aquatic-freshwater lifestyle inferred for Acherontisuchus guajiraensis. Cerrejonisuchus improcerus is not 34 understood as fully terrestrial, but is here more viewed as Osteolaemus tetraspis.

1/16 skull ratios PCoA 3 a Dyrosauridae Hyposaurus natator YPM VP.000985 2 Absolute Skull Size (mm) Anthracosuchus balrogus Hyposaurus natator UF/IGM 67 300 1 NJSM 23368 400 500 Dyrosaurus 0 maghribensis 600 NHM VP R 36759 700

−1 Congosaurus bequaerti Thanatocoenosis MRAC 1741 Pelagic −2 Cerrejonisuchus improcerus UF/IGM 31 incipal Coordinates Axis 2 ( 23.3 %) Marine/Coastal P r Cerrejonisuchus improcerus UF/IGM 29 Aquatic/Amphibious −3 Terrestrial

−5.0 −2.5 0.0 2.5 5.0 7.5 Principal Coordinates Axis 1 ( 58.3 %)

Figure SI 1. Morphospace representing dissimilarity between dyrosaurid taxa using the first two PCoA axes, based on the dyrosaurid skull ratio dataset. Polygon encompasses Dyrosauridae members while colored symbols illustrate lifestyles. The relative size of the lifestyle symbols depends on the absolute skull size of the specimen. Hyposaurus vector by Nobu Tamura (vectorized by Zimices); Anthracosuchus vector by Roberto D ’iaz Sibaja

35 C DYROSAURID PCOA

36 In order to assess more specifically the morphological variations among dyrosaurids, two additional 37 datasets were composed and analyzed: the first one only comprised skull ratios (25 ratios - columns, of 38 which 5 are area ratios), and the second one only had postcranial ratios (170 ratios - columns, of which 73 39 are area ratios). Statistical analyses were conducted following the exact same method as described in the 40 main article. 41 As the osteological and taxonomic status of the NJSM 12293 specimen are unclear [Morgan et al., 42 2018, Denton et al., 1997], we have decided to only stipulate its inventory number in our analyses.

43

44 The skull-dataset comprises 11 dyrosaurid specimens (11 rows) and 25 skull ratios (25 columns, of 45 which 5 are area ratios), and has a total of 55.27% of missing data initially. This number is reduced to 46 27.47% after application of a completeness threshold of 25% for the characters and 50% for the taxa. The 47 list of individuals of this dataset is available below, see table SI 2. Completeness thresholds of 25% and 48 50% have been respectively applied to columns and rows to obtain a complete distance matrix (i.e. 0% of 49 missing values). The results are presented on fig. SI 1.

50

51 The postcranial-dataset comprises 40 dyrosaurid specimens (40 rows) and 170 postcranial ratios (170 52 columns, of which 73 are area ratios), and has a total of 91.25% of missing data initially. This number is 53 reduced to 35.76% after application of a completeness threshold of 10% for the characters and 40% for 54 the taxa. The list of individuals of this dataset is available below, see table SI 3. Completeness thresholds 55 of 10% and 40% have been respectively applied to columns and rows to obtain a complete distance matrix 56 (i.e. 0% of missing values). The results are presented on fig. SI 2.

57

58 On fig. SI 1, the dyrosaurids seem to be distributed as a function of their phylogenetic relationships 59 (see Hastings et al. [2014], Wilberg et al. [2019], or it could be strongly influenced by longirostry): it is 60 possible to draw a line on the first axis to separate the basal (right of graph) from the derived dyrosaurids 61 (left of graph). Furthermore, Anthracosuchus balrogus and Cerrejonisuchus improcerus are found on two 62 distinct poles, which means that they can be told apart from the second axis as well. 63 Yet, the major difference with the dyrosaurid phylogeny is the absence of a hyposaurine cluster: here 64 Congosaurus bequaerti is more dissimilar to Hyposaurus natator than it is to Dyrosaurus maghribensis.

