Evaluation of the Influence of Fluoroquinolone Chemical Structure on Stability: Forced Degradation and in Silico Studies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antibiotic Resistance in the European Union Associated with Therapeutic Use of Veterinary Medicines
The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/CVMP/342/99-Final Antibiotic Resistance in the European Union Associated with Therapeutic use of Veterinary Medicines Report and Qualitative Risk Assessment by the Committee for Veterinary Medicinal Products 14 July 1999 Public 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Switchboard: (+44-171) 418 8400 Fax: (+44-171) 418 8447 E_Mail: [email protected] http://www.eudra.org/emea.html ãEMEA 1999 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 DEFINITION OF ANTIBIOTICS 1 1.1.1 Natural antibiotics 1 1.1.2 Semi-synthetic antibiotics 1 1.1.3 Synthetic antibiotics 1 1.1.4 Mechanisms of Action 1 1.2 BACKGROUND AND HISTORY 3 1.2.1 Recent developments 3 1.2.2 Authorisation of Antibiotics in the EU 4 1.3 ANTIBIOTIC RESISTANCE 6 1.3.1 Microbiological resistance 6 1.3.2 Clinical resistance 6 1.3.3 Resistance distribution in bacterial populations 6 1.4 GENETICS OF RESISTANCE 7 1.4.1 Chromosomal resistance 8 1.4.2 Transferable resistance 8 1.4.2.1 Plasmids 8 1.4.2.2 Transposons 9 1.4.2.3 Integrons and gene cassettes 9 1.4.3 Mechanisms for inter-bacterial transfer of resistance 10 1.5 METHODS OF DETERMINATION OF RESISTANCE 11 1.5.1 Agar/Broth Dilution Methods 11 1.5.2 Interpretative criteria (breakpoints) 11 1.5.3 Agar Diffusion Method 11 1.5.4 Other Tests 12 1.5.5 Molecular techniques 12 1.6 MULTIPLE-DRUG RESISTANCE -
Multi-Residual Quantitative Analytical Method for Antibiotics in Sea Food by LC/MS/MS
PO-CON1742E Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS ASMS 2017 TP 198 Anant Lohar, Shailendra Rane, Ashutosh Shelar, Shailesh Damale, Rashi Kochhar, Purushottam Sutar, Deepti Bhandarkar, Ajit Datar, Pratap Rasam and Jitendra Kelkar Shimadzu Analytical (India) Pvt. Ltd., 1 A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India. Multi-residual quantitative analytical method for antibiotics in sea food by LC/MS/MS Introduction Antibiotics are widely used in agriculture as growth LC/MS/MS method has been developed for quantitation of enhancers, disease treatment and control in animal feeding multi-residual antibiotics (Table 1) from sea food sample operations. Concerns for increased antibiotic resistance of using LCMS-8040, a triple quadrupole mass spectrometer microorganisms have prompted research into the from Shimadzu Corporation, Japan. Simultaneous analysis environmental occurrence of these compounds. of multi-residual antibiotics often exhibit peak shape Assessment of the environmental occurrence of antibiotics distortion owing to their different chemical nature. To depends on development of sensitive and selective overcome this, autosampler pre-treatment feature was analytical methods based on new instrumental used [1]. technologies. Table 1. List of antibiotics Sr.No. Name of group Name of compound Number of compounds Flumequine, Oxolinic Acid, Ciprofloxacin, Danofloxacin, Difloxacin.HCl, 1 Fluoroquinolones 8 Enrofloxacin, Sarafloxacin HCl Trihydrate, -
Dead Bugs Don't Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance
PERSPECTIVES Dead Bugs Don’t Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance Charles W. Stratton*1 The global emergence of antibacterial resistance among and macrolides (the antibacterial agents used most frequently common and atypical respiratory pathogens in the last decade for pneumococcal infections) have become prevalent through- necessitates the strategic application of antibacterial agents. out the world. Indeed, rates of S. pneumoniae resistance to The use of bactericidal rather than bacteriostatic agents as penicillin now exceed 40% in many regions, and a high pro- first-line therapy is recommended because the eradication of portion of these strains are also resistant to macrolides. More- microorganisms serves to curtail, although not avoid, the devel- over, the trend is growing rapidly. Whereas 10.4% of all S. opment of bacterial resistance. Bactericidal activity is achieved with specific classes of antimicrobial agents as well as by com- pneumoniae isolates were resistant to penicillin and 16.5% bination therapy. Newer classes of antibacterial agents, such resistant to macrolides in 1996, these proportions rose to as the fluoroquinolones and certain members of the macrolide/ 14.1% and 21.9%, respectively, in 1997 (9). A more recent lincosamine/streptogramin class have increased bactericidal susceptibility study conducted in 2000–2001 showed that activity compared with traditional agents. More recently, the 51.5% of all S. pneumoniae isolates were resistant to penicillin ketolides (novel, semisynthetic, erythromycin-A derivatives) and 30.0% to macrolides (10). have demonstrated potent bactericidal activity against key res- The urgent need to curtail proliferation of antibacterial- piratory pathogens, including Streptococcus pneumoniae, Hae- resistant bacteria has refocused attention on the proper use of mophilus influenzae, Chlamydia pneumoniae, and Moraxella antibacterial agents. -
