Systematics and Biogeography of the Genus Mastomys (Rodentia: Muridae) Occurring in Namibia and Adjacent Countries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking Behavior, Co-Infection Patterns, and Viral Infection Risk with the Whole Gastrointestinal Helminth Community Structure in Mastomys Natalensis
ORIGINAL RESEARCH published: 17 August 2021 doi: 10.3389/fvets.2021.669058 Linking Behavior, Co-infection Patterns, and Viral Infection Risk With the Whole Gastrointestinal Helminth Community Structure in Mastomys natalensis Bram Vanden Broecke 1*, Lisse Bernaerts 1, Alexis Ribas 2, Vincent Sluydts 1, Ladslaus Mnyone 3, Erik Matthysen 1 and Herwig Leirs 1 1 Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium, 2 Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, IRBio (Research Institute of Biodiversity), University of Barcelona, Barcelona, Spain, 3 Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania Edited by: Yadong Zheng, Infection probability, load, and community structure of helminths varies strongly between Lanzhou Institute of Veterinary and within animal populations. This can be ascribed to environmental stochasticity Research (CAAS), China or due to individual characteristics of the host such as their age or sex. Other, but Reviewed by: Mario Garrido, understudied, factors are the hosts’ behavior and co-infection patterns. In this study, we Ben-Gurion University of the used the multimammate mouse (Mastomys natalensis) as a model system to investigate Negev, Israel Si-Yang Huang, how the hosts’ sex, age, exploration behavior, and viral infection history affects their Yangzhou University, China infection risk, parasitic load, and community structure of gastrointestinal helminths. We Hannah Rose Vineer, hypothesized that the hosts’ exploration behavior would play a key role in the risk for University of Liverpool, United Kingdom infection by different gastrointestinal helminths, whereby highly explorative individuals *Correspondence: would have a higher infection risk leading to a wider diversity of helminths and a larger Bram Vanden Broecke load compared to less explorative individuals. -
Review of the Hylomyscus Denniae Group (Rodentia: Muridae) in Eastern Africa, with Comments on the Generic Allocation of Epimys Endorobae Heller
PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 119(2):293–325. 2006. Review of the Hylomyscus denniae group (Rodentia: Muridae) in eastern Africa, with comments on the generic allocation of Epimys endorobae Heller Michael D. Carleton, Julian C. Kerbis Peterhans, and William T. Stanley (MDC) Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0108, U.S.A., e-mail: [email protected]; (JKP) University College, Roosevelt University, Chicago, Illinois 60605, U.S.A.; Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected]; (WTS) Department of Zoology, Division of Mammals, The Field Museum of Natural History, Chicago, Illinois 60605, U.S.A., e-mail: [email protected] Abstract.—The status and distribution of eastern African populations currently assigned to Hylomyscus denniae are reviewed based on morpho- logical and morphometric comparisons. Three species are considered valid, each confined largely to wet montane forest above 2000 meters: H. denniae (Thomas, 1906) proper from the Ruwenzori Mountains in the northern Albertine Rift (west-central Uganda and contiguous D. R. Congo); H. vulcanorum Lo¨nnberg & Gyldenstolpe, 1925 from mountains in the central Albertine Rift (southwestern Uganda, easternmost D. R. Congo, Rwanda, and Burundi); and H. endorobae (Heller, 1910) from mountains bounding the Gregory Rift Valley (west-central Kenya). Although endorobae has been interpreted as a small form of Praomys, additional data are presented that reinforce its membership within Hylomyscus and that clarify the status of Hylomyscus and Praomys as distinct genus-group taxa. The 12 species of Hylomyscus now currently recognized are provisionally arranged in six species groups (H. -
Establishment of a Genetically Confirmed Breeding Colony of Mastomys Natalensis from Wild-Caught Founders from West Africa
