In 1996, I Graduated from the Department of Biochemistry In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mobile DNA Elements in Shigella Flexneri and Emergence of An- Tibiotic Resistance Crisis
International Journal of Genomics and Data Mining Palchauduri S, et al. Int J Genom Data Min 01: 111. Research Article DOI: 10.29011/2577-0616.000111 Mobile DNA Elements in Shigella flexneri and Emergence of An- tibiotic Resistance Crisis Sunil Palchaudhuri1*, Anubha Palchaudhuri2, Archita Biswas2 1Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, USA 2Atlanta Health Centre, Kolkata, India *Corresponding author: Sunil Palchaudhuri,Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA. Tel: +13135771335; Email: [email protected] Citation:Palchaudhuri S, Palchaudhuri A, Biswas A (2017)Mobile DNA Elements in Shigella flexneri and Emergence of Antibiotic Resistance Crisis. Int J Genom Data Min 01: 111. DOI: 10.29011/2577-0616.000111 Received Date: 18October, 2017; Accepted Date: 23 October, 2017; Published Date: 30 October, 2017 Introduction F Plasmid-Lederberg’s Fertility factor F of E. coli K-12. Prokaryotic mobile DNA elements were initially observed by • 100 Kb. Nobel Prize Winner Professor Barbara McClintock in 1983. Both • ori F-origin of F plasmid replication. (With the sequence for IS and Tn elements are defined as mobile DNA elements capable dna A gene to function) of inserting into many different sites of a single chromosome or different chromosomes as discrete, non-permuted DNA segments • rep-replication functions. [1,2]. In 1952 Dr Joshua Lederberg (a noble prize winner of 1958) • IS-insertion sequence (IS2, IS3 and IS1copies present in the has shown the presence of such elements IS1, IS2, IS3 and Tn host E. coli K-12. -
Eighty Years of Fighting Against Cancer in Serbia Ovarian Cancer Vaccine
News Eighty years of fighting against cancer Recent study by Kunle Odunsi et al., Roswell Park Cancer Institute, Buffalo, in Serbia New York, USA, showed an effects of vaccine based on NY-ESO-1, a „cancer This year on December 10th, Serbian society for the fight against cancer has testis“ antigen in preventing the recurrence of ovarian cancer. NY-ESO-1 is a ovarian celebrated the great jubilee - 80 years of its foundation. The celebration took „cancer-testis“ antigen expressed in epithelial cancer (EOC) and is place in Crystal Room of Belgrade’s Hyatt hotel, gathering many distinguished among the most immunogenic tumor antigens defined to date. presence + guests from the country and abroad. This remarkable event has been held Author’s previous study point to the role of of intraepithelial CD8 - under the auspices of the President of Republic of Serbia, Mr. Boris Tadić. infiltrating T lymphocytes in tumors that was associated with improved survival of The whole ceremony was presided by Prof. Dr. Slobodan Čikarić, actual presi- patients with the disease. The NY-ESO-1 peptide epitope, ESO157–170, is recog- + + dent of Society, who greeted guests and wished them a warm welcome. Than nized by HLA-DP4-restricted CD4 T cells and HLA-A2- and A24-restricted CD8 + followed the speech of Serbian health minister, Prof. Dr. Tomica Milosavljević T cells. To test whether providing cognate helper CD4 T cells would enhance who pointed out the importance of preventive measures and public education the antitumor immune response, Odunsi et al., conducted a phase I clinical trial along with timely diagnosis and multidisciplinary treatment in global fight of immunization with ESO157–170 mixed with incomplete Freund's adjuvant + against cancer in Serbia. -
Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing -
National Conference on Science and the Law Proceedings
U.S. Department of Justice Office of Justice Programs National Institute of Justice National Conference on Science and the Law Proceedings Research Forum Sponsored by In Collaboration With National Institute of Justice Federal Judicial Center American Academy of Forensic Sciences National Academy of Sciences American Bar Association National Center for State Courts NATIONAL CONFERENCE ON SCIENCE AND THE LAW Proceedings San Diego, California April 15–16, 1999 Sponsored by: National Institute of Justice American Academy of Forensic Sciences American Bar Association National Center for State Courts In Collaboration With: Federal Judicial Center National Academy of Sciences July 2000 NCJ 179630 Julie E. Samuels Acting Director National Institute of Justice David Boyd, Ph.D. Deputy Director National Institute of Justice Richard