An ATP-Regulated, Inwardly Rectifying Potassium Channel from Rat Kidney (ROMK)

Total Page:16

File Type:pdf, Size:1020Kb

An ATP-Regulated, Inwardly Rectifying Potassium Channel from Rat Kidney (ROMK) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 48 (1995), pp. 1010—1016 An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK) STEVEN C.HEBERT Laboratoiy of Molecular Physiology and Biophysics, Renal Division, Department of Medicine, Brigham and Women c Hospital, and Harvard Medical School, Boston, Massachusetts, USA Potassium channels exhibit a wide functional diversity makingWang and coworkers [101 found a 20 to 30 pS K channel in them well suited for their broad roles in renal (and other) cells [1,rabbit TAL that had a high open probability (Po), was inhibited by 21.Potassiumchannels can be classified into two broad groupsATP (mM) and not sensitive to TEA (referred to as the "low based on their functional/biophysical properties: the delayed orconductance" channel). On the other hand, a different KATP outward rectifiers that are activated by depolarizing potentials andchannel was identified on apical membranes of rat TAL by Greger the inward rectifiers that include the classical (strongly) inwardlyand coworkers [11—13]; this channel also had a high Po and was rectifying K channel and the more weakly inwardly rectifyingATP-sensitive but had a higher unitary conductance of —70 pS, ATP-sensitive potassium (KATP) channels [1, 3—7]. The inwardwas highly sensitive to reductions in cytosolic side pH (50% rectifiers are characterized by a lack of significant gating byreduction in Po by a 0.2 pH unit decrease), and exhibited voltage and by their ability to conduct potassium more readily insensitivity to quinine or quinidine, TEA and Ca2 (referred to as the inward than outward direction. The classical (strong) andthe "intermediate conductance" channel). Recently, Wang found K.fl-type of inward rectifiers have been identified in a variety ofboth the low (—30 pS) and intermediate (—72 pS) conductance excitable and nonexcitable cells. The strong inward rectifiersKATP channels in the same patches of rat TAL apical membranes appear to function in maintaining the resting membrane potential[14]. He also confirmed that the intermediate conductance KATP and in regulating excitability (such as in cardiac muscle cells).channelis sensitive to quinidine and acidic pH while the low ATP-sensitive potassium channels, on the other hand, open andconductance channel is insensitive to quinidine. In addition, the close in response to cellular metabolic events and may servelow, but not the intermediate, conductance channel is inhibited by important roles in some cells during ischemia. Renal KArphigh (—250 LM) gliburide. These studies demonstrate that there channels, while sharing many of the properties and characteristicsare two distinct channel types in apical membranes of TAL and of KATP channels found in other tissues (such as pancreatic f3-cell that these channels can be distinguished by single channel con- and cardiac muscle cells [31),lacksensitivity to TEA, have a muchductances and their sensitivities to channel inhibitors. lower sensitivity to sulfonylureas (such as glyburide, a high affinity A functionally similar, if not identical, low conductance, in- inhibitor of KATP channels found in heart and 13-cells), andwardly rectifying KATP channel has been identified in apical require higher (that is, mM) concentrations of ATP to inhibitmembranes of principal cells in the cortical collecting duct (CCD) channel activity [1, 7]. where it mediates K secretion into urine (Fig. 1) [1, 7, 15, 16]. In the kidney, the apical (K secretory) KA1.P channel serves a The KATP channel in rat principal cells is dually regulated by ATP: number of important roles in renal electrolyte transport [1]. In the thick ascending limb of Henle (TAL; both medullary, MTAL, andhigh MgATP concentrations reversibly block channel activity (K112 =0.6to 1.0 mM) while lower concentrations of MgATP are cortical, CTAL, segments; Fig. 1), KATP channels are the domi- nant conductance in apical plasma membranes and provide arequired to maintain channel activity [1, 7, 17, 181. The mecha- crucial K efflux pathway for potassium entering cells via thenism for