Exploring Phone Recognition in Pre-Verbal and Dysarthric Speech

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Phone Recognition in Pre-Verbal and Dysarthric Speech Exploring Phone Recognition in Pre-verbal and Dysarthric Speech Syed Sameer Arshad A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2019 Committee: Gina-Anne Levow Gašper Beguš Program Authorized to Offer Degree: Department of Linguistics 1 ©Copyright 2019 Syed Sameer Arshad 2 University of Washington Abstract Exploring Phone Recognition in Pre-verbal and Dysarthric Speech Chair of the Supervisory Committee: Dr. Gina-Anne Levow Department of Linguistics In this study, we perform phone recognition on speech utterances made by two groups of people: adults who have speech articulation disorders and young children learning to speak language. We explore how these utterances compare against those of adult English-speakers who don’t have speech disorders, training and testing several HMM-based phone-recognizers across various datasets. Experiments were carried out via the HTK Toolkit with the use of data from three publicly available datasets: the TIMIT corpus, the TalkBank CHILDES database and the Torgo corpus. Several discoveries were made towards identifying best-practices for phone recognition on the two subject groups, involving the use of optimized Vocal Tract Length Normalization (VTLN) configurations, phone-set reconfiguration criteria, specific configurations of extracted MFCC speech data and specific arrangements of HMM states and Gaussian mixture models. 3 Preface The work in this thesis is inspired by my life experiences in raising my nephew, Syed Taabish Ahmad. He was born in May 2000 and was diagnosed with non-verbal autism as well as apraxia-of-speech. His speech articulation has been severely impacted as a result, leading to his speech production to be sequences of babbles. He is receptively bilingual in English and Urdu, and communicates via Assistive and Augmentative Communication (AAC) apps on his iPad. He undergoes speech therapy, behavior therapy and special-needs education throughout the week. He has come a long way in life and he gets better at communicating every day. As a linguist and an engineer, I have observed his babbles and read up a lot on speech disorders and the way they are treated by speech-language pathologists. Through discussions with my nephew’s speech-language pathologist and reading texts on the topic, I identified an under-served aspect of the speech-recognition and speech-therapy research literature that I feel I can contribute to, using the wisdom from my lived experiences as a caregiver for my nephew and as a volunteer worker for all the social organizations that he participates in. My hope is that the work in this thesis inspires other researchers to take this kind of research further, in order to create new methods of speech-therapy that can help people like my nephew, who is transitioning from childhood to adulthood with a severe speech-articulation disorder as well as a neuro-cognitive disorder that impacts his social communication. I would like to thank Professors Gina Levow, Emily Bender, Fei Xia, Richard Wright, Ellen Kaisse, Toshiyuki Ogihara and Gašper Berguš for all their help. 4 Table of Contents Preface......................................................................................................................................................... 4 List of Tables................................................................................................................................................ 8 List of Figures............................................................................................................................................ 11 1. Introduction........................................................................................................................................... 12 1.1 Motivation for this study................................................................................................................13 1.2 The work of speech-language pathologists.....................................................................................13 1.3 Phonetic Inventories: Easier said than done...................................................................................16 1.4 Using speech-recognition technology in speech-language pathology.............................................18 2. Related Work......................................................................................................................................... 21 2.1 Related studies on child speech production....................................................................................21 2.1.1 Related studies on babbling....................................................................................................22 2.1.2 Speech-recognition for children..............................................................................................24 2.2 Related studies on dysarthria.........................................................................................................25 2.2.1 Speech-recognition for dysarthric speech...............................................................................26 2.3 Studies on phone recognition.........................................................................................................27 2.3.1 Phone recognition with the TIMIT corpus..............................................................................28 2.3.2 Other phone recognition approaches......................................................................................35 2.4 How our study is different..............................................................................................................36 3. Research Questions................................................................................................................................ 37 4. Choice of Tools...................................................................................................................................... 40 4.1 HTK................................................................................................................................................ 40 4.2 Python and Bash............................................................................................................................. 40 4.3 SoX................................................................................................................................................. 41 5. Methodology and Approach...................................................................................................................42 6. Gathering and Preparing Data...............................................................................................................46 6.1 The TIMIT Dataset.......................................................................................................................... 