Characterization of Nuciferine Metabolism by P450 Enzymes and Uridine Diphosphate Glucuronosyltransferases in Liver Microsomes from Humans and Animals

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Nuciferine Metabolism by P450 Enzymes and Uridine Diphosphate Glucuronosyltransferases in Liver Microsomes from Humans and Animals Acta Pharmacologica Sinica (2010) 31: 1635–1642 npg © 2010 CPS and SIMM All rights reserved 1671-4083/10 $32.00 www.nature.com/aps Original Article Characterization of nuciferine metabolism by P450 enzymes and uridine diphosphate glucuronosyltransferases in liver microsomes from humans and animals Yan-liu LU1, Yu-qi HE2, Miao WANG1, Li ZHANG1, Li YANG2, Zheng-tao WANG2, Guang JI1, * 1Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; 2Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China Aim: To characterize the metabolism of nuciferine by P450 enzymes and uridine diphosphate glucuronosyltransferase (UGT) in liver microsomes from humans and several other animals including rats, mice, dogs, rabbits and monkeys. Methods: Nuciferine was incubated with both human and animal liver microsomal fractions containing P450 or UGT reaction compo- nents. Ultra performance liquid chromatography coupled with mass spectrometry was used to separate and identify nuciferine meta- bolites. Chemical inhibition was used to identify the involved isozymes. Species difference of nuciferine metabolism in human and various animals were investigated in the liver microsomal incubation system. Results: Among the nuciferine metabolites detected and identified, seven were catalyzed by P450 and one by UGT. Ketoconazole inhi- bited the formation of M292, M294 and M312. Furafylline, 8-methoxypsoralen and quercetin inhibited the formation of M282. Heco- genin showed a significant inhibitory effect on nuciferine glucuronidation. While the P450-catalyzed metabolites showed no species differences, the glucuronidation product was only detected in microsomes from humans and rabbits. Conclusion: The isozymes UGT 1A4, CYP 3A4, 1A2, 2A6 and 2C8 participated in the hepatic metabolism of nuciferine. Based on the observed species-specific hepatic metabolism of nuciferine, rats, mice, dogs and even monkeys are not suitable models for the phar- macokinetics of nuciferine in humans. Keywords: nuciferine; metabolism; cytochrome P450; UGT; species differences; rats; mice; rabbits; monkeys; human Acta Pharmacologica Sinica (2010) 31: 1635–1642; doi: 10.1038/aps.2010.172 Introduction of the known phase I metabolism of drugs[5] and, as such, are Lotus is a common plant that grows worldwide. This plant among the most important drug-metabolizing enzymes. In has long been used as an herb in traditional Chinese medi- recent years, there has been increased interest in in vitro metab- cine[1]. In recent years, significant pharmacological activities olism studies involving P450 enzymes during preclinical drug have been observed for lotus, which displays beneficial effects development[6–8] in order to identify drugs with undesirable on hyperlipidemia[2], obesity[3], arrhythmia[4] and atherosclero- metabolites and to prevent failure in clinical trials. In addi- sis [2]. Most of the beneficial effects have been attributed to the tion to CYP enzymes, UDP-glucuronosyltransferases (UGTs) main constituent of lotus, the aporphine alkaloid nuciferine[4]. participate in nearly half of the known phase II metabolism of Given its salutary effects, nuciferine is a promising drug the top 200 prescribed drugs in the United States[9]. Thus, like candidate. However, the metabolism and in vivo kinetics of CYPs, UGTs are important drug-metabolizing enzymes. nuciferine have not been investigated until now. In the present study, both P450- and UGT-mediated metabo- Cytochrome P450 (CYP) enzymes participate in 70%–80% lism of nuciferine were investigated in order to learn the general structure of the metabolites, to identify the isozymes * To whom correspondence should be addressed. involved in nuciferine metabolism and to examine the spe- E-mail [email protected] cies differences in nuciferine metabolism in humans and other Received 2010-03-04 Accepted 2010-09-13 commonly used experimental animals. npg www.nature.com/aps Lu YL et al 1636 Materials and methods lows: 296 to 235 for nuciferine; 294 to 248 and 294 to 279 for Chemicals and materials M294-1 and M294-2, respectively; 292 to 246 for M292; 282 to Nuciferine, glucose-6-phosphate (G-6-P), G-6-P