Dual Wavelength Optical Tweezers for Confocal Raman Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Dual Wavelength Optical Tweezers for Confocal Raman Spectroscopy Optics Communications 245 (2005) 465–470 www.elsevier.com/locate/optcom Dual wavelength optical tweezers for confocal Raman spectroscopy C.M. Creely a, G.P. Singh a, D. Petrov a,b,* a ICFO – Institut de Cie`ncies Foto`niques, c/Jordi Girona 29, 08034, Barcelona, Spain b ICREA – Institucio´ Catalana de Recerca i Estudis Avanc¸at, Barcelona, Spain Received 16 September 2004; received in revised form 5 October 2004; accepted 6 October 2004 Abstract We describe the use of dual optical tweezers to manipulate micron-size particles in and out of the focus of a confocal Raman microscope. One of the beams excites the Raman spectrum while the second tweezers improves the sensitivity of the technique and also allows for the manipulation of the environment of the trapped objects. We concentrated on optimising the alignment of both trapping and Raman excitation beams and on the background subtraction method. Even at the low trapping/excitation powers used a single living cell could be trapped and monitored for over 2 h without incurring damage. Ó 2004 Elsevier B.V. All rights reserved. PACS: 87.80.Cc; 87.64.Je; 87.64.Tt Keywords: Optical tweezers; Raman spectroscopy; Microspectroscopy Optical tweezers utilise the force of radiation perform spectroscopy on a single object of micron pressure to trap and manipulate micron and sub- size. A greater signal to noise ratio from the micron sized particles whose refractive index dif- trapped object can be achieved when background fers from that of the environment [1,2]. Since signals from the cover slip and immersion oil are 1984 radiation forces have been used to perform minimised by manipulating the particle inside a spectroscopy on trapped particles, aerosols and sample holder. In most previous studies the same living cells (for example [3–13]). The important beam has been used to trap an object and excite advantage of such techniques is the ability to either fluorescence or Raman scattering. Such a technique does not allow one to perform spatially * Corresponding author. Tel.: +34 93 413 7942; fax: +34 93 resolved spectroscopy of the trapped objects or to 413 7943. take the background for a given position of the E-mail address: [email protected] (D. Petrov). trapping beam. A second trapping beam can both 0030-4018/$ - see front matter Ó 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.optcom.2004.10.011 466 C.M. Creely et al. / Optics Communications 245 (2005) 465–470 improve the sensitivity of the optical tweezers Ra- man spectroscopy system and allow one to manip- ulate the micro-environment of the object. Recently novel setups consisting of two separate laser beams for trapping and Raman spectra exci- tation were proposed in [14,15]. The system inves- tigated in [14] consisted of two independent microscopes: one to trap an object and another to excite the Raman spectra and collect scattering light. The functionality of the system was demon- strated by measurements of resonance Raman spectra of red blood cells. In [15] two optical beams of different frequencies were also used for trapping and spectroscopy. It was shown that the set-up which included only one microscope has a better signal to noise ratio and also obviated prob- lems arising from replacing the condenser. In this Letter, we develop a variant of dual fre- quency Raman microspectroscopy combined with optical tweezers that includes only one microscope system. In particular, we concentrated on optimis- Fig. 1. The confocal Raman spectroscopy set-up with dual tweezers. ing the alignment of both trapping and Raman excitation beam and on the background subtrac- tion method. Our system allows us to achieve a objective NA = 1.25 (Edmund Optics) and non flu- high signal to noise ratio such that at <10 mW orescent oil (Cargille, Type DF). Back scattered input power the Raman spectrum of a trapped light collected by the objective passed through a polystyrene bead can be monitored in real time holographic notch filter (NF) (Kaiser) and a con- and hence used to align our confocal system with focal system formed by lenses L1 and L2 and a greater accuracy. The power of our 1064 nm trap- 100 lm pinhole, before finally being focussed by ping beam is about 50 times less than that used in a cylindrical lens onto the spectrometer slit. The [14] and the laser excitation power required is five spectrometer was a SpectraPro 2500Ài from Acton times less than that used in [15]. These conditions containing a 600 lines/mm grating (750 nm blaze together with using IR wavelengths for trapping wavelength) and incorporating a Princeton Instru- allow us to