46 6.2 The Torgo Dataset.......................................................................................................................... 48 6.3 The Talkbank Dataset.....................................................................................................................49 6.3.1 Source Corpora for our TalkBank dataset...............................................................................49 6.3.2 Analysis of our Talkbank Dataset...........................................................................................51 6.3.3 Phone-level statistics on the Talkbank dataset.......................................................................57 6.3.4 Processing transcriptions into HTK Label files........................................................................62 6.3.5 Managing the Talkbank dataset phone count.........................................................................62 6.4 Converting from WAV to MFCC format..........................................................................................66 6.5 Splitting: Training sets vs. Testing sets...........................................................................................67 5 6.6 Preparing the TalkBank data to be recognized by a TIMIT-trained model.....................................68 6.6.1 Handling TIMIT diphthongs...................................................................................................69 6.7 Vocal Tract Length Normalization..................................................................................................70 6.8 Phone-recognition grammar and pronunciation dictionary............................................................71 7. Experimental variables.......................................................................................................................... 73 7.1 Choice of training data...................................................................................................................73 7.2 Choice of testing data.....................................................................................................................73 7.3 Age At Recording............................................................................................................................ 74 7.4 Language Environment...................................................................................................................75 7.5 Cepstrum........................................................................................................................................ 76 7.6 HMM States...................................................................................................................................
Recommended publications
  • Talk Bank: a Multimodal Database of Communicative Interaction
    Talk Bank: A Multimodal Database of Communicative Interaction 1. Overview The ongoing growth in computer power and connectivity has led to dramatic changes in the methodology of science and engineering. By stimulating fundamental theoretical discoveries in the analysis of semistructured data, we can to extend these methodological advances to the social and behavioral sciences. Specifically, we propose the construction of a major new tool for the social sciences, called TalkBank. The goal of TalkBank is the creation of a distributed, web- based data archiving system for transcribed video and audio data on communicative interactions. We will develop an XML-based annotation framework called Codon to serve as the formal specification for data in TalkBank. Tools will be created for the entry of new and existing data into the Codon format; transcriptions will be linked to speech and video; and there will be extensive support for collaborative commentary from competing perspectives. The TalkBank project will establish a framework that will facilitate the development of a distributed system of allied databases based on a common set of computational tools. Instead of attempting to impose a single uniform standard for coding and annotation, we will promote annotational pluralism within the framework of the abstraction layer provided by Codon. This representation will use labeled acyclic digraphs to support translation between the various annotation systems required for specific sub-disciplines. There will be no attempt to promote any single annotation scheme over others. Instead, by promoting comparison and translation between schemes, we will allow individual users to select the custom annotation scheme most appropriate for their purposes.
    [Show full text]
  • Multilingvální Systémy Rozpoznávání Řeči a Jejich Efektivní Učení
    Multilingvální systémy rozpoznávání řeči a jejich efektivní učení Disertační práce Studijní program: P2612 – Elektrotechnika a informatika Studijní obor: 2612V045 – Technická kybernetika Autor práce: Ing. Radek Šafařík Vedoucí práce: prof. Ing. Jan Nouza, CSc. Liberec 2020 Multilingual speech recognition systems and their effective learning Dissertation Study programme: P2612 – Electrotechnics and informatics Study branch: 2612V045 – Technical cybernetics Author: Ing. Radek Šafařík Supervisor: prof. Ing. Jan Nouza, CSc. Liberec 2020 Prohlášení Byl jsem seznámen s tím, že na mou disertační práci se plně vztahu- je zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo. Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahu- je do mých autorských práv užitím mé disertační práce pro vnitřní potřebu TUL. Užiji-li disertační práci nebo poskytnu-li licenci k jejímu využi- tí, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákla- dů, které vynaložila na vytvoření díla, až do jejich skutečné výše. Disertační práci jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím mé disertační práce a konzultantem. Současně čestně prohlašuji, že texty tištěné verze práce a elektro- nické verze práce vložené do IS STAG se shodují. 1. 12. 2020 Ing. Radek Šafařík Abstract The diseratation thesis deals with creation of automatic speech recognition systems (ASR) and with effective adaptation of already existing system to a new language. Today’s ASR systems have modular stucture where individual moduls can be consi- dered as language dependent or independent. The main goal of this thesis is research and development of methods that automate and make the development of language dependent modules effective as much as possible using free available data fromthe internet, machine learning methods and similarities between langages.
