Genomic Evidence for Independent Loss of the Canonical Synaptonemal Complex Sarah Shah1,2,3, Yibi Chen1,2,3, Debashish Bhattacharya4 & Cheong Xin Chan1,2,3 ✉
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
Unfolding the Secrets of Coral–Algal Symbiosis
The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin. -
Download the Abstract Book
1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing. -
Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Symbiosis
bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article 2 Symbiodinium genomes reveal adaptive evolution of 3 functions related to symbiosis 4 Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno 5 Lapeyre3,4, Pim Bongaerts5, Ira Cooke3, David G. Bourne2,6, Sylvain Forêt7,*, David J. 6 Miller3, Madeleine J. H. van Oppen2,8, Christian R. Voolstra9, Mark A. Ragan1 and Cheong 7 Xin Chan1,10,† 8 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, 9 Australia 10 2Australian Institute of Marine Science, Townsville, QLD 4810, Australia 11 3ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell 12 Biology, James Cook University, Townsville, QLD 4811, Australia 13 4Laboratoire d’excellence CORAIL, Centre de Recherches Insulaires et Observatoire de 14 l’Environnement, Moorea 98729, French Polynesia 15 5Global Change Institute, The University of Queensland, Brisbane, QLD 4072, Australia 16 6College of Science and Engineering, James Cook University, Townsville, QLD 4811, 17 Australia 18 7Research School of Biology, Australian National University, Canberra, ACT 2601, Australia 19 8School of BioSciences, The University of Melbourne, VIC 3010, Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
The Symbiotic Life of Symbiodinium in the Open Ocean Within a New Species of Calcifying Ciliate (Tiarina Sp.)
The ISME Journal (2016) 10, 1424–1436 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) Solenn Mordret1,2,5, Sarah Romac1,2, Nicolas Henry1,2, Sébastien Colin1,2, Margaux Carmichael1,2, Cédric Berney1,2, Stéphane Audic1,2, Daniel J Richter1,2, Xavier Pochon3,4, Colomban de Vargas1,2 and Johan Decelle1,2,6 1EPEP—Evolution des Protistes et des Ecosystèmes Pélagiques—team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 2CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 3Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand and 4Institute of Marine Science, University of Auckland, Auckland, New Zealand Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae). -
NOTES and COMMENTS the Fbrmation of A
Heredity (1978), 41(2), 233-237 NOTESAND COMMENTS SYNAPTONEMAL COMPLEX AND CROSSING-OVER: STRUCTURAL SUPPORT OR INTERFERENCE? RICHARD EGEL* Institut für Biologie Ill der Universitat, Schdrizlestr. 1, D-7800 Freiburg, Federal Republic of Germany Received16.iii.78 SUMMARY Positive cross-over interference is attributed to the prevention of crossing- over by the growing synaptonemal complez. This conjecture is based on a report in the literature that the selection of prospective cross-over sites may actually precede a proper synapsis of homologous chromosomes during meiotic prophase. A genetic test of this notion is suggested using a properly marked trisomic configuration, applicable to a variety of organisms. I. INTRODUCTION THE fbrmation of a synaptonemal complex during meiosis (in short: "synapsis ") has proved to be almost as universal among eukaryotes as meiosis itself (Moses, 1968; Westergaard and von Wettstein, 1972). Its implication in meiotic recombination, in the establishment of cross-overs or chiasmata, is the widely accepted view of cytogeneticists (Gillies, 1975), although the mode of this implication remains as enigmatic as ever. At the time when copy-choice models were entertained to explain recombination (see Pritchard, 1960), the idea that recombination is initiated before synapsis was already pondered thoroughly. Yet, the discovery that premeiotic DNA synthesis can even precede nuclear fusion, e.g. in J"Ieottiella (Rossen and Westergaard, 1966), has reduced the possibility of copy-choice replication to no more than local episodes of repair-type synthesis, which still retains the advantage of explaining high negative interference at intragenic distances (Pritchard, 1960). Comparative analyses of mutants defective in certain aspects of meiosis have shown that asynaptic mutants such as C(3) G in Drosophila (see Lindsley and SandIer, 1977) fail to undergo recombination, and that desynaptic mutants or varieties are known in several species, in which crossing-over is reduced or absent despite initially formed synaptonemal complexes. -
Parasex Generates Phenotypic Diversity De Novo and Impacts Drug Resistance and Virulence in Candida Albicans
