Detecção De Vírus Entéricos Em Amostras De Água E Sua Relação Com a Saúde Humana

Total Page:16

File Type:pdf, Size:1020Kb

Detecção De Vírus Entéricos Em Amostras De Água E Sua Relação Com a Saúde Humana Detecção de vírus entéricos em amostras de água e sua relação com a saúde humana Fernando Rosado Spilki Programa de Pós-Graduação em Qualidade Ambiental Laboratório de Microbiologia Molecular [email protected] Ci€ncias Ambientais • Multi/Inter/Transdisciplinaridade ––““AA teoriateoria ‚‚ cinzacinza,, masmas oo mundomundo llƒƒ forafora ‚‚ verdeverde”” ‚‚GoetheGoethe Interfaces da crise Ambiental POPULAÇÃO RECURSOS POLUIÇÃO NATURAIS Crescimento e estimativas Qualidade da água • Conjunto de características, componentes orgânicos e inorgânicos e a composição do estado da biota aquática (Chapman, 1992) • A qualidade da água depende de fatores naturais e da ação antrópica Qualidade da água • Fatores não-humanos: – Hidrogeoquímica das rochas – Processos atmosféricos • Evapotranspiração • Ventos – Deposição de matéria orgânica e nutrientes – Processos biológicos • Microbiota do solo e da água Qualidade da água • Efeitos da ação antrópica – Introdução direta ou indireta pelo homem de componentes bióticos ou abióticos, substâncias em geral e energia tem efeitos modificadores, normalmente deletérios sobre a qualidade da água Efeitos da ação antrópica sobre a qualidade da água As atividades humanas podem ter efeitos sobre os ecossistemas aquáticos: I. Biota aquática II. Saúde humana (gastroenterites, etc) III. Comprometimento de atividades econômicas e de subsistência (pesca) IV. Deterioração da qualidade da água e dos recursos hídricos para abastecimento, irrigação e indústria V. Perda do potencial de recreação, lazer e turismo Histórico dos problemas de qualidade da água Acesso à água não-poluída 1990-96 Manejo da água no ambiente urbano Manejo da água no ambiente rural Manejo da água Manejo ideal da água IIEGA – FEEVALE - ANINQAS Justificativa IIEGA – FEEVALE - ANINQAS Eutrofização acelerada ou natural (sucessão ecológica) Eutrofização Análise microbiológica a) Vírus b) Bactérias c) Protozoários e Helmintos Saneamento E.T.A. Portaria MS Nº 518 de 25/03/04 Estabelece os procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade , e dá outras providências. Tabela 8 - Número mínimo de amostras mensais para o controle da qualidade da água de sistema de abastecimento, para fins de análises microbiológicas, em função da população abastecida. PARÂMETRO SISTEMA DE DISTRIBUIÇÃO (REDE E RESERVATÓRIOS) População abastecida 5.000 a 20.000 a < 5.000 hab 20.000 hab 250.000 hab > 250.000 hab 105 + (1 para COLIFORMES 10 1 para cada 30 +( 1 para cada TOTAIS 500 hab. cada 2.000 5.000hab.) hab.) máximo de 1.000 NOTA: Na saída de cada unidade de tratamento devem ser coletadas, no mínimo, duas amostras semanais, recomendando-se a coleta de, pelo menos 4 amostras semanais. E os agentes virais “Devem ser monitorados?” COMO??? Gastroenterites virais Fernando Rosado Spilki Gastroenterites virais Transmissão fecal-oral; 2a. Causa de morbidade por doenças infecciosas no mundo (até 80% dos atendimentos nos países em desenvolvimento); 2 milhões de óbitos em crianças por ano no mundo (mesmo número de óbitos por HIV-AIDS) 450 milhões de reais /ano/Brasil, apenas em faltas parciais ao trabalho! Rotavírus Família Reoviridae Respiratory-Enteric-Ophan-virus (Sabin, 1959) Vírus não-envelopados Capsídeo protéico camada dupla Genomas com 10 a 12 segmentos de RNA de fita dupla Rotavírus Estáveis a extremos de temperatura a pH Alta resistência no ambiente Gênero Rotavirus Grupos Rotavirus A Rotavirus B Rotavirus C Rotavirus D Rotavirus E Rotavirus F Rotavirus G Rotavirus A - Histórico e características gerais • GARV; RV-A • Partículas detectadas em fezes de crianças com gastroenterite > anos 1970 • Diarréia em outras espécies animais suínos, bovinos, ovinos, equinos, caninos antropozoonose Classificação Arch Virol. 