    [Show full text]
  • Segmentability Differences Between Child-Directed and Adult-Directed Speech: a Systematic Test with an Ecologically Valid Corpus
    Report Segmentability Differences Between Child-Directed and Adult-Directed Speech: A Systematic Test With an Ecologically Valid Corpus Alejandrina Cristia 1, Emmanuel Dupoux1,2,3, Nan Bernstein Ratner4, and Melanie Soderstrom5 1Dept d’Etudes Cognitives, ENS, PSL University, EHESS, CNRS 2INRIA an open access journal 3FAIR Paris 4Department of Hearing and Speech Sciences, University of Maryland 5Department of Psychology, University of Manitoba Keywords: computational modeling, learnability, infant word segmentation, statistical learning, lexicon ABSTRACT Previous computational modeling suggests it is much easier to segment words from child-directed speech (CDS) than adult-directed speech (ADS). However, this conclusion is based on data collected in the laboratory, with CDS from play sessions and ADS between a parent and an experimenter, which may not be representative of ecologically collected CDS and ADS. Fully naturalistic ADS and CDS collected with a nonintrusive recording device Citation: Cristia A., Dupoux, E., Ratner, as the child went about her day were analyzed with a diverse set of algorithms. The N. B., & Soderstrom, M. (2019). difference between registers was small compared to differences between algorithms; it Segmentability Differences Between Child-Directed and Adult-Directed reduced when corpora were matched, and it even reversed under some conditions. Speech: A Systematic Test With an Ecologically Valid Corpus. Open Mind: These results highlight the interest of studying learnability using naturalistic corpora Discoveries in Cognitive Science, 3, 13–22. https://doi.org/10.1162/opmi_ and diverse algorithmic definitions. a_00022 DOI: https://doi.org/10.1162/opmi_a_00022 INTRODUCTION Supplemental Materials: Although children are exposed to both child-directed speech (CDS) and adult-directed speech https://osf.io/th75g/ (ADS), children appear to extract more information from the former than the latter (e.g., Cristia, Received: 15 May 2018 2013; Shneidman & Goldin-Meadow,2012).
    [Show full text]
  • Here ACL Makes a Return to Asia!
    Handbook Production: Jung-jae Kim, Nanyang Technological University, Singapore Message from the General Chair Welcome to Jeju Island — where ACL makes a return to Asia! As General Chair, I am indeed honored to pen the first words of ACL 2012 proceedings. In the past year, research in computational linguistics has con- tinued to thrive across Asia and all over the world. On this occasion, I share with you the excitement of our community as we gather again at our annual meeting. On behalf of the organizingteam, it is my great pleasure to welcome you to Jeju Island and ACL 2012. In 2012, ACL turns 50. I feel privileged to chair the conference that marks such an important milestone for our community. We have prepared special programs to commemorate the 50th anniversary, including ‘Rediscovering 50 Years of Discovery’, a main conference workshop chaired by Rafael Banchs with a program on ‘the People, the Contents, and the Anthology’, which rec- ollects some of the great moments in ACL history, and ‘ACL 50th Anniver- sary Lectures’ by Mark Johnson, Aravind K. Joshi and a Lifetime Achieve- ment Award Recipient. A large number of people have worked hard to bring this annual meeting to fruition. It has been an unforgettable experience for everyone involved. My deepest thanks go to the authors, reviewers, volunteers, participants, and all members and chairs of the organizing committees. It is your participation that makes a difference. Program Chairs, Chin-Yew Lin and Miles Osborne, deserve our gratitude for putting an immense amount of work to ensure that each of the 940 sub- missions was taken care of.