65

66 Hyposaurine dyrosaurids are grouped together on the left portion of the graph (fig. SI 2), with the

2/16 Dyrosauridae postcranial ratios PCoA

Congosaurus bequaerti MRAC 1741

1 4 Selandian Cladeclade 4

Hyposaurus natator oweni 1,4,7 a Dyrosaurridaeidae YPM VP.000753

7 Hyposaurinae indet. 3 1 AMNH FARB 2390 Late (?) Thanatocoenosis or 7 (Danian?) 6,7 Pelagic Hyposaurus natator 0 2,6 Hyposaurus NJSM 23368 Danian Cerrejonisuchus Marine/Coastal 4 4,7 1 natator Danian Middle improcerus Aquatic/Amphibious UF/IGM 31 (heautotype) Terrestrial YPM 4,7 Hyposaurus natator VP.000380 1,4,6

incipal Coordinates Axis2 ( 20.7 %) Danian YPM VP.000985 1

P r Obtained from paleobiodb 5 2 Maastrichtian Obtained from personal or communication with D. Parris −4 7 3 Danian As labelled 4 Obtained from Troxell (1925) 7 5 Obtained from Morgan et al. (2018) Hyposaurinae indet. 6 NJSM 12293 Obtained from Jouve et al. (2020) 7 pers. comm. with Jouve (2021)

−5 0 5 10 Principal Coordinates Axis1 ( 35.1 %) Figure SI 2. Morphospace representing dissimilarity between dyrosaurid taxa using the first two PCoA axes, with the dyrosaurid body ratio dataset. Polygon encompasses Dyrosauridae members while colored symbols illustrate lifestyles. Hyposaurus vector by Nobu Tamura (vectorized by Zimices).

67 Danian [Jouve et al., 2020] specimens of Hyposaurus natator (NJSM 23368 and YPM VP.000985 respec- 68 tively) occupying center positions of the convex hull. Cerrejonisuchus improcerus is isolated and appears 69 mostly dissimilar to Hyposaurus spp. The specimens that occupy the closest position to Cerrejonisuchus 70 improcerus are the NJSM 12293 specimen and the holotype of Congosaurus bequaerti. As a result, the 71 pattern of morphospace occupation reflect a phylogenetical clustering along the first axis, but could also 72 reflect an environmental lifestyle splitting.

73

74 The Hyposaurus species are spaced so that the holotype specimen (YPM VP.000985) and the heauto- 75 type specimen (YPM VP.000380) of Hyposaurus natator are close to one another, while the specimen 76 YPM VP.000753 appears more distant to them. This specimen was previously attributed to distinct 77 subspecies, Hyposaurus natator oweni [Troxell, 1925]. A thorough investigation of the postcranial 78 material previously (see Jouve et al. [2020]) referred to as Hyposaurus appears now necessary [Jouve 79 et al., 2020]. It is possible that it might reveal species-level differences within this assemblage.

3/16 80 D THE SKULL

81 The skull of UF/IGM 31 (see fig. SI 14 in Supplementary Information), while not totally complete, 82 strongly resembles that of the holotype UF/IGM 29 which is figured and extensively described in Hastings 83 et al. [2010]. Here the dorsal skull length of UF/IGM 31 reaches 386 mm from the tip of the snout 84 (premaxillae) to the quadrate, making it a longer specimen than the holotype UF/IGM 29 [Hastings et al., 85 2010], which is 299.5 mm long.

86

87 The whole dorsal surface of the skull bears shallow pits. The snout is short (179 mm from tip of 88 the snout to the orbits), and reaches approximately 46% of the total skull length. There are two major 89 snout constrictions: the first one near the anterior margin of the nasal cavity, the second one directly 90 posterior to the premaxillary. These constrictions give room for large mandibular teeth. The premaxillary 91 has four alveoli, whereas the maxillary possesses eleven alveoli. The orbits are anterodorsally oriented, 92 and their shape is oval with the major axis mediolaterally oriented They are bordered by the lacrimal 93 and prefrontal anteriorly, by the jugal lateral, by the frontal medially, and by the postorbital posteriorly. 94 The supratemporal fenestra are reduced (about 59% of the infratemporal fenestra length), and close to 95 the orbits. The supra temporal fenestra is limited by the postorbital anteriolaterally, by the frontal and 96 parietal medially, and the squamosal posterolaterally. The nasal cavity is positioned anteriorly (near the 97 skull margin), and is oval with the minor axis anteroposteriorly oriented. The nasal cavity is enclosed 98 within the premaxillary (and thus does not meet with the nasal bone). The infratemporal fenestra starts at 99 about the mid length of the supratemporal fenestra, and is mainly formed by the squamosal, jugal and 100 quadratojugal (there is a presumed contribution of the postorbital).