M. Rau, Ph.D. Project Monitor Opinions or points of view expressed in this document are those of the authors and do not necessarily reflect the official position of the U.S. Department of Justice. The National Institute of Justice is a component of the Office of Justice Programs, which also includes the Bureau of Justice Assistance, Bureau of Justice Statistics, Office of Juvenile Justice and Delinquency Prevention, and Office for Victims of Crime. Preface Preface The intersections of science and law occur from crime scene to crime lab to criminal prosecution and defense. Although detectives, forensic scientists, and attorneys may have different vocabularies and perspectives, from a cognitive perspective, they share a way of thinking that is essential to scientific knowledge. A good detective, a well-trained forensic analyst, and a seasoned attorney all exhibit “what-if” thinking. This kind of thinking in hypotheticals keeps a detective open-minded: it prevents a detective from ignoring or not collecting data that may result in exculpatory evidence. -
Joshua Lederberg 1925–2008
OBITUARY Joshua Lederberg 1925–2008 James F Crow Joshua Lederberg died on February 2, 2008. Although the immediate around the computer. Meanwhile, he founded a Medical Genetics cause was pneumonia, he had been troubled by a bad back for some Department at Wisconsin, with the then-novel idea that the subject time. With his originality and breadth and depth of knowledge, he involves the genetics of our parasites as well as of ourselves. Another was one of the greatest scientists of the century. indication of his breadth is the active role he played in developing the His precocious intelligence was apparent at an early age, as was his Genetics Citation Index. interest in science. The work that made him famous was begun while In the late 1950s, it was becoming apparent that he was consider- he was a medical student at Columbia University, still in his teens. He ing broader horizons, and in 1959, he moved to found a genetics was inspired by Oswald Avery’s argument for the genetic significance department at Stanford. Although he continued research in bacterial of DNA and by his own observation that antigenic types in Salmonella genetics, the novelty was wearing off. He became more and more seemed to be permutational. Having become convinced that bacteria interested in broader issues and in world problems. He enlisted Carl undergo genetic recombination and deciding that the best labora- Sagan, whom he had met in Wisconsin, to consider space exploration tory in which to further investigate this phenomenon was that of and the search for extraterrestrial signs of life. -
Hypertension, Cardiac Hypertrophy, and Sudden Death in Mice Lacking
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 14730–14735, December 1997 Medical Sciences Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A (gene targetingyechocardiographyycardiac dilatationyinterstitial fibrosisyaortic dissection) PAULA M. OLIVER*, JENNIFER E. FOX*, RON KIM*, HOWARD A. ROCKMAN†,HYUNG-SUK KIM*, i ROBERT L. REDDICK‡,KAILASH N. PANDEY§,SHARON L. MILGRAM¶,OLIVER SMITHIES*, AND NOBUYO MAEDA* *Department of Pathology, University of North Carolina, 710 Brinkhous-Bullitt Building, Chapel Hill, NC 27599-7525; Departments of †Medicine and ¶Physiology, University of North Carolina, Chapel Hill, NC 27599; ‡Department of Pathology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284; and §Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912 Contributed by Oliver Smithies, October 27, 1997 ABSTRACT Natriuretic peptides, produced in the heart, of blood pressure and in the cardiovascular response to bind to the natriuretic peptide receptor A (NPRA) and cause sustained hypertension we have made mice completely lacking vasodilation and natriuresis important in the regulation of this receptor. Our results demonstrate that NPRA deficiency blood pressure. We here report that mice lacking a functional in mice leads to elevated blood pressures and, particularly in Npr1 gene coding for NPRA have elevated blood pressures and males, to cardiac hypertrophy and sudden death. hearts exhibiting marked hypertrophy with interstitial fibro- sis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a MATERIALS AND METHODS compensated state of systemic hypertension in which cardiac Gene Targeting. Three electroporations of embryonic stem hypertrophy and dilatation are evident but with no reduction (ES) cells (E14TG2a) were carried out as described (11). -