2008;153(8):1621-9. Epub 2008 Jul 5. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K, Estes MK, Gentsch JR, Iturriza-Gómara M, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M. Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 Gatroenterite por Rotavirus A em seres humanos Transmissão fecal-oral Crianças entre 6 meses de idade e idade pré-escolar (5 anos) Diarréia, vômito, desidratação Quadro leve ou inaparente em adultos Prevenção: Vacinação saneamento básico tem impacto limitado Parashar UD, Gibson CJ, Bresse JS, Glass RI. Rotavirus and severe childhood diarrhea. Emerg Infect Dis. 2006 Feb;12(2):304-6. Figure 2. Estimated global distribution of rotavirus-related deaths. Each dot represents 1,000 rotavirus-related deaths. > 80% EM PAÍSES EM DESENVOLVIMENTO Sazonalidade: diarreia de outono e iverno Diagnóstico laboratorial Quando conveniente: Aglutinação em látex Teste de antígenos virais (strip-tests) SDS-PAGE (corrida eletroforética de RNA em gel de poliacrilamida) RT-PCR > qRT-PCR Isolamento em cultivo celular pouco indicado, laborioso (tratamento com tripsina) e difícil Células MA104, HeLa Prevenção Vacinação por via oral (indução de IgA) Problemas iniciais Vacinas comercialmente disponíveis a | Rotarix is an attenuated human rotavirus vaccine made of a tissue-culture-adapted human P1A[8]G1, VP6 subgroup II and NSP4 geno-group B strain. b | RotaTeq is a bovine (WC3)–human reassortant vaccine composed of the five strains shown, each containing a human rotavirus gene encoding the VP7 neutralizing protein from different serotypes. Notably, in the WI79-9 and SC2-9 viruses (the last was used to create the first), genes 3 (VP3) and 9 (VP7) are of human origin. Although VP6 and NSP4 can potentially be the targets of protective antibodies (Fig. 2), their role in immunity against disease in humans is unknown. Efeitos sobre epidemiologia Efeitos da vacinação HM123819(12220_06RJ) HM066140(14919_08RS) HM123821(12343_06RJ) HM123825(12589_06RJ) HM123826(12647_06RJ) HM123839(15894_08ES) 57 HM066133(12549_06RJ) HM066136(13158_06ES) Figure. Evolutionary HM066137(13668_07AL) relationships of VP6 gene from HM066138(13788_07SE) Human-GARV The evolutionary history was 50 HM066141(15311_08RJ) inferred using the Neighbor- HM066144(15786_08ES) Joining method [1]. The optimal HM066157(16064_09MA) tree with the sum of branch length = 0.22115913 is shown. HM066156(15863_08MA) The percentage of replicate trees CRIANCA-5 Genotype I2 in which the associated taxa CRIANCA-3 clustered together in the bootstrap test (500 replicates) 61 HM467951(LB2772) are shown next to the branches HM467947(LB2744) [2]. The tree is drawn to scale, HM066142(15771_08PE) with branch lengths in the same units as those of the HM066132(12482_06BA) evolutionary distances used to HM066131(12287_06BA) infer the phylogenetic tree. The HM066130(11837_06AC) evolutionary distances were computed using the Kimura 2- HM066128(11580_05AC) parameter method [3] and are in HM066127(11860_06RJ) the units of the number of base substitutions per site. The HM066126(11257_05MS) analysis involved 34 nucleotide 65 HM066135(13039_06RS) sequences. All positions HM123836(14397_07MA) containing gaps and missing data were eliminated. There were a HM066151(15958_08RS) total of 165 positions in the final 65 HM066146(15840_08RS) dataset. Evolutionary analyses GU199507(Matlab36-02) were conducted in MEGA5 [4]. EU372748(CMH150/01) 99 EU372749(CMH185/01) Genotype I1 + non (I+II) 69 GU199521(Dhaka6) EU372750(CMH186/01) 0.02 Norovírus • Fam€lia Caliciviridae – RNA fita simples, polaridade +, n•o-envelopado – Norovirus • gastroenterite • Principal causa de diarreia viral em seres humanos • Sintomas e epidemiologia semelhantes aos descritos hoje desde 1929 na literatura • Norwalk/Ohio/USA > Kapikian, 1958 • ‘‘small round structured viruses’’ (SRSV) – Sapovirus • gastroenterite • Sapporo, Jap•o, 1977 (Chiba, 1978) Morfologia Distribuição sazonal Norovírus Doen„a em adultos “diarreia dos cruzeiros”, surtos em escolas e locais de trabalho Gastroenterite aguda normalmente moderada (raramente grave) Perda de fluidos Les‡es do epitˆlio intestinal Explicação para a correlação entre os norovírus e os navios de cruzeiro (CDC) As doenças ocorridas em navios de cruzeiro contam com acompanhamento por organizações oficiais de saúde. Portanto, surtos são descobertos e relatados mais rapidamente num navio de cruzeiro do que em terra firme. Camarotes e instalações apertadas podem aumentar o contato entre grupos humanos. Passageiros recém-chegados podem trazer o vírus para os outros passageiros e para a tripulação. Como os norovírus se espalham (CDC) As pessoas podem ser infectadas com o vírus: Ao comer alimentos ou beber líquidos infectados com os norovírus Ao tocar superfícies ou objetos infectados com os norovírus e depois tocar a própria boca, nariz ou olhos Ao ter contato de pessoa a pessoa (com uma pessoa infectada) ao: estar presente enquanto alguém está vomitando dividir comida ou comer usando os mesmos talheres cuidar de uma pessoa doente apertar as mãos de alguém Deixando de lavar as mãos depois de usar o banheiro ou trocar fraldas, e antes de comer ou preparar alimentos. Adenovírus Família Adenoviridae DNA fita dupla 50 sorotipos em seres humanos AdV F - G> entéricos AdV-40 e -41 Excreção também de AdV respiratório AdV-2 e -5 Robert Green was born in 1895 in Wadena, Minnesota. He earned four degrees from the University of Minnesota, including an MD in 1922. He joined the staff
Recommended publications
  • An Upstream Protein-Coding Region in Enteroviruses Modulates Virus Infection in Gut Epithelial Cells
    This is a repository copy of An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/139452/ Version: Accepted Version Article: Lulla, V, Dinan, AM, Hosmillo, M et al. (8 more authors) (2018) An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. Nature Microbiology, 4. pp. 280-292. ISSN 2058-5276 https://doi.org/10.1038/s41564-018-0297-1 © 2018, The Author(s), under exclusive licence to Springer Nature Limited. This is an author produced version of a paper published in Nature Microbiology. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Title: 2 An Upstream Protein-Coding Region in Enteroviruses Modulates Virus Infection in 3 Gut Epithelial Cells 4 5 6 Authors: 7 Valeria Lulla1*, Adam M.
    [Show full text]
  • Involvement of a Nonstructural Protein in Poliovirus Capsid Assembly
    This is a repository copy of Involvement of a Nonstructural Protein in Poliovirus Capsid Assembly. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/140010/ Version: Accepted Version Article: Adeyemi, OO orcid.org/0000-0002-0848-5917, Sherry, L orcid.org/0000-0002-4367-772X, Ward, JC et al. (4 more authors) (2019) Involvement of a Nonstructural Protein in Poliovirus Capsid Assembly. Journal of Virology, 93 (5). e01447-18. ISSN 0022-538X https://doi.org/10.1128/JVI.01447-18 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Involvement of a non-structural protein in poliovirus capsid assembly. 2 3 Oluwapelumi O. Adeyemi, Lee Sherry, Joseph C. Ward, Danielle M. Pierce, 4 Morgan R. Herod, David J. Rowlands# and Nicola J. Stonehouse# 5 6 School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of 7 Leeds, Leeds, United Kingdom 8 9 Running title: A non-structural protein in PV assembly 10 # Address correspondence to David J.