study living cells for long periods of ments Spec-10 CCD, cooled to À100 °C. A 1064 time, thus kinetics for biochemical processes can nm Nd:YAG laser operating at less than 2.0 mW be obtained. Here, we show results for non reso- of power at the sample was used as the auxiliary nant Raman spectra where living yeast cells are laser tweezers. By adjusting mirror M and varying trapped and spectra recorded for over 2 h with the distance between lenses L3 and L4 we manipu- no detrimental effects to the cell. lated a trapped object along all three coordinates. The main parts of our experimental set-up are A CCD camera (JAI) attached to the microscope as follows (Fig. 1). A diode laser (CrystaLaser) provided optical images during experiments. operating at 785 nm was used for excitation of We found that the optimum alignment for Ra- Raman spectra with an average power of <10 man spectra of a trapped object differs greatly to mW at the sample. Micro-particles or cells were that of an object flat on a surface. The system trapped inside a custom-made holder using a was optimised for Raman spectra from a trapped 100-lm thick fused silica cover slip (UQG Optics). spherical object by using a 5-lm diameter polysty- The holder was placed on an inverse Olympus IX rene bead. First, the optical systems were aligned 51 microscope equipped with a 100· oil immersion in such a way that the trap could be achieved at C.M. Creely et al. / Optics Communications 245 (2005) 465–470 467 the same place inside the sample holder for both After this measurement was made the 1064 nm beams. Then the bead was trapped using the 785 tweezers were switched on and used to trap and nm laser and the Raman spectrum was recorded then move the particle out of the Raman laser in real time. The signal to noise ratio for our beam waist in order to take a background meas- system was large enough to be able to align the urement under the exact same experimental condi- system using a 0.2 s or even 0.1 s accumulation tions (see Fig. 2(c)). The final back subtracted data time (Fig. 2(a)). By adjusting the position of the is seen in Fig. 2(d). All background subtractions bead inside the sample holder and the orientation for trapped objects were made in the same way. of the pinhole we optimised the signal to noise ra- The spectra were processed by background sub- tio for the trapped bead. A sample spectrum of traction and subsequent Savitsky–Golay smooth- polystyrene taken for 10 s is shown in Fig. 2(b). ing. After the system was aligned for polystyrene beads, measurements were made on living cells using the same procedure for the background subtraction. The Saccharomyces cerevisiae yeast cell is widely used as a model for fundamental studies of cell processes including cell stress response, as many fundamental cellular processes are con- served from yeast to human cells and correspond- ing genes can often complement each other. Many disease-related genes have been identified from studies of this organism, forming the basis for understanding more complex cell-signalling events [16,17]. Cell processes such as stress response have been monitored by biochemical methods but not on a single cell basis. To be able to monitor dy- namic processes such as mitosis or metabolic changes in single cells a method must be available to immobilise and if necessary manipulate a single cell over a period of time relative to the length of the cell cycle. For our experiments yeast cells (S. cerevisiae) were grown in synthetic defined media (SDC) with complete supplements under standard conditions. For Raman measurements the cells were diluted further in SDC such that a single cell could be trapped with no other cells in the surrounding medium. This medium was used to ensure cell via- bility over the long time scale of our experiments, providing nutrients for the cell to live on. Raman spectra of single, budding live yeast cells were Fig. 2. (a) Spectrum of trapped polystyrene bead in the optical recorded every 3 min for 180 s accumulation time, trap used for alignment, 0.2 s accumulation at <10 mW power. for a total of 150 min in the same optical trap. (b) Spectrum for trapped bead for 10 s accumulation. (c) The After the experiment the buds were seen to have subsequent background spectrum after the bead had been grown appreciably, indicating the normal growth removed using the 1064 nm tweezers. (d) Background subtracted spectrum, no baseline subtraction used. Insets: of the cell in the optical trap. The resolution for À1 Images of trapped bead, X denotes the position of the 785 nm our experiments was 8.5 cm as estimated from beam. the polystyrene spectrum by measuring the 468 C.M. Creely et al. / Optics Communications 245 (2005) 465–470 FWHM of the 1001.4 cmÀ1 peak.
