Information Geometry for Regularized Optimal Transport and Barycenters of Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Information Geometry for Regularized Optimal Transport and Barycenters of Patterns ARTICLE Communicated by Klaus-Robert Müller Information Geometry for Regularized Optimal Transport and Barycenters of Patterns Shun-ichi Amari [email protected] RIKEN, Wako-shi, Saitama 351-0198, Japan Ryo Karakida [email protected] National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan Masafumi Oizumi [email protected] ARAYA, Minato-ku, Tokyo 105-0003, Japan Marco Cuturi [email protected] Google, 75009 Paris and CREST, ENSAE, 91120 Palaiseau, France We propose a new divergence on the manifold of probability distribu- tions, building on the entropic regularization of optimal transportation problems. As Cuturi (2013) showed, regularizing the optimal transport problem with an entropic term is known to bring several computational benefits. However, because of that regularization, the resulting approx- imation of the optimal transport cost does not define a proper distance or divergence between probability distributions. We recently tried to in- troduce a family of divergences connecting the Wasserstein distance and the Kullback-Leibler divergence from an information geometry point of view (see Amari, Karakida, & Oizumi, 2018). However, that proposal was not able to retain key intuitive aspects of the Wasserstein geometry, such as translation invariance, which plays a key role when used in the more general problem of computing optimal transport barycenters. The diver- gence we propose in this work is able to retain such properties and admits an intuitive interpretation. 1 Introduction Two major geometrical structures have been introduced on the probabil- ity simplex, the manifold of discrete probability distributions. The first one is based on the principle of invariance, which requires that the geometry Neural Computation 31, 827–848 (2019) © 2019 Massachusetts Institute of Technology doi:10.1162/neco_a_01178 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/neco_a_01178 by guest on 24 September 2021 828 S.-i. Amari, R. Karakida, M. Oizumi, and M. Cuturi between probability distributions must be invariant under invertible trans- formations of random variables. That viewpoint is the cornerstone of the theory of information geometry (Amari, 2016), which acts as a foundation for statistical inference. The second direction is grounded on the theory of optimal transport, which exploits prior geometric knowledge on the base pace in which random variables are valued (Villani, 2003). Computing op- timal transport amounts to obtaining a coupling between these two random variables that is optimal in the sense that it has a minimal expected trans- portation cost between the first and second variables. However, computing that solution can be challenging and is usually car- ried out by solving a linear program. Cuturi (2013) considered a relaxed formulation of optimal transport, in which the negative entropy of the coupling is used as a regularizer. We call that approximation of the orig- inal optimal transport cost the C function. Entropic regularization provides two major advantages: the resolution of regularized optimal transport prob- lems, which relies on Sinkhorn’s algorithm (Sinkhorn, 1964), can be triv- ially parallelized and is usually faster by several orders of magnitude than the exact solution of the linear program. Unlike the original optimal trans- port geometry, regularized transport distances are differentiable functions of their inputs, even when the latter are discrete, a property that can be exploited in problems arising from pattern classification and clustering (Cuturi & Doucet, 2014; Cuturi & Peyré, 2016). The Wasserstein distance between two distributions reflects the metric properties of the base space on which a pattern is defined. Conventional information-theoretic divergences such as the Kullback-Leibler (KL) diver- gence and the Hellinger divergence fail to capture the geometry of the base space. Therefore, the Wasserstein geometry is useful for applications where the geometry of the base space plays an important role, notably in com- puter vision, where an image pattern is defined on the two-dimensional base space R2. Cuturi and Doucet (2014) is a pioneering work, where the Wasserstein barycenter of various patterns can summarize the common shape of a database of exemplar patterns. Also, more advanced inference tasks use the C function as an output loss (Frogner, Zhang, Mobahi, Araya, & Poggio, 2015), a model fitting loss (Antoine, Marco, & Gabriel, 2016), or a way to learn mappings (Courty, Flamary, Tuia, & Rakotomamonjy, 2017). The Wasserstein geometry was also shown to be useful to estimate genera- tive models, under the name of the Wasserstein GAN (Arjovsky, Chintala, & Bottou, 2017) and related contributions (Aude, Gabriel, & Marco, 2018; Sal- imans, Zhang, Radford, & Metaxas, 2018). It was also applied to economics