dehydro- 191 and 282 to 250 for M282-1 and M282-2, respectively; 312 to genase, alamethicin, uridine diphosphate glucuronic acid, 250 and 312 to 248 for M312-1 and M312-2, respectively; 472 to β-nicotinamide-adenine dinucleotide phosphate (NADP), 265 for M472. sulfaphenazole, quinidine, clomethiazole, furafylline, 8-meth- Another alkaloid, senecionine, was used as the internal oxypsoralen, hecogenin, fluconazole, androsterone and phe- standard, which was also detected in MRM mode with ion nylbutazone were purchased from Sigma-Aldrich (St Louis, transition of 336 to 138. The accuracy for determination of MO, USA). Ketoconazole and S-mephenytoin were obtained nuciferine was more than 90% and less than 105%. The preci- from ICN Biomedicals Inc (Aurora, OH, USA) and Toronto sion for determination of nuciferine and metabolites was mea- Research Chemicals Inc (North York, Canada), respectively. sured, and the residual standard deviation (RSD) values were Pooled human liver microsomes (HLM) were prepared using less than 15%. tissue from 13 Chinese donors and stored in phosphate buffer (100 mmol/L, pH 7.4). Except the pooled HLM, 6 HLM sam- Microsomal incubation system for P450-mediated metabolism ples (male) and male cynomolgus monkey liver microsomes A standard incubation system for P450-mediated metabo- were purchased from Rild Research Institute for Liver Dis- lism (System P450) included HLM (0.5 g/L, 10 µL), G-6-P eases (Shanghai, China). Experiments involving human sub- (1 mmol/L, 20 µL), G-6-P dehydrogenase (1 unit/mL, 20 jects were approved by the local governmental ethics authori- µL), phosphate buffer (100 mmol/L, pH 7.4, 108 µL), MgCl2 ties and were pursuant to the Helsinki Declaration. All other (4 mmol/L, 20 µL), and nuciferine (200 μmol/L, 2 µL). reagents were of HPLC grade or the highest grade commer- Nuciferine was dissolved in methanol; all other reagents were cially available. dissolved in phosphate buffer. The total volume of the incuba- tion system was 200 μL, and the total organic volume was less Preparation of liver microsomes than 1% of the system. The reaction was initiated by adding Livers from rats (Sprague-Dawley, male, n=6), mice (Swiss, NADP (1 mmol/L, 20 µL). After incubation for 60 min, 200 male, n=6), rabbits (New Zealand white, male, n=6) and dogs μL of acetonitrile was added to stop the reaction. The stopped (Beagle, male, n=6) were obtained from healthy animals at the incubation system was centrifuged for 10 min at 20 000 g Experimental Animal Center of Shanghai University of Tradi- (4 °C) and a 2-µL aliquot of the supernatant was analyzed as tional Chinese Medicine (SUTCM, Shanghai, China). The use described above. of livers in the present study was approved by the ethics com- mittee of SUTCM. Liver samples were pooled by species and Microsomal incubation system for UGT-mediated metabolism stored in liquid nitrogen immediately after being harvested. A standard incubation system for UGT-mediated metabo- Microsomes were prepared from pooled frozen liver tissue lism (system UGT) with a total volume of 200 µL contained by differential ultracentrifugation as described previously[10]. HLM (0.5 g/L, 10 µL), alamethicin (25 µg/mg protein, 10 µL), Protein concentration was determined using bovine serum UDPGA (5 mmol/L, 20 µL), MgCl2 (4 mmol/L, 20 µL), Tris- albumin as reference[11]. Liver microsomes were diluted to 10 HCl buffer (50 mmol/L, pH 7.4) and nuciferine (200 μmol/L, mg/mL and stored at -80 °C. 2 µL). Reactions were started by adding UDPGA at 37 °C and stopped after 60 min by adding ice-cold 10% trichloroacetic Parameters for chromatography and mass spectrometry acid (200 µL). After stopping the reaction, the incubation mix- An ultra performance liquid chromatography (UPLC) system ture was centrifuged for 10 min at 20 000 g (4 oC). Aliquots of coupled with triple quadrupole mass spectrometry (Acquity- the supernatant were subsequently analyzed. Premier, Waters, Milford, MA) and an electrospray ionization (ESI) source was used in the present study. A Waters bridged Identification of metabolites ethyl hybrid (BEH) C18 (50×2.1 mm, 1.7 μm) column was used Three experimental groups were used in the present study for separation. Acetonitrile and formic acid solution (0.1% to identify P450-catalyzed nuciferine metabolites: a reaction in water) were used as mobile phase components A and B, group, which included nuciferine, HLM, NADP and the other respectively. The mobile phase