Recommended publications
  • A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts
    8600 J. Phys. Chem. B 2001, 105, 8600-8606 A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts Yek Tann Chua,† Peter C. Stair,*,† and Israel E. Wachs*,‡ Department of Chemistry, Center for Catalysis and Surface Science and Institute of EnVironmental Catalysis, Northwestern UniVersity, EVanston, Illinois 60208, and Zettlemoyer Center for Surface Studies and Department of Chemical Engineering, Lehigh UniVersity, Bethlehem, PennsylVania 18015 ReceiVed: April 11, 2001 The recent emergence of ultraviolet-wavelength-excited Raman spectroscopy as a tool for catalyst characterization has motivated the question of how UV Raman spectra compare to visible-wavelength-excited Raman spectra on the same catalyst system. Measurements of Raman spectra from five supported metal oxide systems (Al2O3-supported Cr2O3,V2O5, and MoO3 as well as TiO2-supported MoO3 and Re2O7), using visible (514.5 nm) and ultraviolet (244 nm) wavelength excitation have been compared to determine the similarities and differences in Raman spectra produced at the two wavelengths. The samples were in the form of self-supporting disks. Spectra from the oxides, both hydrated as a result of contact with ambient air and dehydrated as a result of calcination or laser-induced heating, were recorded. A combination of sample spinning and translation to produce a spiral pattern of laser beam exposure to the catalyst disk was found to be most effective in minimizing dehydration caused by laser-induced heating. Strong absorption by the samples in the ultraviolet significantly reduced the number of scatterers contributing to the Raman spectrum while producing only modest increases in the Raman scattering cross section due to resonance enhancement.
    [Show full text]
  • Quantitative Force Measurements with Optical Tweezers: the JPK Nanotracker™
    Quantitative force measurements with optical tweezers: The JPK NanoTracker™ Introduction to optical tweezers manipulate biomolecules and cells, but also to directly and accurately measure the minute forces (on the order of Optical tweezers methodology has developed from proof-of- fractions of picoNewtons) involved. Most often, the principle experiments to an established quantitative biomolecules of interest are not trapped themselves technique in fields ranging from (bio)physics through cell directly, but manipulated through functionalized biology. As the name suggests, optical tweezers are a microspheres. means to manipulate objects with light. With this technique, The correct physical description of optical trapping depends microscopically small objects can be held and manipulated. on the size of the trapped object. One speaks of the ‘ray- At the same time, the forces exerted on the trapped objects optics’ regime when the object’s dimension d is much larger can be accurately measured. The basic physical principle than the wavelength of the trapping light: d>>λ. In this case, underlying optical tweezers is the radiation pressure diffraction effects can be neglected and the trapping forces exerted by light when colliding with matter. For macroscopic of the light can be understood in terms of ray optics. The objects, the radiation pressure exerted by typical light regime where d<<λ is called the Rayleigh regime. In this sources is orders of magnitude too small to have any case, the trapped particles can be treated as point dipoles, measurable effect: we do not feel the light power of the sun as the electromagnetic field is constant on the scale of the pushing us away.
    [Show full text]
  • Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
    Article Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals Pravin Kumar Tiwari 1,2, Nilesh Kumar Rai 3, Rohit Kumar 3, Christian G. Parigger 4 and Awadhesh Kumar Rai 2,* 1 Institute for Plasma Research, Gandhinagar, Gujarat-382428, India 2 Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India 3 CMP Degree College, Department of Physics, University of Allahabad, Pragyagraj-211002, India 4 Physics and Astronomy Department, University of Tennessee, University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700, USA * Correspondence: [email protected]; Tel.: +91-532-2460993 Received: 10 June 2019; Accepted: 10 July 2019; Published: 19 July 2019 Abstract: Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Keywords: paracetamol; laser-induced breakdown spectroscopy; cyanide; carbon swan bands; principal component analysis; Raman spectroscopy; Fourier-transform-infrared spectroscopy 1.
    [Show full text]
  • A Quantum Origin of Life?