and ecological systems (Muzellec, Nock, Patrini, & Nielsen, 2016). All in all, the field of “Wasserstein statistics” is becoming an interesting research topic for exploration. The C function suffers, however, from a few issues. It is neither a dis- tance nor a divergence, notably because comparing a probability measure with itself does not result in a null discrepancy, namely, if p belongs to the Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/neco_a_01178 by guest on 24 September 2021 Information Geometry of Optimal Transport 829 simplex, then C(p, p) = 0. More worrisome, the minimizer of C(p, q) with respect to q is not reached at q = p. To solve these issues, we have pro- posed a first attempt at unifying the information and optimal transport ge- ometrical structures in Amari, Karakida, and Oizumi (2018). However, the information-geometric divergence introduced in that previous work loses some of the beneficial properties inherent in the C-function. For example, the C-function can be used to extract a common shape as the barycenter of a number of patterns (Cuturi & Doucet, 2014), which our former proposal was not able to. Therefore, it is desirable to define a new divergence from C, in the rigorous sense that it is minimized when comparing a measure with itself and, preferably, convex in both arguments, while still retaining the attractive properties of optimal transport. We propose in this article such a new divergence between probability distributions p and q that is inspired by optimal transport while incorpo- rating elements of information geometry. Its basic ingredient remains the entropic regularization of optimal transport. We show that the barycenters obtained with that new divergence are more sharply defined than those ob- tained with the original C-function, while still keeping the shape-location decomposition property. This article focuses on theoretical aspects, with only very preliminary numerical simulations. Detailed characteristics and simulations of the proposed divergence will be given in the future. 2 C-Function: Entropy-Regularized Optimal Transportation Plan The general transportation problem is concerned with the optimal trans- portation of commodities, initially distributed according to a distribution p, so that they end up being distributed as another distribution q.Initsfull generality, such a transport can be carried out on a metric manifold, and both p and q can be continuous measures on that manifold. We consider in this article the discrete case, where that metric space is of finite size n, namely, X ={1, 2,...,n}. We normalize the total number of commodities such that it sums to 1; p and q are therefore probability vectors of size n in the n − 1-dimensional simplex, = ∈ Rn | = , ≥ . Sn−1 p pi 1 pi 0 (2.1) i We leave out extensions to the continuous case for future work. Let Mij be the cost of transporting a unit of commodity from bin i to bin j, usually defined as a distance (or a suitable power thereof) between points i and > = = j in X. In what follows, we assume that Mij 0 for i j and Mii 0. A = ∈ Rn×n transportation plan P (Pij) + is a joint (probability) distribution over × X X that describes at each entry Pij the amount of commodities sent from bin i to bin j. Given a source distribution p and a target distribution q,the Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/neco_a_01178 by guest on 24 September 2021 830 S.-i. Amari, R. Karakida, M. Oizumi, and M. Cuturi set of transport plans allowing a transfer from p to q is defined as ⎧ ⎫ ⎨ n n ⎬ , = ∈ Rn×n ∀ ≤ , = , ∀ ≤ , = . U(p q) ⎩P + : i n Pij pi j n Pij q j⎭ j=1 i=1 (2.2) Note that if a matrix is in U(p, q), then its transpose is in U(q, p). The transportation cost of a plan P is defined as the dot product of P = with the cost matrix M Mij , , = . M P MijPij (2.3) ij Its minimum among all feasible plans, W(p, q) = min M, P, (2.4) P∈U(p,q) is the Wasserstein distance on Sn−1 parameterized by the ground metric (Cuturi, 2013) studied the regularization of that problem using entropy, =− , H(P) Pij log Pij (2.5) ij to consider the problem of minimizing L(P) =M, P−λH(P), (2.6) where λ>0 is a regularization strength. We call its minimum the C- function: Cλ(p, q) = min L(P). (2.7) P∈U(p,q) The Cλ function is a useful proxy for the Wasserstein distance, with favor- able computational properties, and has appeared in several applications as a useful alternative to information-geometric divergences such as the KL divergence. The optimal transportation plan is given in the following theorem (Cu- turi & Peyré, 2016; Amari et al., 2018). Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/neco_a_01178 by guest on 24 September 2021 Information Geometry of Optimal Transport 831 ∗ Theorem 1. The optimal transportation plan Pλ is given by ∗ = , Pλ caib jKij ij (2.8) = −Mij , K exp λ (2.9) ij ∈ where c, a normalization constant, and vectors a, b Sn−1 are determined from p and q such that the sender and receiver conditions (namely, marginal conditions) are satisfied.
