Antibacterial, Antioxidant and Cell Proliferative Properties of Coccinia Grandis Fruits Prashant Sakharkar1, Balwantsinh Chauhan2,*

Total Page:16

File Type:pdf, Size:1020Kb

Antibacterial, Antioxidant and Cell Proliferative Properties of Coccinia Grandis Fruits Prashant Sakharkar1, Balwantsinh Chauhan2,* Original Research Article Antibacterial, antioxidant and cell proliferative properties of Coccinia grandis fruits Prashant Sakharkar1, Balwantsinh Chauhan2,* 1Department of Clinical & Administrative Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA 2Department of Bipoharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA Article history: Abstract Received: Jun22, 2016 Objective: Little knowledge is available on the antimicrobial and Received in revised form: Jan 16, 2017 antioxidant properties of Coccina grandis fruits and no study has Accepted: Jan 22, 2017 reported on its cell proliferative property. The aim of this study Vol. 7, No. 4, Jul-Aug 2017, was to examine the antimicrobial, antioxidant and cell proliferative 295-307. property of fruits of C. grandis. Materials and Methods: Fruits of C. grandis were extracted * Corresponding Author: using water; ethanol and acetone by cold and hot Soxhlet Tel: (+1) 847-330-4532 extraction. The antibacterial activities of the extracts were tested Fax:(+1) 847-330-4525 against Staphylococcus aureus, Enterococcus faecalis, Escherichia ‎[email protected] coli and Pseudomonas aeruginosa using the modified Kirby-Bauer diffusion method and compared against erythromycin. The Keywords: Coccinia grandis antioxidant property was determined using Cayman's antioxidant Antibacterial assay; whereas cell proliferation/cytotoxic properties were Antioxidant evaluated using the Cell Titer 96 Aqueous One Solution Cell MTS Cell proliferation assay with MDA-MB 321 breast cancer cells. Data were analyzed Ivy gourd for correlation and differences using unpaired student's t-test and one-way ANOVA. A p value of <0.05 was considered statistically significant. Results: Both cold and hot ethanol and acetone extracts of C. grandis fruits showed some degree of bacterial growth inhibition. Acetone extracts exhibited higher antibacterial activity. Both ethanol extracts showed antioxidant property when compared with standard Trolox. In contrary to cytotoxicity, all four extracts showed cell proliferation compared to controls at different concentrations. However, acetone extracts exhibited greater cell proliferation compared to ethanol extracts and cold extracts performed better than the hot extracts. Conclusion: C. grandis fruits exhibited some degree of antimicrobial, antioxidant and cell proliferative properties. Further investigation is warranted to isolate, confirm and characterize phytochemicals that are responsible for the medicinal properties observed. Please cite this paper as: Sakharkar P, Chauhan B. Antibacterial, antioxidant and cell proliferative properties of Coccinia grandis fruits. Avicenna J Phytomed, 2017; 7 (4): 295-307. AJP, Vol. 7, No. 4, Jul-Aug 2017 295 Sakharkar et al. Introduction plant has been considered of having some The concept of combining dietary medicinal value (Yadav et al., 2010; constituents to manage various illnesses is Nagare et al., 2015). Plant preparations historically part of most of the cultures. from C. grandis are indigenously used for Currently, there is wide spread use of various skin diseases, bronchitis, anorexia, complementary and alternative medicine cough, asthma, catarrh, and epilepsy. (CAM) globally. Of five categories of Moreover, in Unani systems of medicine it CAM identified, the herbal products are has been used for ringworm, psoriasis, the most abundantly used form of the small pox and scabies (Kirtikar and Basu, therapy. The search for new herbal 1994; Philcox, 1997; Nagare et al., 2015). products/drugs for different human Plant