Lessons from Holocentric Chromosomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Mapping in Polyploids Genetic Genetic Mapping in Polyploids Genetic
GeneticGenetic mapping mapping InvitationInvitation Genetic mapping in polyploids Genetic mapping in polyploids in polyploidsin polyploids You are cordiallyYou are invitedcordially to invited to attend theattend public the defense public defense of my PhDof thesis my PhD entitled: thesis entitled: GeneticGenetic mapping mapping in polyploidsin polyploids on Fridayon 15 Fridayth June 152018th June 2018 at 11:00 in at the 11:00 Aula in ofthe Aula of WageningenWageningen University, University, Generaal GeneraalFoulkesweg Foulkesweg 1, 1, Wageningen.Wageningen. Peter M. Bourke Peter Peter M. Bourke Peter Peter BourkePeter Bourke [email protected]@wur.nl ParanymphsParanymphs Michiel KlaassenMichiel Klaassen Peter PeterM. Bourke M. Bourke [email protected]@wur.nl 2018 2018 Jordi PetitJordi Pedro Petit Pedro [email protected]@wur.nl Propositions 1. Ignoring multivalent pairing during polyploid meiosis simplifies and improves subsequent genetic analyses. (this thesis) 2. Classifying polyploids as either autopolyploid or allopolyploid is both inappropriate and imprecise. (this thesis) 3. The environmental credentials of electric cars are more grey than green. 4. ‘Gene drive’ technologies display once again that humans act more like ecosystem terrorists than ecosystem managers. 5. Heritability is a concept that promises much but delivers little. 6. Awarding patents to cultivars or crop traits is patently wrong. 7. The term “air miles” should refer to one’s lifetime allowance of fossil- fuelled air travel. 8. The Netherlands’ most effective educational tool comes on two wheels with a bell. Propositions belonging to the thesis, entitled “Genetic mapping in polyploids” Peter M. Bourke Wageningen, 15th June 2018 Genetic mapping in polyploids Peter M. -
Varietal Variation and Chromosome Behaviour During Meiosis in Solanum Tuberosum
Heredity (2020) 125:212–226 https://doi.org/10.1038/s41437-020-0328-6 ARTICLE Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum 1 1 1 1 2 1 Anushree Choudhary ● Liam Wright ● Olga Ponce ● Jing Chen ● Ankush Prashar ● Eugenio Sanchez-Moran ● 1,3 1 Zewei Luo ● Lindsey Compton Received: 16 December 2019 / Revised: 2 June 2020 / Accepted: 2 June 2020 / Published online: 10 June 2020 © The Author(s) 2020. This article is published with open access Abstract Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent fi 1234567890();,: 1234567890();,: was signi cantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7–48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis. -
The Distribution of Crossovers, and the Measure of Total Recombination
bioRxiv preprint doi: https://doi.org/10.1101/194837; this version posted September 27, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The distribution of crossovers, and the measure of total recombination Carl Veller∗;y;1 Martin A. Nowak∗;y;z Abstract Comparisons of genetic recombination, whether across species, the sexes, individ- uals, or different chromosomes, require a measure of total recombination. Traditional measures, such as map length, crossover frequency, and the recombination index, are not influenced by the positions of crossovers along chromosomes. Intuitively, though, a crossover in the middle of a chromosome causes more recombination than a crossover at the tip. Similarly, two crossovers very close to each other cause less recombination than if they were evenly spaced. Here, we study a measure of total recombination that does account for crossover position: average r, the probability that a random pair of loci recombines in the production of a gamete. Consistent with intuition, average r is larger when crossovers are more evenly spaced. We show that aver- age r can be decomposed into distinct components deriving from intra-chromosomal recombination (crossing over) and inter-chromosomal recombination (independent as- sortment of chromosomes), allowing separate analysis of these components. Average r can be calculated given knowledge of crossover positions either at meiosis I or in gametes/offspring. Technological advances in cytology and sequencing over the past two decades make calculation of average r possible, and we demonstrate its calculation for male and female humans using both kinds of data. -
Playing for Half the Deck: the Molecular Biology of Meiosis Mia D
fertility supplement review Playing for half the deck: the molecular biology of meiosis Mia D. Champion and R. Scott Hawley* Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA *e-mail: [email protected] Meiosis reduces the number of chromosomes carried by a diploid organism by half, partitioning precisely one haploid genome into each gamete. The basic events of meiosis reflect three meiosis-specific processes: first, pairing and synapsis of homologous chromosomes; second, high-frequency, precisely controlled, reciprocal crossover; third, the regulation of sister-chromatid cohesion (SCC), such that during anaphase I, SCC is released along the chromosome arms, but not at the centromeres. The failure of any of these processes can result in ane- uploidy or a failure of meiotic segregation. eiosis produces sperm and eggs with in Drosophila melanogaster,(c(3)G), that with Bombyx mori females, which build a exactly half the chromosome number of blocked both SC formation and the occur- SC without apparent exchange11,12. This the individual producing the gametes. To rence of any meiotic recombination2. view echoes the proposal of Zickler and ensure that each gamete has one copy of However, in the 1990s, genetic studies in Kleckner13, who suggested that the meiot- each chromosome pair, the diploid cell Saccharomyces cerevisiae indicated that ic programmes of various organisms may employs three meiosis-specific processes. mutational ablation of the SC had surpris- “differ only in respect to the potency of First, homologous chromosomes are ingly mild consequences for exchange and secondary SC nucleation mechanisms”. M 3 ‘matched’ by homologue alignment, that segregation . -
Alternative Meiotic Chromatid Segregation in the Holocentric Plant Luzula Elegans
ARTICLE Received 19 Mar 2014 | Accepted 12 Aug 2014 | Published 8 Oct 2014 DOI: 10.1038/ncomms5979 OPEN Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans Stefan Heckmann1,*,w, Maja Jankowska1,*, Veit Schubert1, Katrin Kumke1, Wei Ma1 & Andreas Houben1 Holocentric chromosomes occur in a number of independent eukaryotic lineages. They form holokinetic kinetochores along the entire poleward chromatid surfaces, and owing to this alternative chromosome structure, species with holocentric chromosomes cannot use the two-step loss of cohesion during meiosis typical for monocentric chromosomes. Here we show that the plant Luzula elegans maintains a holocentric chromosome architecture and behaviour throughout meiosis, and in contrast to monopolar sister centromere orientation, the unfused holokinetic sister centromeres behave as two distinct functional units during meiosis I, resulting in sister chromatid separation. Homologous non-sister chromatids remain terminally linked after metaphase I, by satellite DNA-enriched chromatin threads, until metaphase II. They then separate at anaphase II. Thus, an inverted sequence of meiotic sister chromatid segregation occurs. This alternative meiotic process is most likely one possible adaptation to handle a holocentric chromosome architecture and behaviour during meiosis. 1 Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrae 3, 06466 Gatersleben, Germany. * These authors contributed equally to this work. w Present address: School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK. Correspondence and requests for materials should be addressed to A.H. (email: [email protected]). NATURE COMMUNICATIONS | 5:4979 | DOI: 10.1038/ncomms5979 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.