AMEG Categorisation of Antibiotics
12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................ -
Mitigation of Antimicrobial Drug Resistance and Changes in The
Mitigation of Antimicrobial Drug Resistance and Changes in the Microbiome of Feedlot Cattle Supplemented with Lactobacillus salivarius L28 as an Alternative to Sub-Therapeutic Antibiotics by Andrea R. English, M.S. A Dissertation In Animal Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Dr. Marcos X. Sánchez-Plata Co-Chair of Committee Dr. Mindy M. Brashears Co-Chair of Committee Dr. Kendra K. Nightingale Dr. Alejandro Echeverry Dr. Jessie Vipham Dr. Mark F. Miller Mark Sheridan Dean of the Graduate School December, 2019 Copyright 2019, Andrea English Texas Tech University, Andrea English, December 2019 ACKNOWLEDGMENTS I would like to first thank my advisor Dr. Mindy Brashears you took a chance on me and I am forever grateful. I am so thankful that I was able to learn and grow as a scientist under your guidance. You have provided me with experiences I will always remember. Thank you for everything you have done for me while at Texas Tech. Thank you to my committee, Dr. Sanchez you have been an incredible mentor and I have truly valued absorbing as much knowledge as I possibly could from you. Dr. Nightingale thank you for investing in me and this project. You pushed me to be a better scientist which I very much appreciate. Dr. Echeverry and Dr. Vipham I cannot say thank you enough for the support you have provided me. You each have always made time for me and that is invaluable. Dr. Miller thank you for continuously providing me with opportunities to grow, learn and dabble in meat science while here at Texas Tech. -
Screening of Pharmaceuticals in San Francisco Bay Wastewater
Screening of Pharmaceuticals in San Francisco Bay Wastewater Prepared by Diana Lin Rebecca Sutton Jennifer Sun John Ross San Francisco Estuary Institute CONTRIBUTION NO. 910 / October 2018 Pharmaceuticals in Wastewater Technical Report Executive Summary Previous studies have shown that pharmaceuticals are widely detected in San Francisco Bay, and some compounds occasionally approach levels of concern for wildlife. In 2016 and 2017, seven wastewater treatment facilities located throughout the Bay Area voluntarily collected wastewater samples and funded analyses for 104 pharmaceutical compounds. This dataset represents the most comprehensive analysis of pharmaceuticals in wastewater to date in this region. On behalf of the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), the complete dataset was reviewed utilizing RMP quality assurance methods. An analysis of influent and effluent information is summarized in this report, and is intended to inform future monitoring recommendations for the Bay. Influent and effluent concentration ranges measured were generally within the same order of magnitude as other US studies, with a few exceptions for effluent. Effluent concentrations were generally significantly lower than influent concentrations, though estimated removal efficiency varied by pharmaceutical, and in some cases, by treatment type. These removal efficiencies were generally consistent with those reported in other studies in the US. Pharmaceuticals detected at the highest concentrations and with the highest frequencies in effluent were commonly used drugs, including treatments for diabetes and high blood pressure, antibiotics, diuretics, and anticonvulsants. For pharmaceuticals detected in discharged effluent, screening exercises were conducted to determine which might be appropriate candidates for further examination and potential monitoring in the Bay. -
Fluoroquinolones in the Management of Acute Lower Respiratory Infection
Thorax 2000;55:83–85 83 Occasional review Thorax: first published as 10.1136/thorax.55.1.83 on 1 January 2000. Downloaded from The next generation: fluoroquinolones in the management of acute lower respiratory infection in adults Peter J Moss, Roger G Finch Lower respiratory tract infections (LRTI) are ing for up to 40% of isolates in Spain19 and 33% the leading infectious cause of death in most in the United States.20 In England and Wales developed countries; community acquired the prevalence is lower; in the first quarter of pneumonia (CAP) and acute exacerbations of 1999 6.5% of blood/cerebrospinal fluid isolates chronic bronchitis (AECB) are responsible for were reported to the Public Health Laboratory the bulk of the adult morbidity. Until recently Service as showing intermediate sensitivity or quinolone antibiotics were not recommended resistance (D Livermore, personal communi- for the routine treatment