preparations are also used for itchy ailments is increasing, as they are believed skin eruptions, wound healing, leprosy, to be less or non-toxic in nature. It is well gonorrhea, pyelitis, cystitis, snakebite, recorded that various plants belonging to malarial infection, infective hepatitis, and Cucurbitaceae family are used as herbal jaundice; Also, it has been given as a medicine in most of the culture. Coccinia hepatoprotective remedy and for treating plants (Ivy) belonging to Cucurbitaceae renal calculi (Kirtikar and Basu, 1994; family have their own importance in Vadivu et al., 2008; Shaheen et al., 2009; traditional medicines, including Ayurveda, Deshpande et al., 2011a; Dnyaneshwar and practiced in India, Chinese herbal Patil, 2011; Ramakrishnan et al., 2011; medicines practiced in China and Unani Sood et al., 2012). C. grandis is also system of medicine or Greco-Arab known for its anti-diabetic, anti-obesity, medicine practiced in Iran (Khan et al., antimicrobial, antifungal, antileishmanic, 1979). antioxidant, antihypertensive, antitussive, Ivy gourd is known in India by various antiulcer, analgesic, antipyretic, vernacular names like tondi in Marathi, antianaphylactic, and anti-cancer Tindora, Tinda and Kundu in hindi, properties (Kirtikar and Basu,1994; Yadav dondakaya in telugu, tomdekayi in et al., 2010; Tamilselvan et al., 2011; kannada, etc. (Ali et al., 2005). In other Pekamwar et al., 2013; Gill et al., 2014; parts of the world, it is known as Hong gua Nagare et al., 2015). However, its in Chinese, Bat in Vietnam, Pepasan in therapeutic efficacy is yet not conclusive Malay, Yasai, Karasuuri in Japanese, due to the lack of carefully controlled Gourds ecarlate de l'Inde in France, pepino scientific investigations. Although, most of Cimarron in Spanish and Skariagenagurk. the studies have either used extract of Ivy gourd (Coccinia grandis) is found in stem, root and most often leaf alone or in tropical Asia (India, Pakistan, Bangladesh, combination, only few studies tested Sri Lanka, Indonesia, Malaysia, the medicinal properties of C. grandis fruits Philippines, and Thailand), and Africa (Vadivu et al., 2008; Shaheen et al., 2009; (Cooke, 1903). Coccinia indica Wright Deshpande et al., 2011a; Dnyaneshwar and and Arn., and Coccinia cordifolia (L.) Patil, 2011; Ramakrishnan et al., 2011; Cogn., Cephalandra indica, Naud., and Sood et al., 2012). To our knowledge, Bryonia cordifolia (L.) Voigt.( Kirtikar there are hardly any in-vitro studies testing and Basu, 1994; Philcox,1997; Nagare et cell proliferative property of C. grandis al., 2015) are the other names of C. fruit. The goal of this study was to conduct grandis which is a climber, trailer, preliminary phytochemical screening and dioecious, and perennial plant. Young, to evaluate the potential antimicrobial, tender and long slender stem tops, leaves, antioxidant and cell proliferative property and tuberous roots of C. grandis are of C. grandis fruit. cooked or used as a seasoning and young fruits are used in salads. Every part of this AJP, Vol. 7, No. 4, Jul-Aug 2017 296 Cell proliferative properties of Coccinia grandis Materials and Methods (potassium mercuric iodide). Formation of Plant extract yellow creamy precipitates indicated the Un-ripened fresh fruits of C. grandis presence of alkaloids. were collected in June 2014 from a local c. Wagner’s reagent: Filtrate was Indian grocery store in Schaumburg, IL treated with 4-6 drops of Wagner’s reagent (USA) and authenticated at Department of (iodine in potassium iodide). Formation of Biology, Chicago State University in brown/reddish brown precipitation or Chicago, IL. Fresh fruits were washed with coloration indicated the presence of distilled water to clean any debris. Fruits alkaloids. were cut into small pieces and dried at room temperature away from direct Carbohydrates (Molisch’s test) sunlight. Dried