ATP-mediated block of the principal cell KATP channel is unclear at present but may represent direct binding of nude- apical Na:K:2Cl cotransporter [ii. This recycling of potas-otide to the channel itself with a resulting change in channel sium ensures that an adequate supply of luminal potassium is conformation to the closed state and/or to altering the activity of provided for efficient function of the Na:K:2Cl cotransporter the channel by regulating the phosphorylation of the channel [1]. In addition, this channel mediates the apical component of a transcellular (basolateral-to-apical) current flow that returns toitself, or some other protein involved to modulating channel the basolateral side via the paracellular pathway predominantly asactivity. The stimulatory effect of low ATP concentration, how- a sodium current [8]. This provides for one-half of the netever, clearly relates to regulation of channel activity by phosphor- transepithelial movement of sodium [9]. Two types of inwardlyylation-dephosphorylation processes [18]: (i) channel activity rap- rectifying and ATP-sensitive K channels have been identified onidly diminishes (run-down) on patch excision unless the cytosolic face is exposed to low concentrations of MgATP; (ii) generally the apical membranes of TAL segments by patch clamp [10, 11]. catalytic subunit of cAMP-dependent protein kinase, PKA, is also required for channel maintenance and PKA, and together with MgATP can restore channel activity after run-down; (iii) non- © 1995 by the International Society of Nephrology hydrolyzable ATP analogues cannot maintain or restore channel 1010 Hebert: ROMK in the distal nephron 1011 r Na K z ,'2C1 - 2K S. Fig. 1. Model for potassium recycling across apical membranes of the thick ascending limb and for potassium secretion in principal cells from the cortical collecting duct in rat kidney. See text for discussion. activity; (iv) in patches in which channel activity is maintained by An inwardly rectifying, ATP-regulated K channel, ROMK, MgATP alone, the PKA inhibitor (PKI) reversibly reduces chan- from rat kidney: A member of a family of inwardly rectifying nel activity, providing evidence for an important role for endog- potassium (IRK) channels enous PKA; and (v) PKC reversibly inhibits channel activity and antagonizes the stimulatory effect of PKA, a process that is Cloning and molecular diversity Ca2-dependent [19]. In further studies Wang and Giebisch [17, 18] demonstrated that the ratio of ATP to ADP and cell pH are We recently cloned a cDNA, ROMKI [31], encoding a —45 kD also important regulators of the small conductance KATP channelchannel protein with a novel channel topology (Fig. 2). Subse- in the apical membranes of principal cells. KATP channel activityquently, other inwardly rectifying K channels have been isolated in rat principal cells is also inhibited by activation of protein[31—39] and form a new and rapidly expanding family of potassium kinase C [19] or calcium-calmodulin-dependent kinase II [201 orchannels (IRK family; Fig. 3). The ROMK1 channel protein has by arachidonic acid [21]. two potential membrane-spanning helices (Ml and M2; Fig. 2) Much less is known about the regulation of the apical KATPmaking it quite distinct from voltage-gated or ligand-gated ion channels in the TAL than in the CCD; however, we previouslychannels [40, 41], and this topology is a characteristic feature of suggested that AVP (presumably cyclic AMP-dependent activa-these IRK channels. ROMKI is expressed in kidney and several tion of PKA and subsequent phosphorylation of the channel or another tissues, for example, brain, spleen, lung and eye [31, 42]. associated regulatory protein) activated the K1 conductance of Recent studies have demonstrated that the ROMK gene con- the apical membrane in mouse MTAL [22, 23]. Reeves andtains introns within the coding region [43—45], an unusual feature coworkers have provided more direct evidence for this [24]. Theyfor a mammalian K channel. Alternative splicing of ROMK showed that Ba2tsensitive, voltage-dependent 86Rb influx inexons yields several different transcripts: ROMK2a, ROMK2b membrane vesicles from rabbit outer medulla was activated byand ROMK3 (Fig. 2). All of the proteins produced by these