elution gradient was as fol- components described above; a negative control group, which lows: 0 to 0.5 min, 5% A; 0.5 to 1.5 min, 5% to 50% A; 1.5 to 3 included nuciferine and the other reaction components except min, 50% to 80% A; 3 to 4 min, 80% to 95% of A. The mobile- NADP (which was replaced by phosphate buffer); and a phase flow rate was 0.3 mL/min. blank group, which included all reaction components without The positive ion monitor mode was adopted, and mass nuciferine (but with the appropriate volume of methanol). parameters for UPLC-MS were set as follows: capillary volt- Similarly, three experimental groups were used in the pres- age, 3.2 kV; cone voltage, 40 V; extractor voltage, 1.59 V; ent study to identify glucuronidated nuciferine metabolites: source and desolvation temperatures, 100 and 350
Recommended publications
  • Psychoactive Plants Used in Designer Drugs As a Threat to Public Health
    From Botanical to Medical Research Vol. 61 No. 2 2015 DOI: 10.1515/hepo-2015-0017 REVIEW PAPER Psychoactive plants used in designer drugs as a threat to public health AGNIESZKA RONDZISTy1, KAROLINA DZIEKAN2*, ALEKSANDRA KOWALSKA2 1Department of Humanities in Medicine Pomeranian Medical University Chłapowskiego 11 70-103 Szczecin, Poland 2Department of Stem Cells and Regenerative Medicine Institute of Natural Fibers and Medicinal Plants Kolejowa 2 62-064 Plewiska, Poland *corresponding author: e-mail: [email protected] Summary Based on epidemiologic surveys conducted in 2007–2013, an increase in the consumption of psychoactive substances has been observed. This growth is noticeable in Europe and in Poland. With the ‘designer drugs’ launch on the market, which ingredients were not placed on the list of controlled substances in the Misuse of Drugs Act, a rise in the number and diversity of psychoactive agents and mixtures was noticed, used to achieve a different state of mind. Thus, the threat to the health and lives of people who use them has grown. In this paper, the authors describe the phenomenon of the use of plant psychoactive sub- stances, paying attention to young people who experiment with new narcotics. This article also discusses the mode of action and side effects of plant materials proscribed under the Misuse of Drugs Act in Poland. key words: designer drugs, plant materials, drugs, adolescents INTRODUCTION Anthropological studies concerning preliterate societies have shown that psy- choactive substances have been used for ages. On the individual level, they help to Herba Pol 2015; 61(2): 73-86 A. Rondzisty, K.
    [Show full text]
  • Clinical Biochemistry of Hepatotoxicity
    linica f C l To o x l ic a o n r l o u g Singh, J Clinic Toxicol 2011, S:4 o y J Journal of Clinical Toxicology DOI: 10.4172/2161-0495.S4-001 ISSN: 2161-0495 ReviewResearch Article Article OpenOpen Access Access Clinical Biochemistry of Hepatotoxicity Anita Singh1, Tej K Bhat2 and Om P Sharma2* 1CSK Himachal Pradesh, Krishi Vishva Vidyalaya, Palampur (HP) 176 062, India 2Biochemistry Laboratory, Indian Veterinary Research Institute, Regional Station, Palampur (HP) 176 061, India Abstract Liver plays a central role in the metabolism and excretion of xenobiotics which makes it highly susceptible to their adverse and toxic effects. Liver injury caused by various toxic chemicals or their reactive metabolites [hepatotoxicants) is known as hepatotoxicity. The present review describes the biotransformation of hepatotoxicants and various models used to study hepatotoxicity. It provides an overview of pathological and biochemical mechanism involved during hepatotoxicity together with alteration of clinical biochemistry during liver injury. The review has been supported by a list of important hepatotoxicants as well as common hepatoprotective herbs. Keywords: Hepatotoxicity; Hepatotoxicant; In Vivo models; In Vitro production of bile thus leading to the body’s inability to flush out the models; Pathology; Alanine aminotransferase; Alkaline phosphatase; chemicals through waste. Smooth endoplasmic reticulum of the liver is Bilirubin; Hepatoprotective the principal ‘metabolic clearing house’ for both endogenous chemicals like cholesterol, steroid hormones, fatty acids and proteins, and Introduction exogenous substances like drugs and alcohol. The central role played by liver in the clearance and transformation of chemicals exposes it to Hepatotoxicity refers to liver dysfunction or liver damage that is toxic injury [4].