material was weighed and Few drops of Molisch’s reagent were subjected to cold extraction using ethanol added to 2 mL of extract. This was (94-96 %, BDH) and acetone at 4oC, for 48 followed by gradual addition of 2 mL of hr with occasional stirring. Similarly, hot concentrated sulfuric acid down the side of extraction was carried out using a Soxhlet the test tube. The mixture was then apparatus (58oC; 7 cycles) with alcohol allowed to stand for two to three minutes. and acetone. Residues obtained on Formation of red or dull violet color at the extractions were evaporated to dryness interface of the two layers indicated the using ‘Rotavap’ and dried. All extracts presence of carbohydrates. were stored at 4oC until further use. Flavonoids Phytochemical screening: One mL of 10% lead acetate solution Dried fruit powder was extracted (at was added to 1 mL of the aqueous extract. 4oC) for 48 hr in MilliQ water and The formation of a yellow precipitate obtained residue was dissolved in small indicated the presence of flavonoids. volume of MilliQ water and labeled as “aqueous extract”. This aqueous extract Cardiac glycosides (Keller-Killiani test) along with ethanol and acetone extracts Crude extract (2-5 ml) was mixed with were subjected to preliminary 2 ml of glacial acid containing 1-2 drops of phytochemical screening using following 2% solution of ferric chloride. The mixture tests (Egwaikhide and Gimba, 2007; was then poured into another test tube Roopashree et al., 2008; Abba et al., 2009; containing 2 ml of concentrated sulfuric Njoku and Obi, 2009; Yadav and acid. A brown ring of a deoxy-sugar, Agarwala, 2011; Sood et al., 2012; characteristic of alcoholic cardenolides at Soloman et al., 2013). the interface indicated the presence of cardiac glycosides. Alkaloids Nine drops of 1% diluted hydrochloric Tannins (Braymer’s Test) acid was added to 6mL of extracts, mixed To 5ml of the extract, few drops of well and the mixture was left for some 0.1% ferric chloride were added. A time and filtered.
Recommended publications
  • DETERMINATION of GENETIC DIVERSITY in WATERMELON (Citrullus Lanatus (Thunb.) Matsum & Nakai) GERMPLASMS
    DETERMINATION OF GENETIC DIVERSITY IN WATERMELON (Citrullus lanatus (Thunb.) Matsum & Nakai) GERMPLASMS A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Molecular Biology and Genetics by Zehra İpek ULUTÜRK December 2009 İZMİR i ii ACKNOWLEDGEMENTS I am heartily thankful to my advisor, Prof. Dr. Anne FRARY, whose encouragement, guidance, excellent advice and support from the initial to the final level of this study enabled me to develop an understanding of the subject. My sincere thanks to my coadvisor Assoc. Prof. Dr. Sami DOĞANLAR for giving me the opportunity to study and supporting me during the completion of the project. I also thank my colleagues of the department of Molecular Biology and Genetics. Discussions and cooperation with all of my colleagues have contributed substantially to this study. Finally, I owe special gratitude to my family for their patience and continuous support of all my undertakings, scholastic and otherwise. iii ABSTRACT DETERMINATION OF GENETIC DIVERSITIY IN WATERMELON (Citrullus lanatus (Thunb.) Matsum & Nakai) GERMPLASMS With 1.4 million tons of production, Turkey ranks second behind China in worldwide production of watermelon. Watermelon is grown at different times throughout the country with highest consumption during the summer and fall. Watermelon is an economically and socio-economically important crop throughout the country and especially in coastal regions where much of the cultivation occurs. In this research, 90 watermelon accessions collected from different regions of the world by the USDA were molecularly characterized using 40 SRAP marker combinations based on the UPGMA (Unweighted Pair Group Method) and Neighbor Joining methods.
