International Scholarly Research Network ISRN Anesthesiology Volume 2012, Article ID 261640, 11 pages doi:10.5402/2012/261640 Research Article MicroPET/CT Imaging of [18F]-FEPPA in the Nonhuman Primate: A Potential Biomarker of Pathogenic Processes Associated with Anesthetic-Induced Neurotoxicity Xuan Zhang,1 Merle G. Paule,1 Glenn D. Newport,1 Fang Liu,1 Ralph Callicott,1 Shuliang Liu,1 Marc S. Berridge,2, 3 Scott M. Apana,2, 3 William Slikker Jr.,1 and Cheng Wang1 1 National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA 2 3D Imaging, LLC, Little Rock, AR 72113, USA 3 University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA Correspondence should be addressed to Cheng Wang,
[email protected] Received 6 August 2012; Accepted 15 September 2012 Academic Editors: J. Abraini and J.-H. Baumert Copyright © 2012 Xuan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. The inhalation anesthetics nitrous oxide (N2O) and isoflurane (ISO) are used in surgical procedures for human infants. Injury to the central nervous system is often accompanied by localization of activated microglia or astrocytosis at the site of injury. The tracer that targets to the peripheral benzodiazepine receptor (PBR), [18F]N-2-(2-fluoroethoxy)benzyl)- N-(4-phenoxypyridin-3-yl)acetamide ([18F]-FEPPA), has been reported as a sensitive biomarker for the detection of neuronal damage/inflammation. Methods. On postnatal day (PND) 5 or 6 rhesus monkey neonates were exposed to a mixture of N2O/oxygen and ISO for 8 hours and control monkeys were exposed to room air.