viruses Article Establishment of a Genetically Confirmed Breeding Colony of Mastomys natalensis from Wild-Caught Founders from West Africa David Safronetz 1,*,†, Kyle Rosenke 1, Robert J. Fischer 2,‡, Rachel A. LaCasse 3, Dana P. Scott 3, Greg Saturday 3, Patrick W. Hanley 3, Ousmane Maiga 4, Nafomon Sogoba 4, Tom G. Schwan 2 and Heinz Feldmann 1,* 1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] 2 Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; fi[email protected] (R.J.F.); [email protected] (T.G.S.) 3 Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (R.A.L.); [email protected] (D.P.S.); [email protected] (G.S.); [email protected] (P.W.H.) 4 International Center for Excellence in Research (ICER-Mali), Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali; [email protected] (O.M.); [email protected] (N.S.) * Correspondence: [email protected] (D.S.); [email protected] (H.F.) † Current address: Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada. Citation: Safronetz, D.; Rosenke, K.; ‡ Current Address: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy Fischer, R.J.; LaCasse, R.A.; Scott, D.P.; and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. -
Mastomys Spp. – Multimammate Mouse
Mastomys spp. – Multimammate Mouse Taxonomic status: Species Taxonomic notes: A good review of the systematics of Mastomys is provided by Granjon et al. (1997). Mastomys spp. are cryptic and difficult to distinguish morphologically but clearly separable by molecular and chromosomal markers (Britton-Davidian et al. 1995; Lecompte et al. 2005). For example, within the assessment region, M. coucha and M. natalensis can be distinguished only through chromosome number (in M. coucha 2n = 36; in M. natalensis 2n = 32) and molecular markers (Colangelo et al. 2013) but not on cranio-dental features, nor a multivariate analysis (Dippenaar et al. 1993). Mastomys coucha – Richard Yarnell Assessment Rationale Regional Red List status (2016) Both species are listed as Least Concern as they have a Mastomys coucha Least Concern wide distribution within the assessment region, where they likely occur in most protected areas, are abundant in Mastomys natalensis Least Concern human-transformed areas, including agricultural areas and areas affected by human disturbances, and because National Red List status (2004) there are no significant threats that could cause range- Mastomys coucha Least Concern wide decline. Additionally, these species are known as prolific breeders with population numbers likely to recover Mastomys natalensis Least Concern quickly after a decline. Because of their reproductive Reasons for change No change characteristics, population eruptions often occur under favourable conditions. Landowners and managers should Global Red List status (2016) pursue ecologically-based rodent management strategies Mastomys coucha Least Concern and biocontrol instead of rodenticides to regulate population explosions of this species. Mastomys natalensis Least Concern Regional population effects: For M. coucha, significant TOPS listing (NEMBA) (2007) None dispersal is unlikely because the bulk of the population CITES listing None occurs within the assessment region. -
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
At Home with Mastomys and Rattus: Human-Rodent Interactions and Potential for Primary Transmission of Lassa Virus in Domestic Spaces
Am. J. Trop. Med. Hyg., 96(4), 2017, pp. 935–943 doi:10.4269/ajtmh.16-0675 Copyright © 2017 by The American Society of Tropical Medicine and Hygiene At Home with Mastomys and Rattus: Human-Rodent Interactions and Potential for Primary Transmission of Lassa Virus in Domestic Spaces Jesse Bonwitt,1* Almudena Mari Sáez,2 Joseph Lamin,3 Rashid Ansumana,3 Michael Dawson,3 Jacob Buanie,3 Joyce Lamin,3 Diana Sondufu,3 Matthias Borchert,2 Foday Sahr,4 Elisabeth Fichet-Calvet,5 and Hannah Brown1 1Department of Anthropology, University of Durham, Durham, United Kingdom; 2Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany; 3Mercy Hospital Research Laboratory, Bo, Sierra Leone; 4Department of Microbiology, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone; 5Department of Virology, Bernhard-Nocht Institute of Tropical Medicine, Hamburg, Germany Abstract. The multimammate mouse (Mastomys natalensis) is the reservoir for Lassa virus (LASV). Zoonotic transmission occurs when humans are directly or indirectly exposed to fluids of the multimammate mouse, such as urine, saliva, and blood. Housing characteristics and domestic organization affect rodent density in and around households and villages, and are likely to be a risk factor for Lassa fever in humans where the reservoir exists. We use semi-structured interviews (N = 51), a quantitative survey (N = 429), direct observations, and a rodent ecology study to provide new insights into how the organization of domestic spaces brings together humans and rodents and creates pathways for infection in rural settlements in Bo District, Sierra Leone. Rodents were frequently reported inside houses (92.4% of respondents), in which we predominantly trapped M. -