    [Show full text]
  • Friday 1 April 2016
    Friday 1st April 2016 (For the period 1st to 5th April 2016) Weblink For District AAS Bulletin: http://www.imdagrimet.gov.in/node/3545 State Composite AAS Bulletin: http://www.imdagrimet.gov.in/node/3544 1 Standardised Precipitation Index Four Weekly for the Period 3rd March to 30th March 2016 Extremely/severely wet conditions experienced in a few districts of Konkan & Goa and Saurashtra, Kutch & Diu; Upper Siang district of Arunachal Pradesh; Rohtas district of Bihar; Allahabad, Fatehpur, Mirzapur, Sonbhadra, Varanasi, Hamirpur districts of Uttar Pradesh; Bhatinda, Muktsar, Faridkot districts of Punjab; Reasi, Pulwama, Ramban districts of Jammu & Kashmir; Churu district of Rajasthan; Chhatarpur, Tikamgarh districts of Madhya Pradesh; Surat, Narmada, Navsari districts of Gujarat Region; Nashik district of Maharashtra. Extremely/Severely dry conditions experienced in Jaintia Hills district of Meghalaya; Dindigul, Salem districts of TamilNadu. Moderately dry conditions experienced in few districts of Arunachal Pradesh; Tamil Nadu; Karbi Anglong, Hailakandi districts of Assam; Mayurbhanj district of Odisha; Seraikela- Khar district of Jharkhand; Ladakh (Leh), district of Jammu & Kashmir; Khammam district of Telangana; Chamarajanagar, Hassan, Shimoga districts of Karnataka; Ernakulam, Malappuram districts of Kerala. Rest of the country experienced moderately wet/ mildly dry/mildly wet conditions. 2 Contour maps for Mean Maximum and Minimum Temperature and their anomaly for the week ending on 30.03.2016 Actual Mean Maximum Temperature (oC) in India Mean Maximum Temperature (oC) Anomaly in for the week ending 30.03.2016 India for the week ending 30.03.2016 Mean maximum temperature was above 400C over Mean maximum temperature was above normal by 4 many parts of Marathwada, North Interior to 60C over many parts of Himachal Pradesh and Karnataka, some parts of Gujarat region, Madhya isolated pockets of Uttarakhand, North Interior Maharashtra, Vidarbha, Telangana, Rayalaseema, Karnataka and West Rajasthan.
    [Show full text]
  • Diversität, Anbau, Verwendung Teil 2: Kürbisgewächse
    Alte und neue Nutzpflanzen: Diversität, Anbau, Verwendung Teil 2: Kürbisgewächse Mormodica charantia (Bittermelone), einer der ursprünglichsten Vertreter der kultivierten Cucurbitoideae. Die sich am Blütenende öffnende Frucht mit den herausfallenden Samen erinnert an die Nhandiroboideae. [WP] Webinar von Dipl.-Biol. Eike Wulfmeyer anstiftung, 14.2.2017 Inhalt • Übersicht Artenporträts • Sicyoeae • Vorkultur • Schwammgurke • Inkagurke • Chayote • Kultur • Benincaseae • Mexikanisches Minigürkchen • Pflanzenschutz • Horngurke • Wassermelone • Kalebasse • Bestäubung • Indischer Apfelkürbis • Cucurbiteae • Saatgutgewinnung • Feigenblattkürbis • Trompetenzucchini Übersicht I – Kürbisgewächse (Cucurbitaceae) • 800 bis knapp 1000 Arten in rund 100 Gattungen • Nhandiroboideae (Zanonienähnliche) und Cucurbitoideae (Kürbisähnliche) • Weitgehend auf frostfreie Gebiete beschränkt, in Mitteleuropa nur Zaunrübe (Bryonia) heimisch • Typischerweise Fruchtgemüse, aber viele †Cucurbitaciphyllum Arten auch anderweitig genutzt (vor allem lobatum, Blatt [M14] Samen, bei einigen Blätter und Sprosse) • Meist einjährige Kletterpflanzen mit gelappten Blättern, hohlen Sprossen, und spiraligen Ranken • 5zählige Blüten • Panzerbeeren (Pepos) Cucurbita pepo, männliche Blüten • Oft signifikanter Gehalt an giftigen Bitterstoffen [WP] in den meisten Pflanzenteilen • Insektenbestäubung (Bienen, Hummeln, Käfer) • Dunkelkeimer, Keimtemperatur hoch • Samen meist sehr lange lebensfähig (bis zu 10 Jahren und mehr) • In der Regel extreme Starkzehrer Cucumis sativus, unreife
    [Show full text]
  • Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models