From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize Nathaniel C
454 Forum TRENDS in Biochemical Sciences Vol.26 No.7 July 2001 Historical Perspective From controlling elements to transposons: Barbara McClintock and the Nobel Prize Nathaniel C. Comfort Why did it take so long for Barbara correspondence. From these and other to prevent her controlling elements from McClintock (Fig. 1) to win the Nobel Prize? materials, we can reconstruct the events moving because their effects were difficult In the mid-1940s, McClintock discovered leading up to the 1983 prize*. to study when they jumped around. She genetic transposition in maize. She What today are known as transposable never had any inclination to pursue the published her results over several years elements, McClintock called ‘controlling biochemistry of transposition. and, in 1951, gave a famous presentation elements’. During the years 1945–1946, at Current understanding of how gene at the Cold Spring Harbor Symposium, the Carnegie Dept of Genetics, Cold activity is regulated, of course, springs yet it took until 1983 for her to win a Nobel Spring Harbor, McClintock discovered a from the operon, François Jacob and Prize. The delay is widely attributed to a pair of genetic loci in maize that seemed to Jacques Monod’s 1960 model of a block of combination of gender bias and gendered trigger spontaneous and reversible structural genes under the control of an science. McClintock’s results were not mutations in what had been ordinary, adjacent set of regulatory genes (Fig. 2). accepted, the story goes, because women stable alleles. In the term of the day, they Though subsequent studies revealed in science are marginalized, because the made stable alleles into ‘mutable’ ones. -
The Nobel Prize in Physiology Or Medicine 2007
PRESS RELEASE 2007-10-08 The Nobel Assembly at Karolinska Institutet has today decided to award The Nobel Prize in Physiology or Medicine 2007 jointly to Mario R. Capecchi, Martin J. Evans and Oliver Smithies for their discoveries of “principles for introducing specific gene modifications in mice by the use of embryonic stem cells” SUMMARY This year’s Nobel Laureates have made a series of ground-breaking discoveries concerning embryonic stem cells and DNA recombination in mammals. Their discoveries led to the creation of an immensely powerful technology referred to as gene targeting in mice. It is now being applied to virtually all areas of biomedicine – from basic research to the development of new therapies. Gene targeting is often used to inactivate single genes. Such gene “knockout” experiments have elucidated the roles of numerous genes in embryonic development, adult physiology, aging and disease. To date, more than ten thousand mouse genes (approximately half of the genes in the mammalian genome) have been knocked out. Ongoing international efforts will make “knockout mice” for all genes available within the near future. With gene targeting it is now possible to produce almost any type of DNA modification in the mouse genome, allowing scientists to establish the roles of individual genes in health and disease. Gene targeting has already produced more than five hundred different mouse models of human disorders, including cardiovascular and neuro-degenerative diseases, diabetes and cancer. Modification of genes by homologous recombination Information about the development and function of our bodies throughout life is carried within the DNA. Our DNA is packaged in chromosomes, which occur in pairs – one inherited from the father and one from the mother. -
Cover June 2011
z NOBEL LAUREATES IN Qui DNA RESEARCH n u SANGRAM KESHARI LENKA & CHINMOYEE MAHARANA F 1. Who got the Nobel Prize in Physiology or Medicine 1933) for discovering the famous concept that says chromosomes carry genes? a. Gregor Johann Mendel b. Thomas Hunt Morgan c. Aristotle d. Charles Darwin 5. Name the Nobel laureate (1959) for his discovery of the mechanisms in the biological 2. The concept of Mutations synthesis of ribonucleic acid and are changes in genetic deoxyribonucleic acid? information” awarded him a. Arthur Kornberg b. Har Gobind Khorana the Nobel Prize in 1946: c. Roger D. Kornberg d. James D. Watson a. Hermann Muller b. M.F. Perutz c. James D. Watson 6. Discovery of the DNA double helix fetched them d. Har Gobind Khorana the Nobel Prize in Physiology or Medicine (1962). a. Francis Crick, James Watson, Rosalind Elsie Franklin b. Francis Crick, James Watson and Maurice Willkins c. James Watson, Maurice Willkins, Rosalind Elsie Franklin 3. Identify the discoverer and d. Maurice Willkins, Rosalind Elsie Franklin and Francis Crick Nobel laureate of 1958 who found DNA in bacteria and viruses. a. Louis Pasteur b. Alexander Fleming c. Joshua Lederberg d. Roger D. Kornberg 4. A direct link between genes and enzymatic reactions, known as the famous “one gene, one enzyme” hypothesis, was put forth by these 7. They developed the theory of genetic regulatory scientists who shared the Nobel Prize in mechanisms, showing how, on a molecular level, Physiology or Medicine, 1958. certain genes are activated and suppressed. Name a. George Wells Beadle and Edward Lawrie Tatum these famous Nobel laureates of 1965. -