| INVESTIGATION Parasex Generates Phenotypic Diversity de Novo and Impacts Drug Resistance and Virulence in Candida albicans Matthew P. Hirakawa, Darius E. Chyou,1 Denis Huang,1 Aaron R. Slan,1 and Richard J. Bennett2 Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912 ORCID ID: 0000-0001-7563-484X (R.J.B.) ABSTRACT Candida albicans is a diploid fungus that is a frequent cause of mucosal and systemic infections in humans. This species exhibits an unusual parasexual cycle in which mating produces tetraploid cells that undergo a nonmeiotic program of concerted chromosome loss to return to a diploid or aneuploid state. In this work, we used a multipronged approach to examine the capacity of parasex to generate diversity in C. albicans. First, we compared the phenotypic properties of 32 genotyped progeny and observed wide-ranging differences in fitness, filamentation, biofilm formation, and virulence. Strikingly, one parasexual isolate displayed in- creased virulence relative to parental strains using a Galleria mellonella model of infection, establishing that parasex has the potential to enhance pathogenic traits. Next, we examined parasexual progeny derived from homothallic, same-sex mating events, and reveal that parasex can generate diversity de novo from identical parental strains. Finally, we generated pools of parasexual progeny and examined resistance of these pools to environmental stresses. Parasexual progeny were generally less fit than control strains across most test conditions, but showed an increased ability to grow in the presence of the antifungal drug fluconazole (FL). FL-resistant progeny were aneuploid isolates, often being diploid strains trisomic for both Chr3 and Chr6. -
Elucidation of Factors Impacting Homologous Recombination
ELUCIDATION OF FACTORS IMPACTING HOMOLOGOUS RECOMBINATION IN MAMMALIAN MEIOSIS by SHEILA M. CHERRY Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Advisor: Dr. Terry J. Hassold Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of Contents……...……………………………………………..…………………..1 List of Tables…………...……………………………………………………..………….2 List of Figures………..………………………………………………………………..…3 Abstract…………………………………………………………………………………...5 Chapter One: Introduction…………………………………………………………….7 Chapter Two: Environment and Recombination………………..….………………..40 Chapter Three: Early recombination events and crossover control…..………..……..77 Chapter Four: Understanding late recombination events……..…….………………112 Chapter Five: Summary and Future Directions…………………………………….135 Bibliography…………………………………………………………………………...148 2 List of Tables Table 2-1: Mean -
Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase. -
Looking Under the Skin: the First Steps in Malarial Infection and Immunity
REVIEWS Looking under the skin: the first steps in malarial infection and immunity Robert Ménard1, Joana Tavares1, Ian Cockburn2, Miles Markus3, Fidel Zavala4 and Rogerio Amino1 Abstract | Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an attractive vaccination target. In this Review, we present what has been learned in recent years about the natural history of the pre-erythrocytic stages, mainly using intravital imaging in rodents. We also consider how this new knowledge is in turn changing our understanding of the immune response mounted by the host against the pre-erythrocytic forms. Sterilizing immunity Malaria is the most deadly parasitic infection of humans. subject of intensive immunological research ever since Immunity resulting in parasite Although economic development and the implementa- the first demonstrations, in animal models and humans, clearance from the host. tion of control measures during the twentieth century that injection of attenuated parasites which do not cause have eliminated malaria from many areas of the world1, blood infection confers protection against sporozoite the disease is still rampant in the tropics and in the poor- challenge4–6. Today, this vaccination method is still 1Institut Pasteur, Unité de est regions of the globe, affecting 3 billion people and the most efficient at offering sterilizing immunity against Biologie et Génétique du 2 Paludisme, 28 Rue du Dr Roux, killing up to 1 million annually . -
Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Coral-Dinoflagellate Symbiosis
Corrected: Publisher correction ARTICLE DOI: 10.1038/s42003-018-0098-3 OPEN Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno Lapeyre3,4,12, Pim Bongaerts5,6, Ira Cooke4, Manuel Aranda7, David G. Bourne2,8, Sylvain Forêt3,9, David J. Miller3,4, Madeleine J.H. van Oppen2,10, Christian R. Voolstra7, Mark A. Ragan1 & Cheong Xin Chan1,11 1234567890():,; Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis. 1 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2 Australian Institute of Marine Science, Townsville, QLD 4810, Australia. 3 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia. -
Malaria in Pregnancy: the Relevance of Animal Models for Vaccine Development Justin Doritchamou, Andrew Teo, Michal Fried & Patrick E Duffy
REVIEW Malaria in pregnancy: the relevance of animal models for vaccine development Justin Doritchamou, Andrew Teo, Michal Fried & Patrick E Duffy Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide- treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population. Among Plasmodium species that infect humans, P. falciparum is bind to chondroitin sulfate A (CSA), a glycosaminoglycan expressed the most deadly. Despite long-term exposure to P. falciparum infec- by syncytiotrophoblast, which localizes to the surface of placental tion, women are again susceptible to P. falciparum infection during villi as well as to fibrinoid in the intervillous spaces15–21. Placental pregnancy, particularly primigravidae1,2. Similarly, susceptibility to sequestration of parasites can elicit an inflammatory infiltrate in P. vivax increases during pregnancy, and while the susceptibility the intervillous spaces, a typical feature in primigravidae that is spe- to P. vivax infection is greatest in primigravidae, the risk of dis- cifically associated with poor outcomes including severe maternal ease is greatest in multigravidae3,4.