4/16 101 E ADDITIONAL FIGURES

Variation of the angle of the pre- and postzygapophysis throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus

75

Color Cerrejonisuchus improcerus Congosaurus bequaerti 50 Hyposaurus natator Mecistops cataphractus

Angle in degree factor(Shape) Anterior 25 Posterior

0 1 2 3 6 7 8 9 5 6 9 7 8 0 4 5 6 7 8 9 1 2 1 2 3 5 4 1 2 3 4 1 2 3 4 10 12 11 10 26 25 27 24 28 13 11 13 14 15 18 19 22 23 30 12 16 17 20 21 29 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Axis-Odontoid Position of the vertebrae Figure SI 3. Evolution of the inclination angle in degree ◦ of the pre- and postzygapophysis throughout the axial skeletons of: Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NJSM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). The angle is taken from the coronal plane. Position of each vertebrae is listed on the abscissa axis.

Variation of the neural spine length throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus

150

Color 100 Cerrejonisuchus improcerus Congosaurus bequaerti Hyposaurus natator Mecistops cataphractus Centrum Length

50

0 5 1 3 9 7 4 2 4 6 8 2 2 4 6 8 1 3 9 5 6 7 8 1 3 2 4 2 3 5 7 1 9 1 0 11 13 17 29 13 21 23 27 31 15 25 10 12 10 11 12 14 20 22 28 30 16 24 26 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Axis-Odontoid Position of the vertebrae Figure SI 4. Scatter plot of the neural height variation throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NJSM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

5/16 Variation of centrum width throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus

60

Color Cerrejonisuchus improcerus Congosaurus bequaerti 40 Hyposaurus natator Mecistops cataphractus

Angle in degree factor(Shape) Anterior Posterior 20

0 3 5 6 9 8 1 4 7 1 3 6 9 2 1 2 4 7 2 6 8 3 5 9 3 1 2 4 0 4 5 7 8 2 1 12 11 10 12 13 15 18 21 24 27 29 30 35 10 13 14 16 19 20 25 31 11 17 22 23 26 28 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Axis-Odontoid Position of the vertebrae Figure SI 5. Scatter plot of the centrum width variation throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NJSM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

Variation of centrum height throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus

50

40 Color Cerrejonisuchus improcerus Congosaurus bequaerti Hyposaurus natator 30 Mecistops cataphractus

Angle in degree factor(Shape)

20 Anterior Posterior

10 9 3 6 1 4 7 1 3 4 7 9 6 1 2 1 2 4 5 7 8 2 6 8 3 5 9 1 2 3 4 0 5 8 2 12 10 13 16 18 19 21 24 27 15 30 10 11 13 25 12 14 20 29 31 35 11 17 22 23 26 28 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Axis-Odontoid Position of the vertebrae Figure SI 6. Scatter plot of the centrum height variation throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NJSM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

6/16 Neural height over heuristic centrum size throughout the axial skeleton of Congosaurus, Cerrejonisuchus, Mecistops, Hyposaurus

5

4 Shape Anterior Posterior 3

Color

Ratio Cerrejonisuchus improcerus UF/IGM 31 2 Congosaurus bequaerti Hyposaurus natator YPM VP.000985 Hyposaurus natator NJSM 23368 Mecistops cataphractus RBINS 18374 1

0 4 6 9 1 3 2 3 5 8 2 5 7 8 1 2 2 5 7 8 6 9 1 4 7 4 1 2 3 0 1 3 4 6 9 11 10 13 15 20 22 25 27 28 30 10 12 13 12 21 23 24 31 11 14 16 17 26 29 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Axis-Odontoid Position of the vertebrae Figure SI 7. Estimation via heuristic of the neural spine height variation throughout the axial skeleton of Congosaurus bequaerti, Hyposaurus natator (NJSM 23368 and YPM VP.000985), Cerrejonisuchus improcerus (UF/IGM 31), and Mecistops cataphractus (RBNIS 18374). Position of each vertebrae listed on the abscissa axis.