Biographical Notes on Scientists Involved in the Asilomar Process M.J
International Dimensions of Ethics Education in Science and Engineering Case Study Series: Asilomar Conference on Laboratory Precautions Appendix D: Biographical Notes on Scientists involved in the Asilomar Process M.J. Peterson Version 1, June 2010 Edward A. Adelberg (1920-2009). PhD Yale 1949. Chair of Yale Department of Microbiology 1961-64 and 1970-72; a founding member of Yale Department of Genetics. Deputy Provost for the Biomedical Sciences, 1983-91. Specialist in plasmid biochemistry of E. coli. Ephraim Anderson (1911-2006). M.D., Durham University. Served in the Royal Army Medical Corps during World War II where he developed interests in Epidemiology. Researcher in Enteric Laboratory of the British Public Health Laboratory Service 1947, Deputy Director 1952, Director 1954-1978. Came to public notice for tracing sources of typhoid outbreaks in Zermatt (1963) and Aberdeen (1964). Built on earlier work by Japanese researchers to demonstrate the plasmid-based pathways by which bacteria could spread antibiotic resistance to others and became the world’s leading expert on antibiotic resistance. Also prominent in efforts to limit use of antibiotics in raising animals. Fellow of the Royal Society 1968; Companion of the Order of the British Empire 1976. Eric Ashby, Baron Ashby (1904-1992). Lecturer in Botany, Imperial College London 1931-35; Reader in Botany Bristol University 1935-37; Professor of Botany University of Sydney 1938-1946; Chair of Botany, University of Manchester 1947-50. Turned to administration as President and Vice-Chancellor of Queen's University, Belfast 1950-59; Master of Clare College in Cambridge University 1959-67 and Vice-Chancellor of Cambridge University 1967-1969. -
Balcomk41251.Pdf (558.9Kb)
Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr. -
Apolipoprotein E Isoforms in Diabetic Dyslipidemia and Atherosclerosis
Apolipoprotein E isoforms in diabetic dyslipidemia and atherosclerosis Lance Johnson Diabetic Dyslipidemia Cluster of harmful changes to lipoprotein metabolism commonly noted in diabetic patients Characterized by high VLDL triglycerides, low HDL-cholesterol, and a increase in small, dense LDL particles Increases the risk of developing atherosclerosis Apolipoprotein E Isoforms ApoE2 ApoE3 ApoE4 position 112 cys cys arg position 158 cys arg arg frequency 7.2% 78.3% 14.3% LDLR affinity <1% 100% >100% plasma TC -6% ref. +6% MI risk reduced ref. Increased (type III) Plasma lipoproteins Normal LDLR Increased LDLR 2m (350mg/dl) 2h (100mg/dl) 60 VLDL HDL Mice with 40 On a HFW LDL Human apoE2 HDL diet Atherosclerosis No plaques 20 (poor ligand) Cholesterol VLDL LDL 0 10 20 30 10 20 30 60 3m (100mg/dl) 3h (60mg/dl) Mice with HDL 40 Human apoE3 No plaques HDL No plaques (reference) 20 VLDL Cholesterol VLDL 0 10 20 30 10 20 30 4m (100mg/dl) 4h (250mg/dl) 60 HDL VLDL Mice with 40 Human apoE4 No plaques Atherosclerosis HDL 20 (better ligand) Cholesterol VLDL 0 10 20 30 10 20 30 ApoE -Trapping by LDL receptor Figure 2 ApoE trapping. Efficient transfer of apoE4 facilitates internalization of large lipoproteins in 4m mice. In 4h mice, the efficiency of transfer is reduced because apoE4 are trapped by the increased LDLR. Akita-diabetic mice with human apoE isoforms Survival With normal LDLR With human LDLR Diabetic Human ApoE Mice: Survival Rate 110 100 4mAE4 3hA 90 80 3mAE3 2hA 70 60 50 40 30 2mAE2 Percent survival 4hA 20 10 0 0 1 2 3 4 5 6 7 Months of age 800 600 400 Glucose 200 0 2m 2h 3m 3h 4m 4h 200 2mAkita 4h-Akita 150 100 Cholesterol 50 0 2m 2h 3m 3h 4m 4h 150 100 50 Triglycerides 0 2m 2h 3m 3h 4m 4h Two of two -6mo old 4hAkita mice on a low cholesterol diet had atherosclerosis despite of low plasma cholesterol (<120 mg/dl) levels This is the first mouse model of atherosclerosis for which diabetes is required.