    [Show full text]
  • Four Decades Since the First Report
    Epidemiology and Infection Detection and molecular characterisation of bovine Enterovirus in Brazil: four decades cambridge.org/hyg since the first report 1 1 2 3 Short Paper M. Candido , S. R. Almeida-Queiroz , M. G. Buzinaro , M. C. Livonesi , A. M. Fernandes1 and R. L. M. Sousa1 Cite this article: Candido M, Almeida-Queiroz SR, Buzinaro MG, Livonesi MC, Fernandes AM, 1Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo Sousa RLM (2019). Detection and molecular (FZEA/USP), Avenue Duque de Caxias Norte, 225, Jardim Elite, Pirassununga, São Paulo 13635-900, Brazil; characterisation of bovine Enterovirus in Brazil: 2 four decades since the first report. Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University (UNESP), 3 Epidemiology and Infection 147, e126, 1–2. Access Route Prof. Paulo Donato Castellani, Rural, Jaboticabal, São Paulo 14884-900, Brazil and Department of https://doi.org/10.1017/S0950268818003394 Clinical Analysis, Faculty of Pharmacy, Alfenas Federal University (UNIFAL), Street Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais 37130-000, Brazil Received: 4 June 2018 Revised: 3 November 2018 Accepted: 7 November 2018 Abstract It is suggested that bovine enteroviruses (BEV) are involved in the aetiology of enteric infec- Key words: tions, respiratory disease, reproductive disorders and infertility. In this study, bovine faecal Animal viruses; bovine enterovirus; cattle diseases; molecular diagnostics samples collected in different Brazilian states were subjected to RNA extraction, reverse tran- scription-polymerase chain reaction analysis and partial sequencing of the 5′-terminal portion Author for correspondence: of BEV. One hundred and three samples were tested with an overall positivity of 14.5%.
    [Show full text]
  • Detection, Identification and Molecular Variation of Human Enteroviruses
    DETECTION, IDENTIFICATION AND MOLECULAR VARIATION OF HUMAN ENTEROVIRUSES Riikka Österback TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1201 | Medica - Odontologica | Turku 2015 University of Turku Faculty of Medicine Institution of Biomedicine Department of Virology Turku Doctoral Programme of Molecular Medicine, TuDMM and Department of Clinical Virology Microbiology and Genetics Turku University Hospital Supervised by Docent Matti Waris, PhD Institution of Biomedicine/Department of Virology University of Turku Turku, Finland Reviewed by Docent Carita Savolainen-Kopra, PhD Docent Maija Lappalainen, MD, PhD National Institute for Health and Welfare Department of Virology and Immunology, Virology unit Laboratory Services (HUSLAB) Helsinki, Finland Helsinki University Hospital Helsinki, Finland Opponent Professor Heikki Hyöty, MD, PhD School of Medicine University of Tampere Tampere, Finland The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-6286-0 (PRINT) ISBN 978-951-29-6287-7 (PDF) ISSN 0355-9483 Painosalama Oy - Turku, Finland 2015 We are the heroes of our time, but we’re dancing with the demons in our minds (Måns Zelmerlöw, Heroes) 4 Abstract ABSTRACT Riikka Österback Detection, Identification and Molecular Variation of Human Enteroviruses University of Turku, Faculty of Medicine, Institution of Biomedicine, Department of Virology Turku Doctoral Programme of Molecular
    [Show full text]
  • Genetic Variations in Regions of Bovine and Bovine-Like Enteroviral 5'UTR
    Kosoltanapiwat et al. Virology Journal (2016) 13:13 DOI 10.1186/s12985-016-0468-8 RESEARCH Open Access Genetic variations in regions of bovine and bovine-like enteroviral 5’UTR from cattle, Indian bison and goat feces Nathamon Kosoltanapiwat1*, Marnoch Yindee2, Irwin Fernandez Chavez3, Pornsawan Leaungwutiwong1, Poom Adisakwattana4, Pratap Singhasivanon3, Charin Thawornkuno5, Narin Thippornchai1, Amporn Rungruengkitkun1, Juthamas Soontorn1 and Sasipan Pearsiriwuttipong1 Abstract Background: Bovine enteroviruses (BEV) are members of the genus Enterovirus in the family Picornaviridae. They are predominantly isolated from cattle feces, but also are detected in feces of other animals, including goats and deer. These viruses are found in apparently healthy animals, as well as in animals with clinical signs and several studies reported recently suggest a potential role of BEV in causing disease in animals. In this study, we surveyed the presence of BEV in domestic and wild animals in Thailand, and assessed their genetic variability. Methods: Viral RNA was extracted from fecal samples of cattle, domestic goats, Indian bison (gaurs), and deer. The 5’ untranslated region (5’UTR) was amplified by nested reverse transcription-polymerase chain reaction (RT-PCR) with primers specific to BEV 5’UTR. PCR products were sequenced and analyzed phylogenetically using the neighbor-joining algorithm to observe genetic variations in regions of the bovine and bovine-like enteroviral 5’UTR found in this study. Results: BEV and BEV-like sequences were detected in the fecal samples of cattle (40/60, 67 %), gaurs (3/30, 10 %), and goats (11/46, 24 %). Phylogenetic analyses of the partial 5’UTR sequences indicated that different BEV variants (both EV-E and EV-F species) co-circulated in the domestic cattle, whereas the sequences from gaurs and goats clustered according to the animal species, suggesting that these viruses are host species-specific.