    [Show full text]
  • Hepatic Veno-Occlusive Disease As a Result of a Traditional Remedy: Confirmation of Toxic Pyrrolizidine Alkaloids As the Cause
    676 ORIGINAL ARTICLE J Clin Pathol: first published as 10.1136/jcp.55.9.676 on 1 September 2002. Downloaded from Hepatic veno-occlusive disease as a result of a traditional remedy: confirmation of toxic pyrrolizidine alkaloids as the cause, using an in vitro technique M Zuckerman, V Steenkamp, M J Stewart ............................................................................................................................. J Clin Pathol 2002;55:676–679 See end of article for Background/Aims: A child presented with hepatic veno-occlusive disease after having been adminis- authors’ affiliations tered a short course of treatment with a traditional herbal remedy. The child subsequently died. Post- ....................... mortem liver histology confirmed the diagnosis. This study aimed to investigate the hypothesis that the Correspondence to: herbal remedy was the cause of veno-occlusive disease. Dr M J Stewart, Department Methods: Extracts of the traditional remedy were analysed by colorimetry and gas chromatography/ of Chemical Pathology, mass spectrometry. Cultured hepatocytes were treated with an extract of the plant material and exam- University of the ined for morphological changes. Witwatersrand Medical Results: The screening analyses indicated the presence of toxic pyrrolizidine alkaloids, which were School, 7 York Road, Parktown 2193, Gauteng, later confirmed by gas chromatography/mass spectrometry. The cell studies indicated dose related South Africa; toxicity, with necrosis at high concentrations and apoptosis and abnormalities of the cytoskeleton at [email protected] lower concentrations. Accepted for publication 5 Conclusions: The simple screening techniques used allowed rapid confirmation of the presence of September 2001 toxic pyrrolizidines in the remedy. The in vitro method confirmed the toxicity of herbal extracts to hepa- ......................
    [Show full text]
  • Effect of Wine and Vinegar Processing of Rhizoma Corydalis on the Tissue Distribution of Tetrahydropalmatine, Protopine and Dehydrocorydaline in Rats
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 1-18-2012 Effect of wine and vinegar processing of Rhizoma Corydalis on the tissue distribution of tetrahydropalmatine, protopine and dehydrocorydaline in rats Zhiying Dou Tianjin University of Traditional Chinese Medicine Kefeng Li Michigan Technological University Ping Wang Tianjin University of Traditional Chinese Medicine Liu Cao Tianjin University of Traditional Chinese Medicine Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Biology Commons Recommended Citation Dou, Z., Li, K., Wang, P., & Cao, L. (2012). Effect of wine and vinegar processing of Rhizoma Corydalis on the tissue distribution of tetrahydropalmatine, protopine and dehydrocorydaline in rats. Molecules, 17(1), 951-970. http://doi.org/10.3390/molecules17010951 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1969 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Biology Commons Molecules 2012, 17, 951-970; doi:10.3390/molecules17010951 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Effect of Wine and Vinegar Processing of Rhizoma Corydalis on the Tissue Distribution of Tetrahydropalmatine, Protopine and Dehydrocorydaline in Rats Zhiying Dou 1,*, Kefeng Li 2, Ping Wang 1 and Liu Cao 1 1 College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China 2 Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-22-5959-6235. Received: 29 November 2011; in revised form: 5 January 2012 / Accepted: 9 January 2012 / Published: 18 January 2012 Abstract: Vinegar and wine processing of medicinal plants are two traditional pharmaceutical techniques which have been used for thousands of years in China.