    Plant Genetics and Genomics: Crops and Models 20 Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models Volume 20 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 Rebecca Grumet • Nurit Katzir • Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Editors Rebecca Grumet Nurit Katzir Michigan State University Agricultural Research Organization East Lansing, Michigan Newe Ya’ar Research Center USA Ramat Yishay Israel Jordi Garcia-Mas Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Bellaterra, Barcelona Spain ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49330-5 ISBN 978-3-319-49332-9 (eBook) DOI 10.1007/978-3-319-49332-9 Library of Congress Control Number: 2017950169 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • (Kharif) 2018-19
    1 Table of Contents Table of Contents .......................................................................................................................................... 2 1. MUSKMELON (Cucumis melo L.) ............................................................................................................... 3 2. CHILLIES (Capsicum annuum L.) ................................................................................................................ 7 3. SWEET PEPPER (Capsicum annuum L.) ................................................................................................... 10 4. CUCUMBER (Cucumis sativus L.) ............................................................................................................ 11 5. BITTER GOURD (Momordica charantia L.) .............................................................................................. 16 6. OKRA (Abelmoschus esculentus L.) ......................................................................................................... 19 7. WATER MELON (Citrullus lanatus Mansf.) .............................................................................................. 21 8. BOTTLE GOURD (Lagenaria siceraria L.) .................................................................................................. 26 9. BRINJAL (Solanum melongena L.) ........................................................................................................... 28 10. SPONGE GOURD (Luffa cylindrica L.) ...................................................................................................
    [Show full text]
  • Pharmacological Activities of Coccinia Grandis: Review
    Journal of Applied Pharmaceutical Science Vol. 3 (05), pp. 114-119, May, 2013 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2013.3522 ISSN 2231-3354 Pharmacological Activities of Coccinia Grandis: Review Pekamwar S. S*, Kalyankar T.M., and Kokate S.S. School of Pharmacy, Swami Ramanand Teerth Marathwada University, Nanded-431606, Maharashtra, India. ARTICLE INFO ABSTRACT Article history: Received on: 06/03/2013 Many traditional medicines in use are obtained from medicinal plants, minerals and organic matter. During the Revised on: 16/04/2013 past several years, there has been increasing interest among the uses of various medicinal plants from the Accepted on: 14/05/2013 traditional system of medicine for the treatment of different ailments. Coccinia grandis has been used in traditional medicine as a household remedy for various diseases. The whole plant of Coccinia grandis having Available online: 30/05/2013 pharmacological activities like analgesic, antipyretic, anti-inflammatory, antimicrobial, antiulcer, antidiabetic, antioxidant, hypoglycemic, hepatoprotective, antimalarial, antidyslipidemic, anticancer, antitussive, mutagenic. Key words: The present review gives botany, chemical constituents and pharmacological activities of coccinia grandis. Coccinia grandis, cucurbitaceous, pharmacological activities. INTRODUCTION Aulacophora spp., that attack several commercially important species of the Cucurbitaceous (Bamba et al., 2009). Chemical and A vast majority of the population, particularly those mechanical methods of control proved to be unproductive, living in rural areas depends largely on medicinal plants for uneconomical, unacceptable, and unsustainable ( Muniappan et al., treatment of diseases. There are about 7000 plant species found in 2009). India. The WHO estimates that about 80% of the population living in the developing countries rely almost on traditional medicine for BOTANY their primary health care needs.