of these infections.1–3 cation). Pneumococcal resistance to penicillin Neither ciprofloxacin nor ofloxacin have ad- is not specifically linked to quinolone resist- equate activity against Streptococcus pneumoniae ance and, in general, penicillin resistant in vitro, and life threatening invasive pneumo- pneumococci are sensitive to the newer coccal disease has been reported in patients fluoroquinolones.11 21 treated for respiratory tract infections with Resistance to ciprofloxacin develops rela- these drugs.4–6 The development of new fluoro- tively easily in both S pneumoniae and H influ- quinolone agents with increased activity enzae, requiring only a single mutation in the against Gram positive organisms, combined parC gene.22 23 Other quinolones such as with concerns about increasing microbial sparfloxacin and clinafloxacin require two resistance to â-lactam agents, has prompted a mutations in the parC and gyrA genes.11 23 re-evaluation of the use of quinolones in LRTI. -
Ranking of Major Classes of Antibiotics for Activity
RANKING OF MAJOR CLASSES OF ANTIBIOTICS FOR ACTIVITY AGAINST STATIONARY PHASE GRAM-NEGATIVE BACTERIA PSEUDOMONAS AERUGINOSA AND CARBAPENEMASE-PRODUCING KLEBSIELLA PNEUMONIAE AND IDENTIFICATION OF DRUG COMBINATIONS THAT ERADICATE THEIR PERSISTENT INFECTIONS by Yuting Yuan A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science Baltimore, Maryland April, 2019 ABSTRACT From the earliest identification of different bacterial phenotypic states, researchers found under antibiotic exposure, there are some bacteria that can keep dormant in a non-growing state as persister cells. These dormant persister bacteria can revert back to the growing population when the antibiotics are removed. The formation of bacterial persister cells establishes phenotypic heterogeneity within a bacterial population and is important for increasing the chances of successfully adapting to environmental change. Persister cells were first discovered in Staphylococcus sp. in 1944 when penicillin failed to kill a small subpopulation of bacterial cells. Persisters exhibit temporary antibiotic-tolerant phenotype and the underlying mechanisms involved in the induction and regulation of persister cells formation have been investigated by the previous lab members regarding mechanisms of persistence in Borrelia burgdorferi and with Yin-Yang Model to illustrate persistent infection. This investigation focuses on the optimal treatment for persistent infection. Because current treatments for such chronic persistent infections are not effective and antibiotic phenotypic resistance is a significant issue. The discovery of antibiotics and their widespread use represent a significant milestone in human history since the 20th century. However, their efficacy has declined at an alarming rate due to the spread of antibiotic resistance, and persistence and the evidence is accumulating that persister cells can contribute to the emergence of antibiotic resistance. -
Molecular Docking Studies of Some Novel Fluoroquinolone Derivatives
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2019 doi:10.20944/preprints201901.0307.v1 1 Article 2 Molecular Docking Studies of Some Novel 3 Fluoroquinolone Derivatives 4 Lucia Pintilie* and Amalia Stefaniu 5 1 National Institute for Chemical‐Pharmaceutical Research and Development, 112 Vitan Av., 74373, 6 Bucharest, Romania, e‐mails: [email protected] (L.P), [email protected] (A.S) 7 * Correspondence: [email protected]; Tel.: +40 21 322 29 17 8 9 10 Abstract: An important parameter in the development of a new drug is the drugʹs affinity to the 11 identified target (protein/enzyme). Predicting the ligand binding to the protein assembly by 12 molecular simulations would allow the synthesis to be restricted to the most promising drug 13 candidates. A restricted hybrid HF‐DFT calculation was performed in order to obtain the most stable 14 conformer of studied ligands and a series of DFT calculations using the B3LYP levels with 6‐31G* 15 basis set has been conducted on their optimized structures. The docking studies of the quinolone 16 compounds have been carried out with CLC Drug Discovery Workbench software to identify and 17 visualize the ligand‐receptor interaction mode. 18 Keywords: molecular docking; fluoroquinolones; antimicrobial activity 19 20 1. Introduction 21 Infectious diseases are the second important cause of death global [1]. Treatment of infectious 22 diseases becomes more difficult when common pathogens, such as Staphylococcus aureus and 23 Mycobacterium tuberculosis develop drug resistance to drugs that were considered at one time, 24 effective. Antibiotic drugs are a special class of therapeutic agents whose misuse have affected not 25 only the individual patient, they have affected also the entire community. -
De Novo Design of Type II Topoisomerase Inhibitors As Potential Antimicrobial Agents Targeting a Novel Binding Region Kyle M. Or