    [Show full text]
  • Multimedia Corpora (Media Encoding and Annotation) (Thomas Schmidt, Kjell Elenius, Paul Trilsbeek)
    Multimedia Corpora (Media encoding and annotation) (Thomas Schmidt, Kjell Elenius, Paul Trilsbeek) Draft submitted to CLARIN WG 5.7. as input to CLARIN deliverable D5.C­3 “Interoperability and Standards” [http://www.clarin.eu/system/files/clarin­deliverable­D5C3_v1_5­finaldraft.pdf] Table of Contents 1 General distinctions / terminology................................................................................................................................... 1 1.1 Different types of multimedia corpora: spoken language vs. speech vs. phonetic vs. multimodal corpora vs. sign language corpora......................................................................................................................................................... 1 1.2 Media encoding vs. Media annotation................................................................................................................... 3 1.3 Data models/file formats vs. Transcription systems/conventions.......................................................................... 3 1.4 Transcription vs. Annotation / Coding vs. Metadata ............................................................................................. 3 2 Media encoding ............................................................................................................................................................... 5 2.1 Audio encoding ..................................................................................................................................................... 5 2.2
    [Show full text]
  • Gold Standard Annotations for Preposition and Verb Sense With
    Gold Standard Annotations for Preposition and Verb Sense with Semantic Role Labels in Adult-Child Interactions Lori Moon Christos Christodoulopoulos Cynthia Fisher University of Illinois at Amazon Research University of Illinois at Urbana-Champaign [email protected] Urbana-Champaign [email protected] [email protected] Sandra Franco Dan Roth Intelligent Medical Objects University of Pennsylvania Northbrook, IL USA [email protected] [email protected] Abstract This paper describes the augmentation of an existing corpus of child-directed speech. The re- sulting corpus is a gold-standard labeled corpus for supervised learning of semantic role labels in adult-child dialogues. Semantic role labeling (SRL) models assign semantic roles to sentence constituents, thus indicating who has done what to whom (and in what way). The current corpus is derived from the Adam files in the Brown corpus (Brown, 1973) of the CHILDES corpora, and augments the partial annotation described in Connor et al. (2010). It provides labels for both semantic arguments of verbs and semantic arguments of prepositions. The semantic role labels and senses of verbs follow Propbank guidelines (Kingsbury and Palmer, 2002; Gildea and Palmer, 2002; Palmer et al., 2005) and those for prepositions follow Srikumar and Roth (2011). The corpus was annotated by two annotators. Inter-annotator agreement is given sepa- rately for prepositions and verbs, and for adult speech and child speech. Overall, across child and adult samples, including verbs and prepositions, the κ score for sense is 72.6, for the number of semantic-role-bearing arguments, the κ score is 77.4, for identical semantic role labels on a given argument, the κ score is 91.1, for the span of semantic role labels, and the κ for agreement is 93.9.
    [Show full text]
  • A Massively Parallel Corpus: the Bible in 100 Languages
    Lang Resources & Evaluation DOI 10.1007/s10579-014-9287-y ORIGINAL PAPER A massively parallel corpus: the Bible in 100 languages Christos Christodouloupoulos • Mark Steedman Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract We describe the creation of a massively parallel corpus based on 100 translations of the Bible. We discuss some of the difficulties in acquiring and processing the raw material as well as the potential of the Bible as a corpus for natural language processing. Finally we present a statistical analysis of the corpora collected and a detailed comparison between the English translation and other English corpora. Keywords Parallel corpus Á Multilingual corpus Á Comparative corpus linguistics 1 Introduction Parallel corpora are a valuable resource for linguistic research and natural language processing (NLP) applications. One of the main uses of the latter kind is as training material for statistical machine translation (SMT), where large amounts of aligned data are standardly used to learn word alignment models between the lexica of two languages (for example, in the Giza?? system of Och and Ney 2003). Another interesting use of parallel corpora in NLP is projected learning of linguistic structure. In this approach, supervised data from a resource-rich language is used to guide the unsupervised learning algorithm in a target language. Although there are some techniques that do not require parallel texts (e.g. Cohen et al. 2011), the most successful models use sentence-aligned corpora (Yarowsky and Ngai 2001; Das and Petrov 2011). C. Christodouloupoulos (&) Department of Computer Science, UIUC, 201 N.