    [Show full text]
  • Soma and Haoma: Ayahuasca Analogues from the Late Bronze Age
    ORIGINAL ARTICLE Journal of Psychedelic Studies 3(2), pp. 104–116 (2019) DOI: 10.1556/2054.2019.013 First published online July 25, 2019 Soma and Haoma: Ayahuasca analogues from the Late Bronze Age MATTHEW CLARK* School of Oriental and African Studies (SOAS), Department of Languages, Cultures and Linguistics, University of London, London, UK (Received: October 19, 2018; accepted: March 14, 2019) In this article, the origins of the cult of the ritual drink known as soma/haoma are explored. Various shortcomings of the main botanical candidates that have so far been proposed for this so-called “nectar of immortality” are assessed. Attention is brought to a variety of plants identified as soma/haoma in ancient Asian literature. Some of these plants are included in complex formulas and are sources of dimethyl tryptamine, monoamine oxidase inhibitors, and other psychedelic substances. It is suggested that through trial and error the same kinds of formulas that are used to make ayahuasca in South America were developed in antiquity in Central Asia and that the knowledge of the psychoactive properties of certain plants spreads through migrants from Central Asia to Persia and India. This article summarizes the main arguments for the botanical identity of soma/haoma, which is presented in my book, The Tawny One: Soma, Haoma and Ayahuasca (Muswell Hill Press, London/New York). However, in this article, all the topics dealt with in that publication, such as the possible ingredients of the potion used in Greek mystery rites, an extensive discussion of cannabis, or criteria that we might use to demarcate non-ordinary states of consciousness, have not been elaborated.
    [Show full text]
  • Review Article Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 238482, 26 pages http://dx.doi.org/10.1155/2015/238482 Review Article Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development Charu Sharma,1 Bassem Sadek,2 Sameer N. Goyal,3 Satyesh Sinha,4 Mohammad Amjad Kamal,5,6 and Shreesh Ojha2 1 Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE 2Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE 3DepartmentofPharmacology,R.C.PatelInstituteofPharmaceuticalEducation&Research,Shirpur,Mahrastra425405,India 4Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA 5King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia 6Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia Correspondence should be addressed to Shreesh Ojha; [email protected] Received 24 April 2015; Accepted 24 August 2015 Academic Editor: Ki-Wan Oh Copyright © 2015 Charu Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are 9 numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ - tetrahydrocannabinol mediates its action through CB1/CB2 receptors.
    [Show full text]
  • A Systematic Review on Main Chemical Constituents of Papaver Bracteatum
    Journal of Medicinal Plants A Systematic Review on Main Chemical Constituents of Papaver bracteatum Soleymankhani M (Ph.D. student), Khalighi-Sigaroodi F (Ph.D.)*, Hajiaghaee R (Ph.D.), Naghdi Badi H (Ph.D.), Mehrafarin A (Ph.D.), Ghorbani Nohooji M (Ph.D.) Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O.Box: 33651/66571, Karaj, Iran Tel: +98 - 26 - 34764010-9, Fax: +98 - 26-34764021 E-mail: [email protected] Received: 17 April 2013 Accepted: 12 Oct. 2014 Abstract Papaver bracteatum Lindly (Papaveraceae) is an endemic species of Iran which has economic importance in drug industries. The main alkaloid of the plant is thebaine which is used as a precursor of the semi-synthetic and synthetic compounds including codeine and naloxone, respectively. This systematic review focuses on main component of Papaver bracteatum and methods used to determine thebaine. All studies which assessed the potential effect of the whole plant or its extract on clinical or preclinical studies were reviewed. In addition, methods for determination of the main components, especially thebaine, which have been published from 1948 to March 2013, were included. Exclusion criteria were agricultural studies that did not assess. This study has listed alkaloids identified in P. bracteatum which reported since 1948 to 2013. Also, the biological activities of main compounds of Papaver bracteatum including thebaine, isothebaine, (-)-nuciferine have been reviewed. As thebaine has many medicinal and industrial values, determination methods of thebaine in P. bracteatum were summarized. The methods have being used for determination of thebaine include chromatographic (HPLC, GC and TLC) and non chromatographic methods.
    [Show full text]
  • TOX-27: Riddelliine (CASRN 23246-96-0)
    National Toxicology Program Toxicity Report Series Number 27 NTP Technical Report on Toxicity Studies of Riddelliine (CAS No. 23246-96-0) Administered by Gavage to F344/N Rats and B6C3F1 Mice Po C. Chan, PhD, Study Scientist National Toxicology Program Post Office Box 12233 Research Triangle Park, NC 27709 NIH Publication 94-3350 December 1993 United States Department of Health and Human Services Public Health Service National Institutes of Health Note to the Reader The National Toxicology Program (NTP) is made up of four charter agencies of the United States Department of Health and Human Services (DHHS): • the National Cancer Institute (NCI) of the National Institutes of Health; • the National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health; • the National Center for Toxicological Research (NCTR) of the Food and Drug Administration; and • the National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program was transferred from NCI to NIEHS. NTP coordinates the relevant Public Health Service programs, staff, and resources that are concerned with basic and applied research and with biological assay development and validation. NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. To carry out its mission, NTP designs and conducts studies to characterize and evaluate the toxicologic potential of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology studies are chosen primarily on the bases of human exposure, level of production, and chemical structure.