Recommended publications
  • Introduction to Information Geometry – Based on the Book “Methods of Information Geometry ”Written by Shun-Ichi Amari and Hiroshi Nagaoka
    Introduction to Information Geometry – based on the book “Methods of Information Geometry ”written by Shun-Ichi Amari and Hiroshi Nagaoka Yunshu Liu 2012-02-17 Introduction to differential geometry Geometric structure of statistical models and statistical inference Outline 1 Introduction to differential geometry Manifold and Submanifold Tangent vector, Tangent space and Vector field Riemannian metric and Affine connection Flatness and autoparallel 2 Geometric structure of statistical models and statistical inference The Fisher metric and α-connection Exponential family Divergence and Geometric statistical inference Yunshu Liu (ASPITRG) Introduction to Information Geometry 2 / 79 Introduction to differential geometry Geometric structure of statistical models and statistical inference Part I Introduction to differential geometry Yunshu Liu (ASPITRG) Introduction to Information Geometry 3 / 79 Introduction to differential geometry Geometric structure of statistical models and statistical inference Basic concepts in differential geometry Basic concepts Manifold and Submanifold Tangent vector, Tangent space and Vector field Riemannian metric and Affine connection Flatness and autoparallel Yunshu Liu (ASPITRG) Introduction to Information Geometry 4 / 79 Introduction to differential geometry Geometric structure of statistical models and statistical inference Manifold Manifold S n Manifold: a set with a coordinate system, a one-to-one mapping from S to R , n supposed to be ”locally” looks like an open subset of R ” n Elements of the set(points): points in R , probability distribution, linear system. Figure : A coordinate system ξ for a manifold S Yunshu Liu (ASPITRG) Introduction to Information Geometry 5 / 79 Introduction to differential geometry Geometric structure of statistical models and statistical inference Manifold Manifold S Definition: Let S be a set, if there exists a set of coordinate systems A for S which satisfies the condition (1) and (2) below, we call S an n-dimensional C1 differentiable manifold.
    [Show full text]
  • Arxiv:1907.11122V2 [Math-Ph] 23 Aug 2019 on M Which Are Dual with Respect to G
    Canonical divergence for flat α-connections: Classical and Quantum Domenico Felice1, ∗ and Nihat Ay2, y 1Max Planck Institute for Mathematics in the Sciences Inselstrasse 22{04103 Leipzig, Germany 2 Max Planck Institute for Mathematics in the Sciences Inselstrasse 22{04103 Leipzig, Germany Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA Faculty of Mathematics and Computer Science, University of Leipzig, PF 100920, 04009 Leipzig, Germany A recent canonical divergence, which is introduced on a smooth manifold M endowed with a general dualistic structure (g; r; r∗), is considered for flat α-connections. In the classical setting, we compute such a canonical divergence on the manifold of positive measures and prove that it coincides with the classical α-divergence. In the quantum framework, the recent canonical divergence is evaluated for the quantum α-connections on the manifold of all positive definite Hermitian operators. Also in this case we obtain that the recent canonical divergence is the quantum α-divergence. PACS numbers: Classical differential geometry (02.40.Hw), Riemannian geometries (02.40.Ky), Quantum Information (03.67.-a). I. INTRODUCTION Methods of Information Geometry (IG) [1] are ubiquitous in physical sciences and encom- pass both classical and quantum systems [2]. The natural object of study in IG is a quadruple (M; g; r; r∗) given by a smooth manifold M, a Riemannian metric g and a pair of affine connections arXiv:1907.11122v2 [math-ph] 23 Aug 2019 on M which are dual with respect to g, ∗ X g (Y; Z) = g (rX Y; Z) + g (Y; rX Z) ; (1) for all sections X; Y; Z 2 T (M).