cAMP-dependent protein kinase. Wang [14] has confirmed thisalternatively spliced transcripts form functional K channels effect of cAMP-PKA by showing activation of the low conduc-when expressed in Xenopus oocytes [36, 461. The alternative tance KATP channel in cell attached patches by AVP or cAMP and splicing occurs at both the 5'-coding and 3'-non-coding regions. in excised patches by the catalytic subunit of PKA. We do not know whether the alternative splice variation and use Finally, it should be noted that large conductance (maxi-K),of different polyadenylation signals which lead to varying lengths Ca2-activated K channels have been identified in apical mem-of the 3'UTRs (untranslated regions) have functional or regula- branes of both TAL [25, 26] and CCD [1, 27—29]. These voltage-tory significance for the ROMK isoforms (mRNA half-life, effi- gated channels are normally quiescent but can be activated by IIMciency of translation, etc.). The longer ROMK2b transcript may cytosolic Ca2t are inhibited by TEA (more sensitive to TEA thanaccount for the —3 kb mRNA observed on Northern blot analysis the intermediate conductance
Recommended publications
  • Inhibition of ROMK Channels by Low Extracellular K and Oxidative Stress
    Am J Physiol Renal Physiol 305: F208–F215, 2013. First published May 15, 2013; doi:10.1152/ajprenal.00185.2013. Inhibition of ROMK channels by low extracellular Kϩ and oxidative stress Gustavo Frindt,1 Hui Li,2 Henry Sackin,2 and Lawrence G. Palmer1 1Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York; and 2Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois Submitted 2 April 2013; accepted in final form 8 May 2013 Frindt G, Li H, Sackin H, Palmer LG. Inhibition of ROMK may be essential for preventing Kϩ secretion and minimizing channels by low extracellular Kϩ and oxidative stress. Am J Physiol K losses. Renal Physiol 305: F208–F215, 2013. First published May 15, 2013; Measurements of ROMK activity in heterologous expression doi:10.1152/ajprenal.00185.2013.—We tested the hypothesis that low systems indicate that the channels are sensitive to changes in luminal Kϩ inhibits the activity of ROMK channels in the rat cortical ϩ ϩ ϩ the extracellular K concentration ([K ]o); decreases in [K ]o collecting duct. Whole-cell voltage-clamp measurements of the com- downregulate the channels (7, 28, 29, 31). One aspect of this Downloaded from ponent of outward Kϩ current inhibited by the bee toxin Tertiapin-Q ϩ response is a shift in the dependence of channel activity on (ISK) showed that reducing the bath concentration ([K ]o)to1mM intracellular pH, with low [Kϩ] moving the titration curve for resulted in a decline of current over 2 min compared with that o ϩ inhibition of the channels toward a higher, more physiological observed at 10 mM [K ]o.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]
  • Ion Channels Accelerated D1scovery
    Quality Antibodies · Quality Results $-GeneTex Your Expertise Our Antibod1es Ion Channels Accelerated D1scovery --------- www.genetex.com Potassium (K+ ) Sodium (Na+ ) Calcium (Ca2+ ) Ion channels are pore-forming, usually multimeric plasma membrane proteins that can open and close in response to chemical, temperature, or mechanical signals. An open channel allows specific ions to rapid ly traverse the transmembrane passageway a long an electrochemical gradient, generating an electrical signal that is propagated along excitable cells. Ion channels are of immense importance in clinical medicine as they are linked to a broad array of disorders and are targets of an ever-expanding, and commonly prescribed, armamentarium of pharmacologic agents. Nevertheless, there remains a great void in our understanding of ion channel biology, which limits our ability to develop more effective andmo re specific drugs. GeneTex offers an outstanding selection of antibodies to support ion channel research.Please see the highlighted antibodies in this flyer or review our complete list of related products on the GeneTex website. Highlighted products HCNl antibody (GTX131334} DPP6 antibody (GTX133338} IP3 Receptor I antibody (GTX133104} (...___ ___w _w _w_ ._G_e_n_e_T_e_x_._c_o_m_ _____,) ` a n a 匱 。 'ot I: . ·""·,, " . 鼴 丶•' · ,' , `> ,,, 丶 B -- ,:: ·-- o .i :' T. 、 冨 ,. \\.◄ .•}' r<• .. , -·•Jt.<_,,,, . ◄ · ◄ / .Jj -~~ 盆;i . '. ., CACNB4 (GTX100202) VGluTl antibody (GTX133148) P2X7一 antibody (GTX104288) Cavl.2 antibody (GTX54754) Cav2.1 antibody (GTX54753)