    [Show full text]
  • Effect of Growth Regulators on Fruit Characters and Seediness in Ivy Gourd (Coccinia Grandis L) M
    Agric. Sci. Digest, 26 (3) : 188 - 190, 2006 EFFECT OF GROWTH REGULATORS ON FRUIT CHARACTERS AND SEEDINESS IN IVY GOURD (COCCINIA GRANDIS L) M. Prabhu and S. Natarajan Department of Vegetable Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore - 641 003, India ABSTRACT Field experiment was conducted on Ivy gourd (Coccinia grandis L) during kharif 2003, to study the effect of different growth regulators viz., GA, NAA and 2, 4, D on fruit characters and seediness. The results showed significant differences and the longest fruit (5.95 cm) was obtained with GA3 100 ppm, followed by NAA 400 ppm and all other treatments were superior to control (5.00cm). Among the different treatments, GA3 100 ppm and 2, 4, D 100 ppm were found to be more effective on fruit girth, which recorded 5.71 and 5.70 cm respectively. GA3100 ppm (13.25 g) and GA3200 ppm (12.75 g) gave significantly superior individual fruit weight over control (8.03g).Among the treatments, GA3 100 ppm (1.72 g) and NAA 400 ppm (1.73 g) produced lesser amount of seeds and gave better individual fruit weight. Ivy gourd (Coccinia grandis L) is a Crops, TNAU, Coimbatore during kharif minor but a highly nutritious vegetable grown season of 2003 in ivy gourd in randomised in the tropics for its edible fruits. Coccinia is block design with three replications. The widely grown in the Eastern, Western and treatments included were GA3 @ 50 ppm (T1), Southern states of India (Nath, 1976). Besides 100 ppm (T2), 200 ppm (T3), NAA @ 100 culinary uses, its use in Siddha and ayurvedic ppm (T4), 200 ppm (T5), 300 ppm (T6), 400 systems to cure diabetes is well known.
    [Show full text]
  • Friday 28 March 2014 Issued By
    Friday 28th March 2014 th st (For the period 28 March to 1 April 2014) Issued by National Agrometeorological Advisory Service Centre, Agricultural Meteorology Division, India Meteorological Department, Shivajinagar, Pune. Standardised Precipitation Index Four Weekly for the Period 27th February to 26th March 2014 Extremely wet/severely wet conditions experienced over most parts of Uttar Pradesh, Madhya Pradesh, Maharashtra, some parts of Andhra Pradesh, Rajasthan; Karnataka; Koraput, Nawarangpur, Rayagada districts of Odisha, Monghyr, Patna, Rohtas districts of Bihar, Udhamsinghnagar district in Uttarakhand, Gurgaon, Faridabad, Rewari, Chandigarh, Bhatinda in Punjab & Haryana; Reasi, Pulwama districts in Jammu & Kashmir; Dangs, Narmada, Navsari, Junagarh, Porbhandar, Diu districts in Gujarat & Saurashtra & Kutch; Bilaspur in Himachal Pradesh, Durg, Janjgir, Koriya, Raipur, Surguja districts in Chattisgarh. Moderately/ severely dry conditions experienced over East Siang, Papumpara districts of Arunachal Pradesh, Lakimpur, Sibsagar, Karimganj, Sonitpur, Bongaigaon, Tinsukia, Kamrup Metro districts of Assam and South Tripura district of Tripura. Extremely dry conditions experienced over Changlang, East Kameng, Lohit, West Kameng districts in Arunachal Pradesh, Dibrugarh, Jorhat, Morigaon, Golaghat districts of Assam, Ladakh(Leh), Poonch districts of Jammu & Kashmir. Rest of the country experienced mild wet/dry conditions. Contour maps for Mean Maximum and Minimum Temperature and their anomaly for the week ending on 26.03.2014 Actual Mean Maximum Temperature (oC) in India for the Mean Maximum Temperature (oC) Anomaly in India for week ending 26.03.2014 the week ending 26.03.2014 32 to 400C over all parts of country except many parts of 0 to 20C over many parts of Himachal Pradesh, Haryana, Jammu & Kashmir, Himachal Pradesh, Uttarakhand, Delhi, Rajasthan, Saurashtra & Kutch, North East India, Punjab, Haryana, Delhi, North West Uttar Pradesh, Sub- Coastal Andhra Pradesh, Raylaseema, Tamil Nadu, Kerala.