    [Show full text]
  • A Systematic Review of Evidence That Enteroviruses May Be Zoonotic Jane K
    Fieldhouse et al. Emerging Microbes & Infections (2018) 7:164 Emerging Microbes & Infections DOI 10.1038/s41426-018-0159-1 www.nature.com/emi REVIEW ARTICLE Open Access A systematic review of evidence that enteroviruses may be zoonotic Jane K. Fieldhouse 1,XinyeWang2, Kerry A. Mallinson1,RickW.Tsao1 and Gregory C. Gray 1,2,3 Abstract Enteroviruses infect millions of humans annually worldwide, primarily infants and children. With a high mutation rate and frequent recombination, enteroviruses are noted to evolve and change over time. Given the evidence that human enteroviruses are commonly found in other mammalian species and that some human and animal enteroviruses are genetically similar, it is possible that enzootic enteroviruses may also be infecting human populations. We conducted a systematic review of the English and Chinese literature published between 2007 and 2017 to examine evidence that enteroviruses may be zoonotic. Of the 2704 articles screened for inclusion, 16 articles were included in the final review. The review of these articles yielded considerable molecular evidence of zooanthroponosis transmission, particularly among non-human primates. While there were more limited instances of anthropozoonosis transmission, the available data support the biological plausibility of cross-species transmission and the need to conduct periodic surveillance at the human–animal interface. Introduction Enterovirus D68 (EV-D68) is a type that has caused 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Enteroviruses (EVs) are positive-sense, single-stranded sporadic but severe respiratory disease outbreaks across RNA viruses in the family Picornaviridae that infect the United States, Asia, Africa, and Europe in recent millions of people worldwide on an annual basis, espe- years3,4.
    [Show full text]
  • Enterovirus 68 Threatens-To-Sicken-People-All-Across-The-US-458808.Shtml#Sgal 1
    Emergence and resurgence of human enterovirus 68 http://news.softpedia.com/news/Respiratory-Virus-EV-D68- www.theaustralian.com.au Threatens-to-Sicken-People-All-Across-the-US-458808.shtml#sgal_1 Respiratory virus detected among pediatric patients http://www.webmd.com/children/ss/slideshow-enterovirus-68 Human Enterovirus • The most important neurotropic virus identified during infancy and childhood. • family Picornaviridae, genus Enterovirus • replicate both in respiratory and alimentary tract • transmitted predominantly via oral-fecal route • a small non-enveloped virus (30 nm) • incubation period 3-5 days • Positive ssRNA genome (7.4 kb) icosahedral capsid enclosed Mackay I. J of Clin Virol 2008; 42 Family:- Picornaviridae Genus:- Enterovirus Enterovirus A EV-A71, CV-A16 Enterovirus B CV-B Enterovirus Enterovirus C Human Poliovirus, Hepatitis A, EV-C105 Enterovirus D EV-D68 Enterovirus E Bovine Enterovirus F Enterovirus G Porcine Enterovirus H Simian Enterovirus J Rhinovirus A Rhinovirus B Human Rhinovirus Rhinovirus C 5´UTR IRES Structural Non-structural proteins 3´UTR coverleaf P1 P2 P3 VPg (A) IRES-mediated translation n POLYPROTEIN Viral protease Viroporin Vesicle Viral Viral formation protease polymerase NTPase 5 Microbiology, Nature Reviews ; 2005 • 89 serotypes categorized into 4 species HEV-A (14) HEV-B (52) HEV-C (20) HEV-D (3) predominantly found in hand foot and mouth disease including EV71, CA16 and CA6 Relationships between known enteroviruses, based on full-length genome analysis. Yozwiak N L et al. J. Virol. 2010;84:9047-9058 6 VP4/VP2 VP1 HEV-C Piralla et al., 2010 Oberste et al., 1999 Image source: Cynthia S. Goldsmith Image source: Cynthia S.