    [Show full text]
  • Information Geometry of Orthogonal Initializations and Training
    Published as a conference paper at ICLR 2020 INFORMATION GEOMETRY OF ORTHOGONAL INITIALIZATIONS AND TRAINING Piotr Aleksander Sokół and Il Memming Park Department of Neurobiology and Behavior Departments of Applied Mathematics and Statistics, and Electrical and Computer Engineering Institutes for Advanced Computing Science and AI-driven Discovery and Innovation Stony Brook University, Stony Brook, NY 11733 {memming.park, piotr.sokol}@stonybrook.edu ABSTRACT Recently mean field theory has been successfully used to analyze properties of wide, random neural networks. It gave rise to a prescriptive theory for initializing feed-forward neural networks with orthogonal weights, which ensures that both the forward propagated activations and the backpropagated gradients are near `2 isome- tries and as a consequence training is orders of magnitude faster. Despite strong empirical performance, the mechanisms by which critical initializations confer an advantage in the optimization of deep neural networks are poorly understood. Here we show a novel connection between the maximum curvature of the optimization landscape (gradient smoothness) as measured by the Fisher information matrix (FIM) and the spectral radius of the input-output Jacobian, which partially explains why more isometric networks can train much faster. Furthermore, given that or- thogonal weights are necessary to ensure that gradient norms are approximately preserved at initialization, we experimentally investigate the benefits of maintaining orthogonality throughout training, and we conclude that manifold optimization of weights performs well regardless of the smoothness of the gradients. Moreover, we observe a surprising yet robust behavior of highly isometric initializations — even though such networks have a lower FIM condition number at initialization, and therefore by analogy to convex functions should be easier to optimize, experimen- tally they prove to be much harder to train with stochastic gradient descent.
    [Show full text]
  • Information Geometry and Optimal Transport
    Call for Papers Special Issue Affine Differential Geometry and Hesse Geometry: A Tribute and Memorial to Jean-Louis Koszul Submission Deadline: 30th November 2019 Jean-Louis Koszul (January 3, 1921 – January 12, 2018) was a French mathematician with prominent influence to a wide range of mathematical fields. He was a second generation member of Bourbaki, with several notions in geometry and algebra named after him. He made a great contribution to the fundamental theory of Differential Geometry, which is foundation of Information Geometry. The special issue is dedicated to Koszul for the mathematics he developed that bear on information sciences. Both original contributions and review articles are solicited. Topics include but are not limited to: Affine differential geometry over statistical manifolds Hessian and Kahler geometry Divergence geometry Convex geometry and analysis Differential geometry over homogeneous and symmetric spaces Jordan algebras and graded Lie algebras Pre-Lie algebras and their cohomology Geometric mechanics and Thermodynamics over homogeneous spaces Guest Editor Hideyuki Ishi (Graduate School of Mathematics, Nagoya University) e-mail: [email protected] Submit at www.editorialmanager.com/inge Please select 'S.I.: Affine differential geometry and Hessian geometry Jean-Louis Koszul (Memorial/Koszul)' Photo Author: Konrad Jacobs. Source: Archives of the Mathema�sches Forschungsins�tut Oberwolfach Editor-in-Chief Shinto Eguchi (Tokyo) Special Issue Co-Editors Information Geometry and Optimal Transport Nihat
    [Show full text]
  • Information Geometry (Part 1)
    October 22, 2010 Information Geometry (Part 1) John Baez Information geometry is the study of 'statistical manifolds', which are spaces where each point is a hypothesis about some state of affairs. In statistics a hypothesis amounts to a probability distribution, but we'll also be looking at the quantum version of a probability distribution, which is called a 'mixed state'. Every statistical manifold comes with a way of measuring distances and angles, called the Fisher information metric. In the first seven articles in this series, I'll try to figure out what this metric really means. The formula for it is simple enough, but when I first saw it, it seemed quite mysterious. A good place to start is this interesting paper: • Gavin E. Crooks, Measuring thermodynamic length. which was pointed out by John Furey in a discussion about entropy and uncertainty. The idea here should work for either classical or quantum statistical mechanics. The paper describes the classical version, so just for a change of pace let me describe the quantum version. First a lightning review of quantum statistical mechanics. Suppose you have a quantum system with some Hilbert space. When you know as much as possible about your system, then you describe it by a unit vector in this Hilbert space, and you say your system is in a pure state. Sometimes people just call a pure state a 'state'. But that can be confusing, because in statistical mechanics you also need more general 'mixed states' where you don't know as much as possible. A mixed state is described by a density matrix, meaning a positive operator with trace equal to 1: tr( ) = 1 The idea is that any observable is described by a self-adjoint operator A, and the expected value of this observable in the mixed state is A = tr( A) The entropy of a mixed state is defined by S( ) = −tr( ln ) where we take the logarithm of the density matrix just by taking the log of each of its eigenvalues, while keeping the same eigenvectors.