    [Show full text]
  • The Relationship Between Transitivity and Caused Events in the Acquisition of Emotion Verbs
    Love Is Hard to Understand: The Relationship Between Transitivity and Caused Events in the Acquisition of Emotion Verbs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Hartshorne, Joshua K., Amanda Pogue, and Jesse Snedeker. 2014. Citation Love Is Hard to Understand: The Relationship Between Transitivity and Caused Events in the Acquisition of Emotion Verbs. Journal of Child Language (June 19): 1–38. Published Version doi:10.1017/S0305000914000178 Accessed January 17, 2017 12:55:19 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:14117738 This article was downloaded from Harvard University's DASH Terms of Use repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Running head: TRANSITIVITY AND CAUSED EVENTS Love is hard to understand: The relationship between transitivity and caused events in the acquisition of emotion verbs Joshua K. Hartshorne Massachusetts Institute of Technology Harvard University Amanda Pogue University of Waterloo Jesse Snedeker Harvard University In press at Journal of Child Language Acknowledgements: The authors wish to thank Timothy O’Donnell for assistance with the corpus analysis as well as Alfonso Caramazza, Susan Carey, Steve Pinker, Mahesh Srinivasan, Nathan Winkler- Rhoades, Melissa Kline, Hugh Rabagliati, members of the Language and Cognition workshop, and three anonymous reviewers for comments and discussion. This material is based on work supported by a National Defense Science and Engineering Graduate Fellowship to JKH and a grant from the National Science Foundation to Jesse Snedeker (0623845).
    [Show full text]
  • The Workshop Programme
    The Workshop Programme Monday, May 26 14:30 -15:00 Opening Nancy Ide and Adam Meyers 15:00 -15:30 SIGANN Shared Corpus Working Group Report Adam Meyers 15:30 -16:00 Discussion: SIGANN Shared Corpus Task 16:00 -16:30 Coffee break 16:30 -17:00 Towards Best Practices for Linguistic Annotation Nancy Ide, Sameer Pradhan, Keith Suderman 17:00 -18:00 Discussion: Annotation Best Practices 18:00 -19:00 Open Discussion and SIGANN Planning Tuesday, May 27 09:00 -09:10 Opening Nancy Ide and Adam Meyers 09:10 -09:50 From structure to interpretation: A double-layered annotation for event factuality Roser Saurí and James Pustejovsky 09:50 -10:30 An Extensible Compositional Semantics for Temporal Annotation Harry Bunt, Chwhynny Overbeeke 10:30 -11:00 Coffee break 11:00 -11:40 Using Treebank, Dictionaries and GLARF to Improve NomBank Annotation Adam Meyers 11:40 -12:20 A Dictionary-based Model for Morpho-Syntactic Annotation Cvetana Krstev, Svetla Koeva, Du!ko Vitas 12:20 -12:40 Multiple Purpose Annotation using SLAT - Segment and Link-based Annotation Tool (DEMO) Masaki Noguchi, Kenta Miyoshi, Takenobu Tokunaga, Ryu Iida, Mamoru Komachi, Kentaro Inui 12:40 -14:30 Lunch 14:30 -15:10 Using inheritance and coreness sets to improve a verb lexicon harvested from FrameNet Mark McConville and Myroslava O. Dzikovska 15:10 -15:50 An Entailment-based Approach to Semantic Role Annotation Voula Gotsoulia 16:00 -16:30 Coffee break 16:30 -16:50 A French Corpus Annotated for Multiword Expressions with Adverbial Function Eric Laporte, Takuya Nakamura, Stavroula Voyatzi
    [Show full text]
  • Distributional Properties of Verbs in Syntactic Patterns Liam Considine
    Early Linguistic Interactions: Distributional Properties of Verbs in Syntactic Patterns Liam Considine The University of Michigan Department of Linguistics April 2012 Advisor: Nick Ellis Acknowledgements: I extend my sincerest gratitude to Nick Ellis for agreeing to undertake this project with me. Thank you for cultivating, and partaking in, some of the most enriching experiences of my undergraduate education. The extensive time and energy you invested here has been invaluable to me. Your consistent support and amicable demeanor were truly vital to this learning process. I want to thank my second reader Ezra Keshet for consenting to evaluate this body of work. Other thanks go out to Sarah Garvey for helping with precision checking, and Jerry Orlowski for his R code. I am also indebted to Mary Smith and Amanda Graveline for their participation in our weekly meetings. Their presence gave audience to the many intermediate challenges I faced during this project. I also need to thank my roommate Sean and all my other friends for helping me balance this great deal of work with a healthy serving of fun and optimism. Abstract: This study explores the statistical distribution of verb type-tokens in verb-argument constructions (VACs). The corpus under investigation is made up of longitudinal child language data from the CHILDES database (MacWhinney 2000). We search a selection of verb patterns identified by the COBUILD pattern grammar project (Francis, Hunston, Manning 1996), these include a number of verb locative constructions (e.g. V in N, V up N, V around N), verb object locative caused-motion constructions (e.g.
