Quantification of Fourth Generation Kapton Heat Flux Gauge Calibration Performance
Total Page:16
File Type:pdf, Size:1020Kb
Quantification of Fourth Generation Kapton Heat Flux Gauge Calibration Performance A THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Matthew Paul Hodak B.S. Graduate Program in Mechanical Engineering The Ohio State University 2010 Master’s Examination Committee: Dr. Charles W. Haldeman, Advisor Dr. Michael G. Dunn Copyright by Matthew Paul Hodak 2010 ABSTRACT Double sided Kapton heat flux gauges which are used routinely by the Ohio State University Gas Turbine Laboratory are driven by two main calibrations, the sensors temperature as a function of resistance and the material properties of Kapton. The material properties separate into those that govern the steady-state response of the gauge and those that influence the transient response. The steady-state response, as it forms the key to data processing, will be the topic of this investigation and is based on the thermal conductivity divided by the thickness (k/d). Calibration accuracies for the heat flux gauge sensors reached levels on the order of +-.05 °C and were well within the target accuracy of +- 0.1 °C over a 100 °C calibration range. Time degradation of the gauges did occur and for these cases and a single point calibration method is introduced that maintains the accuracy to ±0.4 °C instead of the ± 3 °C that would have resulted from the resistance shift due to erosion. This method will allow for longer use of the gauges in the turbines. Various calibration methods for k/d were investigated and performed. Of the three methods presented, a hot air method provided the best results of a single value. For 1 mil Kapton k/d was calculated to be between 8520 - 8882, or a k = 0.2164 - 0.2256 W/mK (a 4% variation). Different gauge thicknesses were calibrated using a variety of methods resulting in similar values of thermal conductivity, although each method had different limitations on its accuracy. ii ACKNOWLEDGMENTS My family has been very supportive over the many years, and my collegiate career was no exception. They kept me going. I would like thank my advisor, Dr. Charles Haldeman. I have learned more from him than I can remember. I would also like to thank Dr. Michael Dunn for allowing me to work at the Ohio State Gas Turbine Laboratory. I am very appreciative to have had the opportunity to learn and grow as an engineering student at the OSU Gas Turbine Laboratory. My work would not have been possible without all the support staff, so I would like to recognize Dr. Randall Mathison, Jeff Barton, Ken Copley, Ken Fout, Dr. Igor Ilyin, Dr. Corso Padova and Cathy Mitchell. I would not have made it far without them. I was happy to have the opportunity to work with all the other graduate students of the GTL including Sam Kheniser, Mark Wishart, Mike Boehler, Matt Smith, Shanon Davis, and Mitch Parsons. iii VITA 1985................................................................Born, Toledo OH 2004................................................................Maumee Valley Country Day 2008................................................................B.S. Mechanical Engineering, Miami University 2009-Present ..................................................Graduate Research Assistant, OSU Gas Turbine Lab FIELDS OF STUDY Major Field: Mechanical Engineering iv TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii Acknowledgments.............................................................................................................. iii VITA .................................................................................................................................. iv List of Figures .................................................................................................................. viii List of Tables ..................................................................................................................... xi Nomenclature and Abbreviations ..................................................................................... xii Chapter 1 Introduction .........................................................................................................1 1.1 Measuring Heat Flux..................................................................................................2 1.2 Double Sided Kapton Heat Flux Gauges ...................................................................5 1.2.1 The Thin Film Sensors ........................................................................................5 1.2.2 The Kapton Substrate .........................................................................................8 1.2.3 k/d Calibration Techniques .................................................................................9 1.3 Objectives of this Work ...........................................................................................11 Chapter 2 Calibration of Sensors .......................................................................................13 2.1 Experimental Setup ..................................................................................................13 2.1.1 Oil Bath .............................................................................................................15 2.1.2 Oven ..................................................................................................................15 2.1.3 Comparison of Methods ....................................................................................18 2.2 Linear vs. Quadratic Fits ..........................................................................................20 v 2.3 Shift in Ro ................................................................................................................23 2.3.1 1 Mil Stainless Steel Plate .................................................................................24 2.3.2 5 mil Copper Plate ............................................................................................27 2.4 Correction of Shift ...................................................................................................30 2.4.1 1 mil Stainless Steel Plate .................................................................................32 2.4.2 5 mil Copper Plate ............................................................................................34 Chapter 3 K/d Calibration Techniques ..............................................................................38 3.1 Amp A/D Calibrations .............................................................................................40 3.2 k/d Calibration Methods Considered .......................................................................43 3.3 Oil Bath ....................................................................................................................44 3.3.1 Estimating Q .....................................................................................................44 3.3.2 Variation in k/d Oil Bath ...................................................................................47 3.4 Kapton Heater ..........................................................................................................49 3.4.1 Kapton Heater Difficulties ................................................................................49 3.4.2 Kapton Heater Initial Setup ..............................................................................50 3.4.3 Kapton Heater Final Setup ................................................................................51 3.4.4 Kapton Heater Initial Results ............................................................................52 3.4.5 Estimating Heater Effeciency ...........................................................................55 3.4.6 Variation in k/d Heater Test ..............................................................................58 3.5 Hot Air Gun .............................................................................................................59 3.5.1 Hot Air Gun Viability .......................................................................................60 3.5.2 Gauge Response ................................................................................................62 Chapter 4 Hot Air gun Modifiaction - Feasibility Experiment ..........................................64 vi 4.1 Copper Test Plug......................................................................................................64 4.2 Final Design .............................................................................................................67 4.3 Initial Results ...........................................................................................................69 4.4 Final Results.............................................................................................................73 4.5 Recommendations for Future Implimentation .........................................................75 Chapter 5 Conclusions .......................................................................................................77 Bibliography ......................................................................................................................79 vii LIST OF FIGURES Figure 1: Semi-Infinite Heat Transfer Gauge (Oldfield [3]) .............................................. 2 Figure 2: Two Layer Heat Transfer Gauge (Oldfield [3]) .................................................