    [Show full text]
  • Information Geometry: Near Randomness and Near Independence
    Khadiga Arwini and C.T.J. Dodson Information Geometry: Near Randomness and Near Independence Lecture Notes in Mathematics 1953 Springer Preface The main motivation for this book lies in the breadth of applications in which a statistical model is used to represent small departures from, for example, a Poisson process. Our approach uses information geometry to provide a com- mon context but we need only rather elementary material from differential geometry, information theory and mathematical statistics. Introductory sec- tions serve together to help those interested from the applications side in making use of our methods and results. We have available Mathematica note- books to perform many of the computations for those who wish to pursue their own calculations or developments. Some 44 years ago, the second author first encountered, at about the same time, differential geometry via relativity from Weyl's book [209] during un- dergraduate studies and information theory from Tribus [200, 201] via spatial statistical processes while working on research projects at Wiggins Teape Re- search and Development Ltd|cf. the Foreword in [196] and [170, 47, 58]. Hav- ing started work there as a student laboratory assistant in 1959, this research environment engendered a recognition of the importance of international col- laboration, and a lifelong research interest in randomness and near-Poisson statistical geometric processes, persisting at various rates through a career mainly involved with global differential geometry. From correspondence in the 1960s with Gabriel Kron [4, 124, 125] on his Diakoptics, and with Kazuo Kondo who influenced the post-war Japanese schools of differential geometry and supervised Shun-ichi Amari's doctorate [6], it was clear that both had a much wider remit than traditionally pursued elsewhere.
    [Show full text]
  • Exponential Families: Dually-Flat, Hessian and Legendre Structures
    entropy Review Information Geometry of k-Exponential Families: Dually-Flat, Hessian and Legendre Structures Antonio M. Scarfone 1,* ID , Hiroshi Matsuzoe 2 ID and Tatsuaki Wada 3 ID 1 Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche (ISC-CNR), c/o Politecnico di Torino, 10129 Torino, Italy 2 Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; [email protected] 3 Region of Electrical and Electronic Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi 316-8511, Japan; [email protected] * Correspondence: [email protected]; Tel.: +39-011-090-7339 Received: 9 May 2018; Accepted: 1 June 2018; Published: 5 June 2018 Abstract: In this paper, we present a review of recent developments on the k-deformed statistical mechanics in the framework of the information geometry. Three different geometric structures are introduced in the k-formalism which are obtained starting from three, not equivalent, divergence functions, corresponding to the k-deformed version of Kullback–Leibler, “Kerridge” and Brègman divergences. The first statistical manifold derived from the k-Kullback–Leibler divergence form an invariant geometry with a positive curvature that vanishes in the k → 0 limit. The other two statistical manifolds are related to each other by means of a scaling transform and are both dually-flat. They have a dualistic Hessian structure endowed by a deformed Fisher metric and an affine connection that are consistent with a statistical scalar product based on the k-escort expectation. These flat geometries admit dual potentials corresponding to the thermodynamic Massieu and entropy functions that induce a Legendre structure of k-thermodynamics in the picture of the information geometry.
    [Show full text]
  • Information-Geometric Optimization Algorithms: a Unifying Picture Via Invariance Principles
    Journal of Machine Learning Research 18 (2017) 1-65 Submitted 11/14; Revised 10/16; Published 4/17 Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles Yann Ollivier [email protected] CNRS & LRI (UMR 8623), Université Paris-Saclay 91405 Orsay, France Ludovic Arnold [email protected] Univ. Paris-Sud, LRI 91405 Orsay, France Anne Auger [email protected] Nikolaus Hansen [email protected] Inria & CMAP, Ecole polytechnique 91128 Palaiseau, France Editor: Una-May O’Reilly Abstract We present a canonical way to turn any smooth parametric family of probability distributions on an arbitrary search space 푋 into a continuous-time black-box optimization method on 푋, the information-geometric optimization (IGO) method. Invariance as a major design principle keeps the number of arbitrary choices to a minimum. The resulting IGO flow is the flow of an ordinary differential equation conducting the natural gradient ascentofan adaptive, time-dependent transformation of the objective function. It makes no particular assumptions on the objective function to be optimized. The IGO method produces explicit IGO algorithms through time discretization. It naturally recovers versions of known algorithms and offers a systematic way to derive new ones. In continuous search spaces, IGO algorithms take a form related to natural evolution strategies (NES). The cross-entropy method is recovered in a particular case with a large time step, and can be extended into a smoothed, parametrization-independent maximum likelihood update (IGO-ML). When applied to the family of Gaussian distributions on R푑, the IGO framework recovers a version of the well-known CMA-ES algorithm and of xNES.