Lateral process length over heuristic centrum size throughout the axial skeleton of Congosaurus, Cerrejonisuchus, Mecistops, Hyposaurus

2.0

Shape 1.5 Anterior Posterior

Color

Ratio 1.0 Cerrejonisuchus improcerus UF/IGM 31 Congosaurus bequaerti Hyposaurus natator YPM VP.000985 Hyposaurus natator NJSM 23368 Mecistops cataphractus RBINS 18374

0.5

0.0 2 3 7 1 8 9 5 6 3 4 1 2 4 5 6 1 2 3 7 9 8 1 2 3 4 2 9 1 7 8 4 5 6 13 13 14 15 11 10 12 10 11 12 16 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Position of the vertebrae Figure SI 8. Estimation via heuristic of the maximal lateral process length variation throughout the axial skeleton of Congosaurus bequaerti, Hyposaurus natator (NJSM 23368 and YPM VP.000985), Cerrejonisuchus improcerus (UF/IGM 31), and Mecistops cataphractus (RBNIS 18374). Position of each vertebrae listed on the abscissa axis.

7/16 Neural spine anteroposterior width over heuristic centrum size throughout the axial skeleton of Congosaurus, Cerrejonisuchus, Mecistops, Hyposaurus

1.0

Shape Anterior 0.8 Posterior

Color

Ratio Cerrejonisuchus improcerus UF/IGM 31 Congosaurus bequaerti 0.6 Hyposaurus natator YPM VP.000985 Hyposaurus natator NJSM 23368 Mecistops cataphractus RBINS 18374

0.4 1 2 3 4 6 7 8 9 4 6 7 8 9 5 6 7 8 9 3 4 1 2 5 2 3 1 1 2 3 4 5 2 1 11 12 13 11 20 24 25 26 10 21 22 23 10 15 28 29 31 13 14 16 17 18 27 12 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Position of the vertebrae Figure SI 9. Estimation via heuristic of the neural spine anteroposterior width variation throughout the axial skeleton of Congosaurus bequaerti, Hyposaurus natator (NJSM 23368 and YPM VP.000985), Cerrejonisuchus improcerus (UF/IGM 31), and Mecistops cataphractus (RBNIS 18374). Position of each vertebrae listed on the abscissa axis.

Variation of the length of the lateral process throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus 60

40

Color Cerrejonisuchus improcerus Congosaurus bequaerti Hyposaurus natator Mecistops cataphractus Centrum Length

20

0 6 3 9 1 3 4 6 9 7 1 2 2 4 5 8 1 7 1 4 7 2 4 1 3 8 2 5 2 3 5 8 6 9 13 10 12 15 11 12 10 11 14 16 13 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Position of the vertebrae Figure SI 10. Scatter plot of the variation of the lateral process maximal length throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NSJM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

8/16 Ratio neural spine height over length of centrum throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus

3

Color 2 Cerrejonisuchus improcerus Congosaurus bequaerti Ratio Hyposaurus natator Mecistops cataphractus

1

0 2 3 9 4 4 5 3 4 5 6 1 5 6 7 8 1 2 7 8 6 9 1 2 4 3 1 3 9 2 7 8 1 2 10 11 10 11 12 17 20 26 27 31 16 25 12 13 30 14 15 23 13 21 22 24 28 29 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Position of the vertebrae Figure SI 11. Scatter plot of the variation of ratio of the neural spine height over the centrum length throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NSJM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

Ratio lateral process length over height of neural spine throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus 1.5

1.0

Color Cerrejonisuchus improcerus Congosaurus bequaerti Ratio Hyposaurus natator Mecistops cataphractus

0.5

0.0 3 5 8 9 4 1 2 5 6 9 1 4 1 5 6 1 2 3 4 7 1 2 6 2 3 7 8 2 7 8 3 4 9 10 10 11 14 15 11 12 13 13 12 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Position of the vertebrae Figure SI 12. Scatter plot of the variation of ratio of the lateral process length over the neural spine height throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NSJM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

9/16 Variation of the neural spine angle throughout the axial skeleton of Congosaurus, Mecistops, Cerrejonisuchus, Hyposaurus