    [Show full text]
  • IVY GOURD: NUTRITION and PHARMALOGICAL VALUES Satbir Singh Saini
    www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 4 April 2021 | ISSN: 2320-2882 IVY GOURD: NUTRITION AND PHARMALOGICAL VALUES Satbir singh saini Department of food science & nutrition Lovely Professional University- 144411 Abstract Ivy Gourd, Coccinia grandis (L), also known as little gourd or baby watermelon plant, that is a member of the family of Cucurmbitaceae. It is one of the most beneficial medicinal herbs in traditional and ayurvedic medicine. The fruits of Coccinia Grandis are recognized to have active constituents similar to amyran, lupeol, taraxerone, taxerol and glycoside cucurbitacan B. The subsistence of secondary metabolites like alkaloids, flavonoids, saponins, glycosides etc. in the plant may give to their medicinal value. The tender green fruits are nutritious and are a good source of calcium, protein, calcium, fiber and beta carotene, Vitamin-A. It has been used in traditional medicine as a domestic remedy for a variety of diseases. The entire plant of Coccinia grandis having pharmacological actions such as analgesic, antipyretic, anti- inflammatory, antimicrobial, antiulcer, antidiabetic, antioxidant, hypoglycemic, hepatoprotective, antimalarial, antidyslipidemic, anticancer, antitussive, mutagenic. Therefore, the final note emphasizes this plant broadly being used for treatment of diabetes, jaundice, hypertension, fever and gastrointestinal exertion and to relieve pain. The Coccinia grandis has good likely of medicinal values and chemical constituents. Keywords: Ivy gourd, pharmalogical activities, Coccinia grandis, antidiabetic I. Introduction Ivy gourd also known as Coccinia grandis is a member of Cucurmbitaceae family in the order Violales. The coccinia grandis (L) voigt family comprises more than 900 species. It is also known as baby melon or little gourd or sometimes tam lueng.
    [Show full text]
  • TWUMAS 2I.Pdf
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY (KNUST) – KUMASI, GHANA COLLEGE OF AGRICULTURE AND NATURAL RESOURCES FACULTY OF AGRICULTURE DEPARTMENT OF HORTICULTURE EFFECT OF MOUNDING, STAKING AND FREQUENCY OF WEEDING ON GROWTH, YIELD AND QUALITY OF TINDA (Praecitrullus fistulosus) A THESIS SUBMITTED TO THE SCHOOL OF RESEARCH AND GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF A MASTER OF SCIENCE (OLERICULTURE) DEGREE JOSEPH TWUMASI JULY, 2009 UNIVERSITY OF SCIENCE AND TECHNOLOGY; KUMASI FACULTY OF AGRICULTURE DEPARTMENT OF HORTICULTURE EFFECT OF MOUNDING, STAKING AND FREQUENCY OF WEEDING ON GROWTH, YIELD AND QUALITY OF TINDA (Praecitrullus fistulosus) JOSEPH TWUMASI JULY, 2009 DECLARATION I hereby declare that this submission is my own work towards the MSc (Olericulture) degree and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the awarded of any other degree of the University, except where due acknowledgement has been made in the text. Twumasi Joseph ………………………… ……………………… Student ID: 20034378 Signature Date Certified by: Prof. P.Y Boateng ………………………… ……………………… (SUPERVISOR) Signature Date Certified by: Mr. P.Y. Adjei ……………………….. ……………………… (HEAD OF DEPARTMENT) Signature Date i DEDICATION This thesis is dedicated to my lovely daughter, Josephine Dankwaa Twumasi and my dear wife; Mrs. Theresah Marfo Twumasi, my inspirer. ii ACKNOWLEDGEMENTS I wish to express my deepest appreciation to Prof P. Y. Boateng, my project supervisor for his patience, constructive criticisms, suggestions and guidance during the experimental period and write up of the thesis. Special thanks to all lecturers at the Department of Horticulture, KNUST, for their contributions towards the successful completion of this work.