    June 26, 2008 11:1 World Scientific Book - 9in x 6in quantum Chapter 1 A Quantum Origin of Life? Paul C. W. Davies The origin of life is one of the great unsolved problems of science. In the nineteenth century, many scientists believed that life was some sort of magic matter. The continued use of the term “organic chemistry” is a hangover from that era. The assumption that there is a chemical recipe for life led to the hope that, if only we knew the details, we could mix up the right stuff in a test tube and make life in the lab. Most research on biogenesis has followed that tradition, by assuming chemistry was a bridge—albeit a long one—from matter to life. Elucidat- ing the chemical pathway has been a tantalizing goal, spurred on by the famous Miller-Urey experiment of 1952, in which amino acids were made by sparking electricity through a mixture of water and common gases [Miller (1953)]. But this concept turned out to be something of a blind alley, and further progress with pre-biotic chemical synthesis has been frustratingly slow. In 1944, Erwin Schr¨odinger published his famous lectures under the ti- tle What is Life? [Schr¨odinger (1944)] and ushered in the age of molecular biology. Sch¨odinger argued that the stable transmission of genetic infor- mation from generation to generation in discrete bits implied a quantum mechanical process, although he was unaware of the role of or the specifics of genetic encoding. The other founders of quantum mechanics, including Niels Bohr, Werner Heisenberg and Eugene Wigner shared Schr¨odinger’s belief that quantum physics was the key to understanding the phenomenon Received May 9, 2007 3 QUANTUM ASPECTS OF LIFE © Imperial College Press http://www.worldscibooks.com/physics/p581.html June 26, 2008 11:1 World Scientific Book - 9in x 6in quantum 4 Quantum Aspects of Life of life.
    [Show full text]
  • Laser Raman Spectroscopy As a Technique for Identification Of
    ARTICLE IN PRESS CHEMGE-15589; No of Pages 13 Chemical Geology xxx (2008) xxx–xxx Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals Sheri N. White ⁎ Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02536, USA article info abstract Article history: In situ sensors capable of real-time measurements and analyses in the deep ocean are necessary to fulfill the Received 8 August 2008 potential created by the development of autonomous, deep-sea platforms such as autonomous and remotely Received in revised form 8 November 2008 operated vehicles, and cabled observatories. Laser Raman spectroscopy (a type of vibrational spectroscopy) is an Accepted 10 November 2008 optical technique that is capable of in situ molecular identification of minerals in the deep ocean. The goals of this Available online xxxx work are to determine the characteristic spectral bands and relative Raman scattering strength of hydrothermally- Editor: R.L. Rudnick and cold seep-relevant minerals, and to determine how the quality of the spectra are affected by changes in excitation wavelength and sampling optics. The information learned from this work will lead to the development Keywords: of new, smaller sea-going Raman instruments that are optimized to analyze minerals in the deep ocean. Raman spectroscopy Many minerals of interest at seafloor hydrothermal and cold seep sites are Raman active, such as elemental sulfur, Mineralogy carbonates, sulfates and sulfides. Elemental S8 sulfur is a strong Raman scatterer with dominant bands at ∼219 and Hydrothermal vents 472 Δcm−1.
    [Show full text]
  • Depth-Resolved Measurement of Optical Radiation-Pressure Forces with Optical Coherence Tomography
    Vol. 26, No. 3 | 5 Feb 2018 | OPTICS EXPRESS 2410 Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography NICHALUK LEARTPRAPUN, RISHYASHRING R. IYER, AND STEVEN G. ADIE* Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA *[email protected] Abstract: A weakly focused laser beam can exert sufficient radiation pressure to manipulate microscopic particles over a large depth range. However, depth-resolved continuous measurement of radiation-pressure force profiles over an extended range about the focal plane has not been demonstrated despite decades of research on optical manipulation. Here, we present a method for continuous measurement of axial radiation-pressure forces from a weakly focused beam on polystyrene micro-beads suspended in viscous fluids over a depth range of 400 μm, based on real-time monitoring of particle dynamics using optical coherence tomography (OCT). Measurements of radiation-pressure forces as a function of beam power, wavelength, bead size, and refractive index are consistent with theoretical trends. However, our continuous measurements also reveal localized depth-dependent features in the radiation- pressure force profiles that deviate from theoretical predictions based on an aberration-free Gaussian beam. The combination of long-range radiation pressure and OCT offers a new mode of quantitative optical manipulation and detection with extended spatial coverage. This may find applications in the characterization of optical tractor beams, or volumetric optical manipulation and interrogation of beads in viscoelastic media. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (110.4500) Optical coherence tomography; (350.4855) Optical tweezers or optical manipulation.