100

80

Color Cerrejonisuchus improcerus Congosaurus bequaerti 60 Hyposaurus natator Mecistops cataphractus Centrum Length

40

20 6 8 1 3 3 5 8 2 4 7 9 2 2 4 5 7 9 2 7 1 4 6 9 1 3 4 2 0 1 3 5 6 8 1 11 10 13 16 18 21 23 24 26 29 31 10 12 13 12 15 17 20 25 28 30 11 14 19 22 27 35 Sacral Sacral Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Lumbar Lumbar Lumbar Lumbar Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Caudal Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Cervical Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Thoracic Axis-Odontoid Position of the vertebrae Figure SI 13. Scatter plot of the variation of the angle (in degrees) of the neural spine to the coronal plane throughout the axial skeleton of Congosaurus bequaerti, Mecistops cataphractus (RBNIS 18374), Hyposaurus natator (NSJM 23368), and Cerrejonisuchus improcerus (UF/IGM 31). Position of each vertebrae listed on the abscissa axis.

10/16 Figure SI 14. Skull and anterior thoracic vertebrae of Cerrejonisuchus improcerus UF/IGM 31. Thoracic vertebrae is in posterior view. A. dorsal view of the skull; B. ventral view of the skull.

11/16 102 F LISTS OF INDIVIDUALS

Species Inventory number 1 Cerrejonisuchus improcerus UF/IGM 31 2 Congosaurus bequaerti MRAC 1741 3 Hyposaurus natator NJSM 23368 4 Hyposaurinae indet. YPM VP.000764 5 Anthracosuchus balrogus UF/IGM 68 6 Anthracosuchus balrogus UF/IGM 67 7 Metriorhynchus cultridens NHM VP R3804 8 Lemmysuchus obtusidens NHM VP R3168 9 Crocodylus rhombifer AMNH FARB 16624 10 Hyposaurus natator YPM VP.000985 11 Hyposaurus natator YPM VP.000380 12 Hyposaurus natator oweni YPM VP.000753 13 Mecistops cataphractus RBINS 18374 14 multiscrobiculatus SMNS9930 15 Steneosaurus bollensis SMNS 9428 16 typus SMNS 80065 17 Metriorhynchus moreli SMNS 10116 18 hugii SMNS 81608 19 Dacosaurus maximus SMNS 8203 20 Machimosaurus buffetauti SMNS 91415 21 Crocodylus porosus R.G. 294 22 Cf. Gavialosuchus americanus or Thecachampsa americana ˜Brochu ANSP 9369 23 Terminonaris browni AMNH FARB 5844 24 Suchodus superciliosus AMNH FARB 997 25 Thoracosaurus neocesariensis NJSM 15437 26 Dyrosaurus maghribensis NHM VP R 36759 27 Suchodus durobrivensis NHM VP R 2618 Table SI 1. Total list of crocodyliform specimens (27) before application of completeness thresholds from the main analysis.

103

12/16 Species Inventory number 1 Congosaurus bequaerti MRAC 1741 2 Cerrejonisuchus improcerus UF/IGM 29 3 Cerrejonisuchus improcerus UF/IGM 31 4 Cerrejonisuchus improcerus UF/IGM 32 5 Anthracosuchus balrogus UF/IGM 67 6 Anthracosuchus balrogus UF/IGM 69 7 Hyposaurus rogersii ANSP 8631;8629 8 Hyposaurus natator YPM VP.000985 9 Hyposaurus rogersii NJSM 10861 10 Dyrosaurus maghribensis NHM VP R 36759 11 Hyposaurus rogersii NJSM 23368 Table SI 2. Total list of dyrosaurid individuals before application of completeness thresholds in the cranial analysis