    [Show full text]
  • Developing Picornaviruses for Cancer Therapy
    cancers Review Developing Picornaviruses for Cancer Therapy Cormac McCarthy 1, Nadishka Jayawardena 1, Laura N. Burga 1,* and Mihnea Bostina 1,2,* 1 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; [email protected] (C.M.); [email protected] (N.J.) 2 Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand * Correspondence: [email protected] (L.N.B.); [email protected] (M.B.) Received: 4 April 2019; Accepted: 8 May 2019; Published: 16 May 2019 Abstract: Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity. Keywords: picornavirus; oncolytic virotherapy; poliovirus; coxsackievirus; senecavirus 1. Introduction Cancer remains one of the leading causes of death worldwide. Globally, there were around 18 million new cases of cancer in 2018, with up to 9.5 million deaths [1]. Contemporary treatment for cancer usually involves some combination of surgical resection, radiation therapy and/or chemotherapy. While these conventional therapies have improved the prognosis for many cancers, the side-effects are often severe. In addition, some tumours are inoperable or resistant to radio- and chemotherapy, emphasising the need to develop new therapeutic strategies.
    [Show full text]
  • No Exchange of Picornaviruses in Vietnam Between Humans and Animals in a High-Risk Cohort with Close Contact Despite High Prevalence and Diversity
    viruses Article No Exchange of Picornaviruses in Vietnam between Humans and Animals in a High-Risk Cohort with Close Contact despite High Prevalence and Diversity Lu Lu 1,*,† , Jordan Ashworth 1,† , Dung Nguyen 2, Kejin Li 3, Donald B. Smith 2,3, Mark Woolhouse 1 and on behalf of the VIZIONS Consortium ‡ 1 Usher Institute, University of Edinburgh, Edinburgh EH9 3FL, UK; [email protected] (J.A.); [email protected] (M.W.) 2 Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; [email protected] (D.N.); [email protected] (D.B.S.) 3 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK; [email protected] * Correspondence: [email protected] † The two authors contributed equally to this work. ‡ Membership of the VIZIONS Consortium is provided in the Acknowledgments. Abstract: Hospital-based and community-based ‘high-risk cohort’ studies investigating humans at risk of zoonotic infection due to occupational or residential exposure to animals were conducted in Vietnam, with diverse viruses identified from faecal samples collected from humans, domestic and wild animals. In this study, we focus on the positive-sense RNA virus family Picornaviridae, investi- gating the prevalence, diversity, and potential for cross-species transmission. Through metagenomic Citation: Lu, L.; Ashworth, J.; sequencing, we found picornavirus contigs in 23% of samples, belonging to 15 picornavirus genera. Nguyen, D.; Li, K.; Smith, D.B.; Prevalence was highest in bats (67%) while diversity was highest in rats (nine genera). In addition, Woolhouse, M.; on behalf of the VIZIONS Consortium.