    [Show full text]
  • D. SENECIO SPECIES and RIDDELLIINE 1. Exposure Data
    D. SENECIO SPECIES AND RIDDELLIINE 1. Exposure Data 1.1 Origin, type and botanical data (Molyneux et al., 1991) Senecio riddellii (Asteraceae) (Riddell groundsel) is a grey-white half-shrub, 30–90 cm tall with pinnatifid and relatively hairless leaves, revealing its bright green leaf colour. It has bright yellow flowers on the stems at about the same height above the ground. This gives the plant a flat-topped appearance when in bloom. It produces flowers in late summer to early autumn and dies back to ground level after the first frost. It grows in dry, sandy soils and its roots are long and about as thick as a lead pencil. Senecio longilobus (also known as woolly groundsel and thread-leaf groundsel) is a shrubby, erect, branched, leafy plant, 30–60 cm tall. It has narrowly linear leaves which are thick, white, and occasionally pinnately lobed, up to 10 cm long. The composite yellow flower heads contain numerous clusters. In North America, this is a common plant with a range extending from Colorado to Utah, south to Texas and Mexico (Kingsbury, 1964). 1.2 Use The ‘bush tea’ used in Jamaica to treat children for a cold an a herbal tea that is popular in the south-west USA, gordolobo yerba, may contain riddelliine (Stillman et al., 1977a; Huxtable, 1980; National Toxicology Program, 2002). 1.3 Chemical constituents The plants (ragworts) from which riddelliine and other pyrrolizidine alkaloids are isolated are found in the rangelands of the western USA. Cattle, horses and, less commonly, sheep that ingest these plants can succumb to their toxic effects (called pyrro- lizidine alkaloidosis).
    [Show full text]
  • Download PDF Flyer
    REVIEWS IN PHARMACEUTICAL & BIOMEDICAL ANALYSIS Editors: Constantinos K. Zacharis and Paraskevas D. Tzanavaras eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements.
    [Show full text]
  • In Vitro Biotransformation of Pyrrolizidine Alkaloids in Different Species
    Archives of Toxicology https://doi.org/10.1007/s00204-017-2114-7 TOXICOKINETICS AND METABOLISM In vitro biotransformation of pyrrolizidine alkaloids in different species. Part I: Microsomal degradation Franziska Kolrep1 · Jorge Numata1 · Carsten Kneuer1 · Angelika Preiss‑Weigert1 · Monika Lahrssen‑Wiederholt1 · Dieter Schrenk2 · Anja These1 Received: 20 September 2017 / Accepted: 8 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Pyrrolizidine alkaloids (PA) are secondary metabolites of certain flowering plants. The ingestion of PAs may result in acute and chronic effects in man and livestock with hepatotoxicity, mutagenicity, and carcinogenicity being identified as predominant effects. Several hundred PAs sharing the diol pyrrolizidine as a core structure are formed by plants. Although many congeners may cause adverse effects, differences in the toxic potency have been detected in animal tests. It is generally accepted that PAs themselves are biologically and toxicologically inactive and require metabolic activation. Consequently, a strong relationship between activating metabolism and toxicity can be expected. Concerning PA susceptibility, marked differences between species were reported with a comparatively high susceptibility in horses, while goat and sheep seem to be almost resistant. Therefore, we investigated the in vitro degradation rate of four frequently occurring PAs by liver enzymes present in S9 fractions from human, pig, cow, horse, rat, rabbit, goat, and sheep liver. Unexpectedly, almost no metabolic degradation of any PA was observed for susceptible species such as human, pig, horse, or cow. If the formation of toxic metabolites represents a crucial bioactivation step, the found inverse conversion rates of PAs compared to the known susceptibility require further investigation.
    [Show full text]
  • Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants
    molecules Review Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants Sebastian Schramm, Nikolai Köhler and Wilfried Rozhon * Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany; [email protected] (S.S.); [email protected] (N.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2023 Academic Editor: John C. D’Auria Received: 20 December 2018; Accepted: 29 January 2019; Published: 30 January 2019 Abstract: Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals.
    [Show full text]