    [Show full text]
  • Chloride Channelopathies Rosa Planells-Cases, Thomas J
    Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch To cite this version: Rosa Planells-Cases, Thomas J. Jentsch. Chloride channelopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (3), pp.173. 10.1016/j.bbadis.2009.02.002. hal- 00501604 HAL Id: hal-00501604 https://hal.archives-ouvertes.fr/hal-00501604 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch PII: S0925-4439(09)00036-2 DOI: doi:10.1016/j.bbadis.2009.02.002 Reference: BBADIS 62931 To appear in: BBA - Molecular Basis of Disease Received date: 23 December 2008 Revised date: 1 February 2009 Accepted date: 3 February 2009 Please cite this article as: Rosa Planells-Cases, Thomas J. Jentsch, Chloride chan- nelopathies, BBA - Molecular Basis of Disease (2009), doi:10.1016/j.bbadis.2009.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Dissociation of K Channel Density and ROMK Mrna in Rat Cortical Collecting Tubule During K Adaptation
    Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation GUSTAVO FRINDT, HAO ZHOU, HENRY SACKIN, AND LAWRENCE G. PALMER Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021 Frindt, Gustavo, Hao Zhou, Henry Sackin, and mRNA coding for the channel and hence an increase in Lawrence G. Palmer. Dissociation of K channel density and the number of K channel proteins in the membrane. ROMK mRNA in rat cortical collecting tubule during K The cloning of the ROMK family of K channels, which is adaptation. Am. J. Physiol. 274 (Renal Physiol. 43): F525– believed to correspond to the SK channels in the CCT, F531, 1998.—The density of conducting K channels in the as well as in the thick ascending limb of the loop of apical membrane of the rat cortical collecting tubule (CCT) is increased by a high-K diet. To see whether this involved Henle (1, 6, 16), has enabled this idea to be examined. increased abundance of mRNA coding for K channel protein, In this study, we have used the technique of in situ we measured the relative amounts of mRNA for ROMK, the hybridization to directly test the hypothesis of transcrip- clone of the gene thought to encode the secretory K channel in tional control of K channels through dietary K. the CCT. Tubules were isolated and fixed for in situ hybridiza- tion with a probe based on the ROMK sequence. Radiolabeled METHODS probe associated with the tubule was quantified using densi- tometric analysis of the autoradiographic images of the Biological preparation.
    [Show full text]
  • Cerebrospinal Fluid Research Biomed Central
    Cerebrospinal Fluid Research BioMed Central Review Open Access Ion channel diversity, channel expression and function in the choroid plexuses Ian D Millar, Jason IE Bruce and Peter D Brown* Address: Faculty of Life Sciences, Core Technology Facility, University of Manchester, Manchester M13 9NT, UK Email: Ian D Millar - [email protected]; Jason IE Bruce - [email protected]; Peter D Brown* - [email protected] * Corresponding author Published: 20 September 2007 Received: 10 July 2007 Accepted: 20 September 2007 Cerebrospinal Fluid Research 2007, 4:8 doi:10.1186/1743-8454-4-8 This article is available from: http://www.cerebrospinalfluidresearch.com/content/4/1/8 © 2007 Millar et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Knowledge of the diversity of ion channel form and function has increased enormously over the last 25 years. The initial impetus in channel discovery came with the introduction of the patch clamp method in 1981. Functional data from patch clamp experiments have subsequently been augmented by molecular studies which have determined channel structures. Thus the introduction of patch clamp methods to study ion channel expression in the choroid plexus represents an important step forward in our knowledge understanding of the process of CSF secretion. Two K+ conductances have been identified in the choroid plexus: Kv1 channel subunits mediate outward currents at depolarising potentials; Kir 7.1 carries an inward-rectifying conductance at hyperpolarising potentials.