    [Show full text]
  • Non-Polio Enterovirus D68 (EV-D68): Implications and Therapeutic Challenges Review Article Farrukh Naz, Adria Hasan, Roohi, Snober S
    Journal of Enzymology and Metabolism Volume 2, Issue 1 - 2016 © Snober SM* 2016 www.opensciencepublications.com Non-Polio Enterovirus D68 (EV-D68): Implications and Therapeutic Challenges Review Article Farrukh Naz, Adria Hasan, Roohi, Snober S. Mir* Department of Bioengineering, Integral University, Lucknow, India *Corresponding author: Snober S Mir, Associate Professor, Department of Bioengineering, Integral University, Lucknow, India. E-mail: [email protected], [email protected] Article Information: Submission: 07/05/2016; Accepted: 07/05/2016; Published: 13/06/2016 Copyright: © 2016 Naz F. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Enterovirus D68 (EV-D68) is being reported as a cause of respiratory illness across USA along with some parts of Canada. Non polio EV-D68 has been associated with respiratory illness followed by acute flaccid paralysis in children which clearly suggests that there should be appropriate screening and treatment of EV-D68 virus. Thus, this review aims to highlight recent research on EV-D68 virus along with its symptoms, diagnosis, possible therapy and associated challenges. Keywords: Enterovirus; EV-D68; Respiratory illness; Pleconril Introduction EV-D68 and human rhinovirus are biologically similar due to its acid-labile nature and also because of association of EV-D68 with Enterovirus is positive strand single stranded RNA virus respiratory disease, 26 isolates of EV-D68 were reported from 1970 to belonging to family picornavirus. The genome of enterovirus is made 2005 in USA [5]. However, outbreaks of EV-D68 have been reported up of approximately 7500 bases [1].
    [Show full text]
  • Identification of a Novel Bovine Enterovirus Possessing Highly
    Tsuchiaka et al. BMC Microbiology (2017) 17:18 DOI 10.1186/s12866-016-0923-0 RESEARCH ARTICLE Open Access Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein Shinobu Tsuchiaka1,2, Sayed Samim Rahpaya1,2, Konosuke Otomaru3, Hiroshi Aoki4, Mai Kishimoto2, Yuki Naoi2, Tsutomu Omatsu1,2, Kaori Sano2, Sachiko Okazaki-Terashima1,2, Yukie Katayama2, Mami Oba2, Makoto Nagai5 and Tetsuya Mizutani1,2* Abstract Background: Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5′ untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. Results: The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5′UTR, open reading frame encoding a single polyprotein, and 3′UTR. The results of secondary RNA structure analysis showed that in the 5′UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs.
    [Show full text]
  • Structural Basis for Hijacking of the Host ACBD3 Protein by Bovine and Porcine Enteroviruses and Kobuviruses
    Archives of Virology (2020) 165:355–366 https://doi.org/10.1007/s00705-019-04490-9 ORIGINAL ARTICLE Structural basis for hijacking of the host ACBD3 protein by bovine and porcine enteroviruses and kobuviruses Miroslav Smola1 · Vladimira Horova1 · Evzen Boura1 · Martin Klima1 Received: 6 August 2019 / Accepted: 31 October 2019 / Published online: 16 December 2019 © Springer-Verlag GmbH Austria, part of Springer Nature 2019 Abstract Picornaviruses infect a wide range of mammals including livestock such as cattle and swine. As with other picornavirus genera such as Aphthovirus, there is emerging evidence of a signifcant economic impact of livestock infections caused by members of the genera Enterovirus and Kobuvirus. While the human-infecting enteroviruses and kobuviruses have been intensively studied during the past decades in great detail, research on livestock-infecting viruses has been mostly limited to the genomic characterization of the viral strains identifed worldwide. Here, we extend our previous studies of the structure and function of the complexes composed of the non-structural 3A proteins of human-infecting enteroviruses and kobuvi- ruses and the host ACBD3 protein and present a structural and functional characterization of the complexes of the following livestock-infecting picornaviruses: bovine enteroviruses EV-E and EV-F, porcine enterovirus EV-G, and porcine kobuvirus AiV-C. We present a series of crystal structures of these complexes and demonstrate the role of these complexes in facilita- tion of viral replication. Introduction The bovine enteroviruses EV-E and EV-F are endemic in cattle populations worldwide. They have been isolated Enteroviruses and kobuviruses are small non-enveloped from cattle with a wide range of clinical signs including positive-sense single-stranded RNA viruses that belong gastrointestinal and respiratory diseases, reproductive dis- to the family Picornaviridae of the order Picornavirales.
    [Show full text]