    [Show full text]
  • Effect of Organic Manures and Inorganic Fertilizers on Growth Parameters in Tinda (Praecitrullus Fistulosus)
    International Journal of Agricultural Sciences DOI:10.15740/HAS/IJAS/13.1/43-45 Volume 13 | Issue 1 | January, 2017 | 43-45 e ISSN–0976–5670 Visit us : www.researchjournal.co.in RESEARCH PAPER Effect of organic manures and inorganic fertilizers on growth parameters in Tinda (Praecitrullus fistulosus) V.U. NATCHATHRA*, S. ANUJA AND K.HARIPRIYA Department of Horticulture, Faculty of Agriculture, Annamalai University, ANNAMALAINAGAR (T.N.) INDIA Abstract : A field experiment was conducted to study the effect of organic manures and inorganic fertilizers on growth parameters in Tinda. There were 13 treatments comprised of organic manures viz., FYM (25 t ha-1), vermicompost (2.5 t ha-1), neemcake (1000 kg ha-1), Azospirillum and Phosphobacteria (2 kg ha-1) along with recommended dose of inorganic fertilizers @ 50:20:20kg NPK ha-1. The experiment was laid out in a Randomized Block Design with three replications. The study revealed that 75 per cent of NPK along with vermicompost @ 2.5 t ha-1 combined with Azospirillum and Phosphobacteria @ 2 kg ha-1 recorded the highest vine length (207.22cm), number of laterals (18.96) and leaf area (110.86 cm2). Key Words : Tinda, Vermicompost, Azospirillum, Phosphobacteria, NPK, Growth View Point Article : Natchathra, V. U., Anuja, S. and Haripriya, K. (2017). Effect of organic manures and inorganic fertilizers on growth parameters in Tinda (Praecitrullus fistulosus). Internat. J. agric. Sci., 13 (1) : 43-45, DOI:10.15740/HAS/IJAS/13.1/43-45. Article History : Received : 02.08.2016; Revised : 03.11.2016; Accepted : 08.12.2016 INTRODUCTION importance as sources of plant nutrients enhancing the yield in vegetable crops.
    [Show full text]
  • Mashaer Goda
    International Master Programme at the Swedish Biodiversity Centre Master theses No. 35 Uppsala 2007 ISSN: 1653-834X Diversity of local genetic resources of watermelon Citrullus lanatus (Thunb.) Matsum and Nakai, in Sudan Mashaer Goda Supervisors Jens Weibull El Tahir Ibrahim MASTER SERIES THESES MASTER SERIES THESES MASTER SERIES THESES MASTER SERIES THESES CBM CBM CBM CBM Mashaer Goda /Diversity of watermelon genetic resources in Sudan Abstract Morphological and molecular characterization were carried out in this study to estimate genetic diversity within the genus Citrullus collected from Sudan, with assistance of passport data to examine if the site of collection has any effect on the diversity of the species. Number of 30 accessions was chosen for this study. These accessions were collected from six different regions of the country representing North, West and Central Sudan. The experiment was carried out in the field of the Agricultural Research and Technology Corporation (ARTC) in Sudan. A descriptor list locally developed by the Plant Genetic Resources (PGR) unit of the (ARTC) was used for morphological characterization. Morphological data approved high variability for fruit and seed characters and referred to characters which may be considered valuable for plant breeders. The cluster obtained from morphological characterization separates the studied accession into four different morphotypes. Accessions from the western part of the country grouped together regardless of the specific site of collection inside the western region. SSR markers and RAPD markers were used for molecular characterization. The cluster obtained from molecular characterization separates the accessions into four groups with 71% similarity coefficient. Some of the accessions were appear to have high level of similarity which may facilitate findings of duplication.
    [Show full text]