    [Show full text]
  • The Field of Phonetics Has Experienced Two
    The field of phonetics has experienced two revolutions in the last century: the advent of the sound spectrograph in the 1950s and the application of computers beginning in the 1970s. Today, advances in digital multimedia, networking and mass storage are promising a third revolution: a movement from the study of small, individual datasets to the analysis of published corpora that are thousands of times larger. These new bodies of data are badly needed, to enable the field of phonetics to develop and test hypotheses across languages and across the many types of individual, social and contextual variation. Allied fields such as sociolinguistics and psycholinguistics ought to benefit even more. However, in contrast to speech technology research, speech science has so far taken relatively little advantage of this opportunity, because access to these resources for phonetics research requires tools and methods that are now incomplete, untested, and inaccessible to most researchers. Our research aims to fill this gap by integrating, adapting and improving techniques developed in speech technology research and database research. The intellectual merit: The most important innovation is robust forced alignment of digital audio with phonetic representations derived from orthographic transcripts, using HMM methods developed for speech recognition technology. Existing forced-alignment techniques must be improved and validated for robust application to phonetics research. There are three basic challenges to be met: orthographic ambiguity; pronunciation variation; and imperfect transcripts (especially the omission of disfluencies). Reliable confidence measures must be developed, so as to allow regions of bad alignment to be identified and eliminated or fixed. Researchers need an easy way to get a believable picture of the distribution of transcription and measurement errors, so as to estimate confidence intervals, and also to determine the extent of any bias that may be introduced.
    [Show full text]
  • The 2Nd Workshop on Arabic Corpora and Processing Tools 2016 Theme: Social Media Workshop Programme
    The 2nd Workshop on Arabic Corpora and Processing Tools 2016 Theme: Social Media Workshop Programme Date 24 May 2016 09:00 – 09:20 – Welcome and Introduction by Workshop Chairs 09:20 – 10:30 – Session 1 (Keynote speech) Nizar Habash, Computational Processing of Arabic Dialects: Challenges, Advances and Future Directions 10:30 – 11:00 Coffee break 10:30 – 13:00 – Session 2 Soumia Bougrine, Hadda Cherroun, Djelloul Ziadi, Abdallah Lakhdari and Aicha Chorana, Toward a rich Arabic Speech Parallel Corpus for Algerian sub-Dialects Maha Alamri and William John Teahan, Towards a New Arabic Corpus of Dyslexic Texts Ossama Obeid, Houda Bouamor, Wajdi Zaghouani, Mahmoud Ghoneim, Abdelati Hawwari, Mona Diab and Kemal Oflazer, MANDIAC: A Web-based Annotation System For Manual Arabic Diacritization Wajdi Zaghouani and Dana Awad, Toward an Arabic Punctuated Corpus: Annotation Guidelines and Evaluation Muhammad Abdul-Mageed, Hassan Alhuzali, Dua'a Abu-Elhij'a and Mona Diab, DINA: A Multi-Dialect Dataset for Arabic Emotion Analysis Nora Al-Twairesh, Mawaheb Al-Tuwaijri, Afnan Al-Moammar and Sarah Al-Humoud, Arabic Spam Detection in Twitter Editors Hend Al-Khalifa King Saud University, KSA King Abdul Aziz City for Science and Abdulmohsen Al-Thubaity Technology, KSA Walid Magdy Qatar Computing Research Institute, Qatar Kareem Darwish Qatar Computing Research Institute, Qatar Organizing Committee Hend Al-Khalifa King Saud University, KSA King Abdul Aziz City for Science and Abdulmohsen Al-Thubaity Technology, KSA Walid Magdy Qatar Computing Research Institute,
    [Show full text]