    [Show full text]
  • Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy
    Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy Giovanni Batignani,y Carino Ferrante,y,z and Tullio Scopigno∗,y,z yDipartimento di Fisica, Universitá di Roma “La Sapienza", Roma, I-00185, Italy z Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma, I-00161, Italy E-mail: [email protected] arXiv:2010.05029v1 [physics.optics] 10 Oct 2020 1 Abstract Excited-state vibrations are crucial for determining photophysical and photochem- ical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally re- stricted to ground state properties. Working in resonance conditions, indeed, enables cross-section enhancement and selective excitation to a targeted electronic level, but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information on ground and excited state vi- brations can be disentangled, by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring to the signal generation. The proposed method is then exploited to elucidate the vibrational properties of ground and excited electronic states in the paradigmatic case of Cresyl Violet. We anticipate that the presented approach holds the potential for selective mapping the reaction coordinates pertaining to transient electronic stages implied in photo-active compounds. Graphical TOC Entry 2 Raman spectroscopy is a powerful tool to access the vibrational fingerprints of molecules or solid state compounds and it can be used to extract structural and dynamical information of the samples under investigation.
    [Show full text]
  • Combining Chemical Information from Grass Pollen in Multimodal Characterization
    ORIGINAL RESEARCH published: 31 January 2020 doi: 10.3389/fpls.2019.01788 Combining Chemical Information From Grass Pollen in Multimodal Characterization Sabrina Diehn 1,2, Boris Zimmermann 3, Valeria Tafintseva 3, Stephan Seifert 1,2, Murat Bag˘ cıog˘ lu 3, Mikael Ohlson 4, Steffen Weidner 2, Siri Fjellheim 5, Achim Kohler 3,6 and Janina Kneipp 1,2* 1 Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany, 2 BAM Federal Institute for Materials Research and Testing, Berlin, Germany, 3 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 4 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway, 5 Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway, 6 Nofima AS, Ås, Norway Edited by: Lisbeth Garbrecht Thygesen, fi University of Copenhagen, The analysis of pollen chemical composition is important to many elds, including Denmark agriculture, plant physiology, ecology, allergology, and climate studies. Here, the Reviewed by: potential of a combination of different spectroscopic and spectrometric methods Wesley Toby Fraser, regarding the characterization of small biochemical differences between pollen samples Oxford Brookes University, United Kingdom was evaluated using multivariate statistical approaches. Pollen samples, collected from Åsmund Rinnan, three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared University of Copenhagen, Denmark (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), Anna De Juan, and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The University of Barcelona, Spain variation in the sample set can be described in a hierarchical framework comprising three *Correspondence: populations of the same grass species and four different growth conditions of the parent Janina Kneipp [email protected] plants for each of the populations.
    [Show full text]
  • Optical Micromachines for Biological Studies
    micromachines Review Optical Micromachines for Biological Studies Philippa-Kate Andrew 1 , Martin A. K. Williams 2,3 and Ebubekir Avci 1,3,* 1 Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; [email protected] 2 School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; [email protected] 3 MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand * Correspondence: [email protected] Received: 21 January 2020; Accepted: 9 February 2020; Published: 13 February 2020 Abstract: Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area. Keywords: optical tweezers; multi-component micromanipulators; radiation damage; life sciences; optical microrobots 1. Introduction Improvements in tools for the visualisation of objects at the micro- and nano- scale have given researchers the ability to investigate materials and processes previously out of reach.
    [Show full text]
  • Pulsed Optical Tweezers for Levitation and Manipulation of Stuck Biological
    2005 Conference on Lasers & Electro-Optics (CLEO) CFN3 Pulsed optical tweezers for levitation and manipulation of stuck biological particles Amol Ashok Ambardekar and Yong-qing Li Department ofPhysics, East Carolina University, Greenville, North Carolina 27858 acube3(1!yahoo. covm,livrnail.ecu. ec/ Abstract: We report on optical levitation and manipulation of microscopic particles that are stuck on a glass surface with a pulsed optical tweezers. Both the stuck dielectric beads and biological cells are demonstrated to be levitated. ©2005 Optical Society of America OCIS codes: (170.4520) Optical confinement and manipulation; (140.7010) Trapping Optical tweezers has become a powerful tool for capturing and manipulation of micron-sized particles, typically by using continuous-wave (cw) lasers [1, 2]. It has been routinely applied to manipulate living cells, bacteria, viruses, chromosomes and other organelles [3, 4], To reduce the photodamage to the trapped particles, the average power of the trapping lasers is usually limited to below hundreds of mW and near-infrared (NIR) or infrared lasers were used for trapping [3, 6]. The trapping force generated by the cw optical tweezers is typically in the order of 10-12 N [4, 5]. This weak force is efficient to confine micro-particles suspended in liquids, but not sufficient to levitate the particles that are stuck on the glass surface, where it has to overcome the binding force. Therefore, the stuck particles cannot be manipulated with the optical tweezers that only employs cw lasers. In this paper, we describe a pulsed optical tweezers that employs a pulsed laser for levitation of the stuck particles and a low-power cw laser for successive trapping and manipulation.