    [Show full text]
  • Flow-Induced Activation of TRPV5 and TRPV6 Channels Stimulates Ca2+-Activated K+ Channel Causing Membrane Hyperpolarization
    Biochimica et Biophysica Acta 1833 (2013) 3046–3053 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca2+-activated K+ channel causing membrane hyperpolarization Seung-Kuy Cha a,b,⁎,Ji-HeeKima, Chou-Long Huang b,⁎⁎ a Department of Physiology, Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea b Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA article info abstract Article history: TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Received 20 May 2013 Ca2+ reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A Received in revised form 9 August 2013 2+ 2+ and C, membrane phospholipid PIP2, protons, and divalent ions Ca and Mg . Here, we report that fluid Accepted 26 August 2013 flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and Available online 31 August 2013 TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 min. Fluid flow stimulated TRPV5 and 6-mediated Ca2+ entry and increased intracellular Keywords: 2+ fi fl fl TRPV5 Ca concentration. N-glycosylation-de cient TRPV5 channel was relatively insensitive to uid ow. In cells TRPV6 coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolari- Flow-mediated Ca2+ entry zation, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3+.Incontrast, Ca2+-activated K+ channel fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel.
    [Show full text]
  • Relevance of Electrolytic Balance in Channelopathies
    SCUOLA DI DOTTORATO UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA University of Milano-Bicocca School of Medicine and Surgery PhD Program in Translational and Molecular Medicine XXIX PhD course Relevance of electrolytic balance in channelopathies. Dr. Anna BINDA Matr. 708721 Tutor: Dr.ssa Ilaria RIVOLTA Coordinator: prof. Andrea BIONDI Academic year 2015-2016 2 Table of contents Chapter 1: introduction Channelopathies…………………………..…………………….….p. 7 Skeletal muscle channelopathies………………………….….…...p. 10 Neuromuscular junction channelopathies………………….……..p. 16 Neurological channelopathies……………………………….……p. 17 Cardiac channelopathies………………………………………..…p. 26 Channelopathies of non-excitable tissue………………………….p. 35 Scope of the thesis…………………………………………..…….p. 44 References………………………………………………….……..p. 45 Chapter 2: SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype…………………………..………..p. 51 Chapter 3: Functional characterization of a novel KCNJ2 mutation identified in an Autistic proband.…………………....p. 79 Chapter 4: A Novel Copy Number Variant of GSTM3 in Patients with Brugada Syndrome……………………………...………..p. 105 Chapter 5: Functional characterization of a mutation in KCNT1 gene related to non-familial Brugada Syndrome…………….p. 143 Chapter 6: summary, conclusions and future perspectives….p.175 3 4 Chapter 1: introduction 5 6 Channelopathies. The term “electrolyte” defines every substance that dissociates into ions in an aqueous solution and acquires the capacity to conduct electricity. Electrolytes have a central role in cellular physiology, in particular their correct balance between the intracellular compartment and the extracellular environment regulates physiological functions of both excitable and non-excitable cells, acting on cellular excitability, muscle contraction, neurotransmission and hormone release, signal transduction, ion and water homeostasis [1]. The most important electrolytes in the human organism are sodium, potassium, magnesium, phosphate, calcium and chloride.
    [Show full text]
  • Removal of Sialic Acid Involving Klotho Causes Cell-Surface Retention of TRPV5 Channel Via Binding to Galectin-1
    Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1 Seung-Kuy Cha*†, Bernardo Ortega*†, Hiroshi Kurosu‡, Kevin P. Rosenblatt‡, Makoto Kuro-o‡, and Chou-Long Huang*§ Departments of *Medicine and ‡Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 Communicated by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, April 16, 2008 (received for review December 26, 2007) Klotho is a mammalian senescence-suppression protein that has recently reported that a mutation in KLOTHO causes severe homology with glycosidases. The extracellular domain of Klotho is tumoral calcinosis in a young girl. secreted into urine and blood and may function as a humoral The extracellular domain of Klotho is composed of two internal factor. Klotho-deficient mice have accelerated aging and imbalance repeats, KL1 and KL2, each sharing amino acid sequence homology of ion homeostasis. Klotho treatment increases cell-surface abun- to family 1 glycosidases (1, 13). Recently, Chang et al. (14) reported dance of the renal epithelial Ca2؉ channel TRPV5 by modifying its that Klotho treatment increases cell-surface abundance of the renal N-linked glycans. However, the precise sugar substrate and mech- epithelial Ca2ϩ channel TRPV5 by modifying its N-linked glycans. anism for regulation by Klotho is not known. Here, we report that However, the precise sugar substrate for Klotho and how modifi- the extracellular domain of Klotho activates plasma-membrane cation of glycans by Klotho increases surface expression of TRPV5 resident TRPV5 through removing terminal sialic acids from their proteins are not known. Here, we report that Klotho ectodomain glycan chains.