104

13/16 Species Inventory number 1 Congosaurus bequaerti MRAC 1741 2 Cerrejonisuchus improcerus UF/IGM 29 3 Cerrejonisuchus improcerus UF/IGM 31 4 Cerrejonisuchus improcerus UF/IGM 32 5 Cerrejonisuchus improcerus UF/IGM 30 6 Anthracosuchus balrogus UF/IGM 67 7 Acherontisuchus guajiraensis UF/IGM 35 8 Acherontisuchus guajiraensis UF/IGM 38 9 Acherontisuchus guajiraensis UF/IGM 34 10 Anthracosuchus balrogus UF/IGM 69 11 Acherontisuchus guajiraensis UF/IGM 37 12 Hyposaurinae indet. ANSP 8651 13 Hyposaurinae indet. ANSP 8638 14 Hyposaurinae indet. ANSP 8648 15 Hyposaurinae indet. ANSP 8635 16 Hyposaurinae indet. ANSP 8631;8629 17 Hyposaurinae indet. ANSP 9682-93 18 Hyposaurinae indet. ANSP 9631-79 19 Hyposaurinae indet. ANSP 15364 20 Hyposaurinae indet. ANSP 13656 21 Hyposaurinae indet. AMNH FARB 1421 22 Hyposaurinae indet. AMNH FARB 1416 23 Hyposaurinae indet. AMNH FARB 1432 24 Hyposaurinae indet. AMNH FARB 1432 19205 25 Hyposaurinae indet. AMNH FARB 1432 26 Hyposaurinae indet. AMNH FARB 2389-2390 27 Hyposaurinae indet. AMNH FARB 2390 28 Hyposaurinae indet. AMNH FARB 2390 29 Hyposaurinae indet. AMNH FARB 19205 30 Hyposaurinae indet. AMNH FARB 2202 31 Hyposaurinae indet. AMNH FARB 19204 32 Hyposaurinae indet. AMNH FARB 1459 33 Hyposaurus natator YPM VP.000985 34 Hyposaurus natator YPM VP.000380 35 Hyposaurus natator (oweni) YPM VP.000753 36 Hyposaurus sp. YPM VP.000764 37 Hyposaurus natator NJSM 23368 38 Hyposaurinae indet. NJSM 12293 39 Hyposaurus sp. NJSM 10861 40 Dyrosaurus maghribensis NHM VP R 36759 Table SI 3. Total list of dyrosaurid specimens (40) before application of completeness thresholds in the postcranial analysis.

105

14/16 Package Use APE Multivariate analysis, PcoA VEGAN Test the statistical significance of the clusters w/ PERMANOVA (Permutational Multivariate Analysis of Variance Using Distance Matrices) PSYCH Functions for multivariate analysis DENDEXTEND Cut a Tree (Dendrogram/hclust/phylo) into Groups of Data from the cluster dendrogram results (clust result); perform tanglegram PVCLUST Creates a tree to represent the ecomorpho groups that exist in our matrix data.s DBI To communicate with sqlite database GGPLOT 2 To plot figures GGNEWSCALE To have more than one colour or fill scale in a plot using ggplot2 Table SI 4. Table depicting R packages employed.

106

107 REFERENCES

108 T. L. Adams, M. J. Polcyn, O. Mateus, D. A. Winkler, and L. L. Jacobs. First occurrence of the long- 109 snouted crocodyliform Terminonaris () from the Woodbine Formation () 110 of Texas. Journal of Vertebrate Paleontology, 31(3):712–716, 2011. ISSN 02724634. doi: 10.1080/ 111 02724634.2011.572938.

112 E. Buffetaut. Radiation evolutive,´ paleo´ ecologie´ et biogeographie´ des crocodiliens mesosuchiens.´ Memoire´ 113 de la Societ´ e´ Geologique´ de , 142:88, 1981.

114 K. Carpenter. Thoracosaurus neocesariensis (De Kay, 1842) (Crocodylia: Crocodylidae) from the Late 115 Cretaceous Ripley Formation of Mississippi. Mississippi Geology, 4:10, 1983. ISSN 1098-6596. doi: 116 10.1017/CBO9781107415324.004.

117 R. K. Denton, J. L. Dobie, and D. C. Parris. The marine crocodilian Hyposaurus in . 118 Ancient Marine , pages 375–397, 1997. doi: 10.1016/b978-012155210-7/50020-x.

119 A. K. Hastings, J. I. Bloch, E. A. Cadena, and C. A. Jaramillo. A new small short-snouted dyrosaurid 120 (, ) from the Paleocene of Northeastern . Journal of 121 Vertebrate Paleontology, 30(1):139–162, 2010.