    [Show full text]
  • Venus Elemental and Mineralogical Camera (Vemcam)
    EPSC Abstracts Vol. 13, EPSC-DPS2019-827-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Venus Elemental and Mineralogical Camera (VEMCam) Samuel M. Clegg (1), Brett S. Okhuysen (1), David S. DeCroix (1), Raymond T. Newell (1), Roger C. Wiens (1), Shiv K. Sharma (2), Sylvestre Maurice (3), Ronald K. Martinez (1), Adriana Reyes-Newell (1), and Melinda D. Dyar (4), (1) Los Alamos National Laboratory, Los Alamos, NM, [email protected], (2) Hawaii Inst. of Geophysics and Planetology, Univ. of Hawaii, Honolulu, USA, (3) L'Institut de Recherche en Astrophysique et Planétologie, Toulouse France, (4) Planetary Science Inst., Tucson, AZ, USA Abstract The Venus Elemental and Mineralogical Camera The Venus Elemental and Mineralogical Camera (VEMCam) is an integrated remote LIBS and Raman (VEMCam) can make thousands of measurements instrument concept designed to operate from within within the first two hours on the surface, providing the safety of the lander. The extreme Venus surface an unprecedented description of the Venus surface. conditions requires rapid analyses and VEMCam can VEMCam is based on the ChemCam instrument on collect over 1000 chemical and mineralogical spectra the Mars Science Laboratory rover and the within the first hour. Here, we discuss the VEMCam SuperCam instrument selected for the Mars 2020 prototype calibration and analysis in which samples rover. VEMCam includes an integrated Raman and are placed in a 2 m long chamber capable of Laser-Induced Breakdown Spectroscopy (LIBS) simulating the Venus surface atmosphere. instrument capable of probing many disparate locations around the lander. VEMCam also includes 1.
    [Show full text]
  • Crystal Structure, Raman Spectroscopy and Dielectric Properties of New Semiorganic Crystals Based on 2-Methylbenzimidazole
    crystals Article Crystal Structure, Raman Spectroscopy and Dielectric Properties of New Semiorganic Crystals Based on 2-Methylbenzimidazole E. V. Balashova 1,* , F. B. Svinarev 1, A. A. Zolotarev 2, A. A. Levin 1, P. N. Brunkov 1, V. Yu. Davydov 1 , A. N. Smirnov 1 , A. V. Redkov 3, G. A. Pankova 4 and B. B. Krichevtsov 1 1 Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation; [email protected]ffe.ru (F.B.S.); [email protected]ffe.ru (A.A.L.); [email protected]ffe.ru (P.N.B.); [email protected]ffe.ru (V.Y.D.); [email protected]ffe.ru (A.N.S.); [email protected]ffe.ru (B.B.K.) 2 Institute of Earth Sciences, Saint-Petersburg State University, 7/9 Universitetskaya Nab., St Petersburg 199034, Russian Federation; [email protected] 3 Institute of Problems of Mechanical Engineering, 61 Bolshoy pr. V.O., St Petersburg 199004, Russian Federation; [email protected] 4 Institute of macromolecular compounds, 31 Bolshoy pr. V.O., St Petersburg 199004, Russian Federation; [email protected] * Correspondence: [email protected]ffe.ru Received: 27 September 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: New single crystals, based on 2-methylbenzimidazole (MBI), of MBI-phosphite (C16H24N4O7P2), MBI-phosphate-1 (C16H24N4O9P2), and MBI-phosphate-2 (C8H16N2O9P2) were obtained by slow evaporation method from a mixture of alcohol solution of MBI crystals and water solution of phosphorous or phosphoric acids. Crystal structures and chemical compositions were determined by single crystal X-ray diffraction (XRD) analysis and confirmed by XRD of powders and elemental analysis.
    [Show full text]