Species List: Mammals
Appendix 10 - Species list: Mammals Mammal species recorded in the Garden Route National Park. Sources: Crawford (1981 & 1982); De Graaff (1974); Grindley (1985). Hanekom et al. (1987); Hanekom unpubl.; Hanekom & Bower (1992); Herzig-Straschil & Robison (1978); McIlleron (2002); Pretorius et al. (1980); Riley unpubl.; Robinson (1976); SANParks unpublished data; Von Breitenbach (1974); Whitfield et al. (1983); Species numbers follow Skinner & Chimimba (2005). * Alien species not indigenous to South Africa No. Scientific Name Common Name CHRYSOCHLORIDAE 9 Chlorotalpa duthieae Duthie’s golden mole 14 Amblysomus corriae (iris) Fynbos (Zulu) golden mole ORYCTEROPODIDAE 27 Orycterus afer Aardvark PROCARVIIDAE 28 Procavia capensis Rock hyrax ELEPHANTIDAE 31 Loxodonta africana African savannah elephant LEPORIDAE 34 Lepus saxatilis Scrub hare BATHYERGIDAE 40 Bathyergus suillus Cape dune molerat 42 Cryptomys hottentotus African molerat 45 Georychus capensis Cape molerat HYSTRICIDAE 46 Hystrix africaeaustralis Cape porcupine MYOXIDAE 57 Graphiurus ocularis Spectacled dormouse 59 Graphiurus murinus Woodland dormouse MURIDAE 62 Acomys subspinosus Cape spiny mouse 65 Rhabdomys pumilio Four-striped grass mouse 73 Grammomys dolichurus Woodland thicket rat 79 Mus minutoides Pygmy mouse 82 Mastomys natalensis Natal multimammate mouse 85 Myomyscus verreauxii Verreaux’s mouse Rattus rattus* Black rat Rattus norvegicus* Brown rat 98 Otomys irroratus Vlei rat 116 Dendromus mesomelas Brant's climbing mouse 117 Dendromus mystacalis Chestnut climbing mouse CERCOPITHECIDAE -
Mammals of the Kafa Biosphere Reserve Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele
NABU’s Follow-up BiodiversityAssessmentBiosphereEthiopia Reserve, Follow-up NABU’s Kafa the at NABU’s Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia Small- and medium-sized mammals of the Kafa Biosphere Reserve Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele Table of Contents Small- and medium-sized mammals of the Kafa Biosphere Reserve 130 1. Introduction 132 2. Materials and methods 133 2.1 Study area 133 2.2 Sampling methods 133 2.3 Data analysis 133 3. Results and discussion 134 3.1 Soricomorpha 134 3.2 Rodentia 134 3.3 Records of mammal species other than Soricomorpha or Rodentia 140 4. Evaluation of survey results 143 5. Conclusions and recommendations for conservation and monitoring 143 6. Acknowledgements 143 7. References 144 8. Annex 147 8.1 Tables 147 8.2 Photos 152 NABU’s Follow-up Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia Small- and medium-sized mammals of the Kafa Biosphere Reserve Holger Meinig, Dr Meheretu Yonas, Ondřej Mikula, Mengistu Wale and Abiyu Tadele 130 SMALL AND MEDIUM-SIZED MAMMALS Highlights ´ Eight species of rodents and one species of Soricomorpha were found. ´ Five of the rodent species (Tachyoryctes sp.3 sensu (Sumbera et al., 2018)), Lophuromys chrysopus and L. brunneus, Mus (Nannomys) mahomet and Desmomys harringtoni) are Ethiopian endemics. ´ The Ethiopian White-footed Mouse (Stenocephalemys albipes) is nearly endemic; it also occurs in Eritrea. ´ Together with the Ethiopian Vlei Rat (Otomys fortior) and the African Marsh Rat (Dasymys griseifrons) that were collected only during the 2014 survey, seven endemic rodent species are known to occur in the Kafa region, which supports 12% of the known endemic species of the country. -
Prevalence of Trypanosoma and Plasmodium Species' Parasites In
Prevalence of Trypanosoma and Plasmodium Species’ Parasites in Small Rodents of Kakamega Forest in Western Kenya Makokha GW 1, Ng’wena AG M2, Ngeiywa M M 3. 1.M. Phil (Parasitology), Moi University. P.O. Box 7103, Eldoret, Kenya. 2.PhD (Cell and Molecular Physiology). Department of Medical Physiology, School of Medicine, Moi University, P.O. Box 4606, Eldoret, Kenya. 3.PhD (Parasitology). Department of Biological Sciences, School of Science, Moi University, P.O. Box 1125, Eldoret, Kenya. Correspondence: Ng’wena AGM, Department of Medical Physiology, School of Medicine, Moi University, P.O. Box 4606, Eldoret, Kenya. Cell Phone contact; +254 720804606, [email protected] Keywords: Trypanosoma sp., Plasmodium sp., Praomys jacksoni , Mastomys sp., prevalence, intensity. SUMMARY Objective: To determine the prevalence, intensity and morphometric parameters of haemoparasites of small rodents inhabiting Kakamega forest of Western Kenya. Methods: Praomys jacksoni (n=59), Mastomys sp (n=27), Mus sp (n=7), Mylomys dybowski (n=6), and Tachyoryctes sp (n=44), randomly captured were surveyed for haemoparasites by microscopy. Observed parasites were described and thirteen morphometric parameter measurements of each group compared among the rodent species. Prevalence was determined by parasite detection and intensity was estimated by the numbers observed against 10,000 erythrocytes. Results: Trypanosoma and Plasmodium species were found in P. jacksoni and Mastomys rats. Trypanosoma prevalence was 20.34% and 40.74% whereas that of Plasmodium was 6.78% and 3.70% in P. jacksoni and Mastomys, respectively. The mean Trypanosoma sp. and Plasmodium sp. intensity was 0.063% and 0.067% in P. jacksoni, and 0.47% and 0.01% in Mastomys , respectively. -