    [Show full text]
  • CHIP Regulates Aquaporin-2 Quality Control and Body Water Homeostasis
    Supplemental Information for CHIP regulates Aquaporin-2 Quality Control and Body Water Homeostasis Table of Contents Supplemental Table 7……………………………………………………….…..………….Page 2 Supplemental Figures 1-18………………………………….……………………………..Pages 3-20 Supplemental Detailed Methods…………………………………………………………..Pages 21-34 Page 1 of 34 Supplemental Table 7. Detailed information on Antibodies Antibody Supplier Cat. No. or Reference Predicted MW (kDa) Ubiquitin Cell Signaling 3936 N/A PSMD14 Cell Signaling 4197 35 USP14 Cell Signaling 11931 60 USP4 Cell Signaling 2651 110 OTUB1 Abcam ab82154 31 RNF128 Abcam ab72533 45-70 CHIP (Stub1) Abcam ab134064 35 Proteasome Abcam ab3325 30 20S AQP3 Abcam ab153694 25 and 32-40 CSN6 Santa Cruz sc47965 34 USP5 Santa Cruz sc366624 96 USP7 Santa Cruz sc30164 135 USP32 Santa Cruz sc374465 130-190 USP47 Santa Cruz sc100633 157 FBXO2 Santa Cruz sc393873 42 FBXO29 Santa Cruz sc514385 60-70 Ure-b1 Santa Cruz sc49768 400 Six4 Santa Cruz sc55766 80 Smad4 Santa Cruz sc7966 60 Nek9 Santa Cruz sc50765 120 NRK1 Santa Cruz sc398852 25 HSP70 Enzo ADI-SPA-810 70 Hsc70 Enzo ADI-SPA-815 71 ROMK Novus NBP1-82874 45 CHIP (Stub1) Novus NBP2-47510 35 AQP4 Alamone AQP-004 30 Actin Sigma-Aldrich A2228 42 AQP2 9398 N/A Moeller HB, Aroankins TS, Slengerik-Hansen J, Pisitkun T, Fenton RA: Phosphorylation and ubiquitylation are opposing 25 and 35-45 processes that regulate endocytosis of the water channel aquaporin-2. J Cell Sci 127: 3174-3183, 2014 pS256-AQP2 N/A Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA: 25 and 35-45 Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2.
    [Show full text]
  • Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney
    cells Review Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney 1,2, 3, 1 1 Daria S. Ostroverkhova y , Junda Hu y , Vadim V. Tarasov , Tatiana I. Melnikova , Yuri B. Porozov 1,4,5,* and Kerim Mutig 1,3,* 1 Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; [email protected] (D.S.O.); [email protected] (V.V.T.); [email protected] (T.I.M.) 2 Department of Bioengineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia 3 Department of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; [email protected] 4 Department of Food Biotechnology and Engineering, ITMO University, 197101 Saint-Petersburg, Russia 5 Department of Computational Biology, Sirius University of Science and Technology, 354340 Sochi, Russia * Correspondence: [email protected] (Y.B.P.); [email protected] (K.M.) These authors contributed equally. y Received: 22 May 2020; Accepted: 6 July 2020; Published: 9 July 2020 Abstract: The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium 2+ + + transport. Apart from Ca transport systems, CaSR signaling affects relevant distal Na -(K )-2Cl− cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1.
    [Show full text]