De Novo Design of Type II Topoisomerase Inhibitors as Potential Antimicrobial Agents Targeting a Novel Binding Region Kyle M. Orritta, Juliette F. Newella, Thomas Germeb, Lauren R. Abbottb,1, Holly L. Jacksona, Benjamin K. L. Burya, Anthony Maxwellb*, Martin J. McPhilliea*, Colin W. G. Fishwicka* a School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom b Dept. Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom 1 Dept. of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom *Corresponding authors: [email protected], [email protected], [email protected] Abstract By 2050 it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, costing the world economy $100 trillion. Clearly, strategies to address this problem are required as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy, as this site is distinct from the fluoroquinolone-DNA site binding site. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by the published thiophene allosteric inhibitor. This series was evaluated in vitro against E. coli DNA gyrase, exhibiting IC50 values in the low micromolar range. The structure-activity relationship reported herein suggests insights to further exploit this allosteric site, offering a pathway to overcome fluoroquinolone resistance. Keywords DNA gyrase, antimicrobial resistance, structure-based molecular design, de novo design, allosteric inhibitors The evolution of antibiotic resistance poses an enormous threat to human health. -
DNA/RNA Synthesis
DNA/RNA Synthesis RNA synthesis, which is also called DNA transcription, is a highly selective process. Transcription by RNA polymerase II extends beyond RNA synthesis, towards a more active role in mRNA maturation, surveillance and export to the cytoplasm. Single-strand breaks are repaired by DNA ligase using the complementary strand of the double helix as a template, with DNA ligase creating the final phosphodiester bond to fully repair the DNA.DNA ligases discriminate against substrates containing RNA strands or mismatched base pairs at positions near the ends of the nickedDNA. Bleomycin (BLM) exerts its genotoxicity by generating free radicals, whichattack C-4′ in the deoxyribose backbone of DNA, leading to opening of the ribose ring and strand breakage; it is an S-independentradiomimetic agent that causes double-strand breaks in DNA. First strand cDNA is synthesized using random hexamer primers and M-MuLV Reverse Transcriptase (RNase H). Second strand cDNA synthesis is subsequently performed using DNA Polymerase I and RNase H. The remaining overhangs are converted into blunt ends using exonuclease/polymerase activity. After adenylation of the 3′ ends of DNA fragments, NEBNext Adaptor with hairpin loop structure is ligated to prepare the samples for hybridization. Cell cycle and DNA replication are the top two pathways regulated by BET bromodomain inhibition. Cycloheximide blocks the translation of mRNA to protein. www.MedChemExpress.com 1 DNA/RNA Synthesis Inhibitors, Agonists, Activators, Modulators & Chemicals (+)-TK216 (-)-TK216 Cat. No.: HY-122903B Cat. No.: HY-122903A (+)-TK216 is an enantiomer of TK216 (HY-122903). (-)-TK216 is an enantiomer of TK216 (HY-122903). TK216 is an orally active and potent E26 TK216 is an orally active and potent E26 transformation specific (ETS) inhibitor. -
Gatifloxacin for Treating Enteric Fever Submission to the 18Th Expert
Gatifloxacin for enteric fever Gatifloxacin for treating enteric fever Submission to the 18th Expert Committee on the Selection and Use of Essential Medicines 1 Gatifloxacin for enteric fever Table of contents Gatifloxacin for treating enteric fever....................................................................................... 1 Submission to the 18th Expert Committee on the Selection and Use of Essential Medicines . 1 1 Summary statement of the proposal for inclusion........................................................... 4 1.1 Rationale for this submission................................................................................... 4 2 Focal point in WHO submitting the application ............................................................... 4 3 Organizations consulted and supporting the application ................................................ 5 4 International Nonproprietary Name (INN, generic name) of the medicine..................... 5 5 Formulation proposed for inclusion ................................................................................. 5 5.1 Prospective formulation improvements.................................................................. 6 6 International availability................................................................................................... 6 6.1 Patent status ............................................................................................................ 6 6.2 Production...............................................................................................................