Chapter 15 the Mammals of Angola
Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E. -
Mastomys Natalensis
News from the other side (of Africa) Evolution of rodent hosts and their parasites in Eastern Africa Josef Bryja and many others Institute of Vertebrate Biology, Czech Academy of Sciences, Brno Institute of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic How it started ... (Czech „rodentologue“ activities in Africa) 2004 2004 Dakar Niokolo Koba National Park – biodiversity survey Sudanian savanna Guinean forest „Black rat survey“ 2006 Dakar „first phylogeography papers“ 2008 65 Niger river Senegal river 70 18 Clade D 66 62 58 Clade C1 37 12 28 64 SENEGAL 7 25 22 13 63 9 52 17 32 15 NIGER 51 41 20 48 10 59 60 MALI 27 23 40 46 34 38 19 50 47 835 44 43 29 30 26 31 21 54 81 39 45 33 14 57 BURKINA 149 16 82 42 11 24 36 69 56 FASO 55 83 6 GUINEA 61 NIGERIA 91 2 5 68 86 3 67 53 76 Clade B 71 GHANA 87 4 72 75 IVORY 77 88 73 COAST Volta river 84 85 78 79 Clade A 80 CAMEROON 89 74 90 BENIN TOGO Jump to the „other side“ ... 2010 2015 September 2015 – 8336 rodents and shrews ... ... comparative phylogeography, evolution of viruses, taxonomic implications, etc. ... again influenced by „Montpellier“ people Evolution of rodents and their parasites in open habitats of East Africa Czech Science Foundation 2015‐2017 Project no. 15‐20229S Mastomys natalensis sharp contact zone of two genetic lineages, no obvious geographical barrier Acomys spinossisimus group Heliophobius mole‐rats Aethomys chrysophilus Aethomys kaiseri Mus minutoides Lemniscomys zebra/rosalia Same geographic pattern, different divergence times 2.5‐3 Mya 0.5‐1 Mya (1) How long‐term evolution of forest‐savanna mosaic has shaped diversity of small mammals? • detailed sampling in main biogeographical zones in Tanzania (+ other available data) – spatial distribution of genetic lineages • ecological niche modelling – identification of environmental variables • comparative (community) phylogeography – dating of divergence, hypothesis testing, etc. -
Identified and Controlled. This Outbreak Stimulated a Programme To
Heredity (1977),38 (2), 197-200 G-BANDING CHROMOSOME ANALYSIS OF PRAOMYS NATALENS!S (SMITH) (RODENT!A MUR!DAE) FROM RHODESIA I. 36 CHROMOSOME POPULATION N. F. LYONS', C. R. GREEN2, D. H. GORDON2 and C. R. WALTERS' University of Rhodesia, Department of Pathology, Salisbury and 2 Blair Research Laboratory, Ministry of Health, Salisbury Received2,ix.76 SUMMARY Cytogenetic examination of the Rhodesian population of Praomys natalensis revealed two chromosomally distinct species, one having 32 chromosomes and the other 36 chromosomes. The G-banding patterns and suggested karyotype of the 36 chromosome species is presented here. 1. INTRODUCTION Praomys (Mastomys) natalensis, commonly called the multimimmate mouse is a rodent belonging to the family Muridae. Ellerman et al (1953) noted that it was found throughout Africa south of Abyssinia (now Ethiopia) to Morocco. Matthey (1954, 1958, 1966a, b) demonstrated cytogenetically that three forms exist with different chromosomal karyotypes and suggested that these represented distinct and separate species. Significant chromosomal differences were found between rodents from South Africa and samples from Central Africa. The South African species were found to have a diploid number of 36 chromosomes whilst rodents from the Central African Republic and other Central African countries had 32 and 38 chromosomes. Petter (1957) showed that the 38 chromosome species was morphologically distinct from the 32 chromosome species and was in fact Praomys erythroleucus. During 1974 an outbreak of bubonic plague occurred in the north-west of Rhodesia from which two deaths were recorded before the disease was identified and controlled. This outbreak stimulated a programme to investigate the cytogenetics of Praomys in Rhodesia and it was found that two species exist in this country, one having 36 chromosomes arid the other with 32 chromosomes.