122 A. K. Hastings, J. I. Bloch, and C. A. Jaramillo. A new longirostrine dyrosaurid (Crocodylomorpha, 123 Mesoeucrocodylia) from the Paleocene of north-eastern Colombia: biogeographic and behavioural 124 implications for New-World Dyrosauridae. Palaeontology, 54(5):1095–1116, 2011. ISSN 00310239. 125 doi: 10.1111/j.1475-4983.2011.01092.x.

126 A. K. Hastings, J. I. Bloch, and C. Jaramillo. A new blunt-snouted dyrosaurid, Anthracosuchus balrogus 127 gen. et sp. nov. (Crocodylomorpha, Mesoeucrocodylia), from the Palaeocene of Colombia. Historical 128 Biology, pages 1–23, 2014.

129 S. Jouve, M. Iarochene,` B. Bouya, and M. Amaghzaz. A new species of Dyrosaurus (Crocodylomorpha, 130 Dyrosauridae) from the early of : phylogenetic implications. Zoological Journal of 131 the Linnean Society, 148:603–656, 2006.

132 S. Jouve, C. de Muizon, R. Cespedes-Paz, V. Sossa-Soruco, and S. Knoll. The longirostrine crocodyliforms 133 from Bolivia and their evolution through the Cretaceous–Palaeogene boundary. Zoological Journal of 134 the Linnean Society, pages 1–35, 2020. ISSN 0024-4082. doi: 10.1093/zoolinnean/zlaa081.

135 J. V. T. Lara. Florida vertebrate Thecachampsa americana, 2012. URL https:

136 //www.floridamuseum.ufl.edu/florida-vertebrate-fossils/species/

137 thecachampsa-americana/.

15/16 138 D. J. Morgan, R. K. Denton, and R. E. Weems. Presence of a dyrosaurid neosuchian in the Sev- 139 ern/Brightseat Formation of Maryland. The Mosasaur The Journal of the Delaware Valley Paleontolog- 140 ical Society, 10:91–104, 2018.

141 H. F. Osborn. Teleorhinus browni, a teleosaur in the Fort Benton. Bulletin of the American Museum of 142 Natural History, 20:239–240, 1904.

143 D. Schwarz, E. Frey, and T. Martin. The postcranial skeleton of the Hyposaurinae (Dyrosauridae; 144 ). Palaeontology, 49(4):695–718, 2006.

145 D. Schwarz-Wings, E. Frey, and T. Martin. Reconstruction of the Bracing System of the Trunk and Tail in 146 Hyposaurine Dyrosaurids (Crocodylomorpha; Mesoeucrocodylia). Journal of Vertebrate Paleontology, 147 29(2):453–472, 2009.

148 E. L. Troxell. Hyposaurus, a marine crocodilian. American Journal of Science, 9(54):489–514, 1925.

149 E. W. Wilberg, A. H. Turner, and C. A. Brochu. Evolutionary structure and timing of major habitat shifts 150 in Crocodylomorpha. Scientific reports, 9(514):1–10, 2019. doi: 10.1038/s41598-018-36795-1.

151 X.-C. Wu, A. P. Russell, and S. L. Cumbaa. Terminonaris (Archosauria: Crocodyliformes): new material 152 from Saskatchewan, Canada, and comments on its phylogenetic relationships. Journal of Vertebrate 153 Paleontology, 21(3):492–514, 2001. ISSN 0272-4634. doi: 10.1671/0272-4634(2001)021.

154 J. Yans, M. Amaghzaz, B. Bouya, H. Cappetta, P. Iacumin, L. Kocsis, M. Mouflih, O. Selloum, S. Sen, 155 J. Y. Storme, and E. Gheerbrant. First carbon isotope chemostratigraphy of the Ouled Abdoun 156 phosphate Basin, Morocco; implications for dating and evolution of earliest African placental mammals. 157 Gondwana Research, 25(1):257–269, 2014. ISSN 1342937X. doi: 10.1016/j.gr.2013.04.004.

158 M. T. Young, S. L. Brusatte, M. Ruta, and M. B. de Andrade. The evolution of Metriorhynchoidea 159 (Mesoeucrocodylia, ): an integrated approach using geometric morphometrics, analysis 160 of disparity, and biomechanics. Zoological Journal of the Linnean Society2, 158:801–859, 2010.

16/16