    [Show full text]
  • Fisher-Rao Geometry of Dirichlet Distributions Alice Le Brigant, Stephen Preston, Stéphane Puechmorel
    Fisher-Rao geometry of Dirichlet distributions Alice Le Brigant, Stephen Preston, Stéphane Puechmorel To cite this version: Alice Le Brigant, Stephen Preston, Stéphane Puechmorel. Fisher-Rao geometry of Dirich- let distributions. Differential Geometry and its Applications, Elsevier, 2021, 74, pp.101702. 10.1016/j.difgeo.2020.101702. hal-02568473v2 HAL Id: hal-02568473 https://hal.archives-ouvertes.fr/hal-02568473v2 Submitted on 7 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FISHER-RAO GEOMETRY OF DIRICHLET DISTRIBUTIONS ALICE LE BRIGANT, STEPHEN C. PRESTON, AND STEPHANE´ PUECHMOREL Abstract. In this paper, we study the geometry induced by the Fisher-Rao metric on the parameter space of Dirichlet distributions. We show that this space is a Hadamard manifold, i.e. that it is geodesically complete and has everywhere negative sectional curvature. An important consequence for applications is that the Fr´echet mean of a set of Dirichlet distributions is uniquely defined in this geometry. 1. Introduction The differential geometric approach to probability theory and statistics has met increasing interest in the past years, from the theoretical point of view as well as in applications. In this approach, probability distributions are seen as elements of a differentiable manifold, on which a metric structure is defined through the choice of a Riemannian metric.
    [Show full text]
  • Information-Geometric Optimization Algorithms: a Unifying Picture Via Invariance Principles Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen
    Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen To cite this version: Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. 2011. hal-00601503v2 HAL Id: hal-00601503 https://hal.archives-ouvertes.fr/hal-00601503v2 Preprint submitted on 29 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen Abstract We present a canonical way to turn any smooth parametric fam- ily of probability distributions on an arbitrary search space X into a continuous-time black-box optimization method on X, the information- geometric optimization (IGO) method. Invariance as a major design principle keeps the number of arbitrary choices to a minimum. The resulting IGO flow is the flow of an ordinary differential equation con- ducting the natural gradient ascent of an adaptive, time-dependent transformation of the objective function. It makes no particular as- sumptions on the objective function to be optimized. The IGO method produces explicit IGO algorithms through time discretization.
    [Show full text]
  • The Fisher-Rao Geometry of Beta Distributions Applied to the Study of Canonical Moments Alice Le Brigant, Stéphane Puechmorel
    The Fisher-Rao geometry of beta distributions applied to the study of canonical moments Alice Le Brigant, Stéphane Puechmorel To cite this version: Alice Le Brigant, Stéphane Puechmorel. The Fisher-Rao geometry of beta distributions applied to the study of canonical moments. 2019. hal-02100897 HAL Id: hal-02100897 https://hal.archives-ouvertes.fr/hal-02100897 Preprint submitted on 16 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Fisher-Rao geometry of beta distributions applied to the study of canonical moments Alice Le Brigant and Stéphane Puechmorel Abstract This paper studies the Fisher-Rao geometry on the parameter space of beta distributions. We derive the geodesic equations and the sectional curvature, and prove that it is negative. This leads to uniqueness for the Riemannian centroid in that space. We use this Riemannian structure to study canonical moments, an intrinsic representation of the moments of a probability distribution. Drawing on the fact that a uniform distribution in the regular moment space corresponds to a product of beta distributions in the canonical moment space, we propose a mapping from the space of canonical moments to the product beta manifold, allowing us to use the Fisher-Rao geometry of beta distributions to compare and analyze canonical moments.
    [Show full text]
  • Applications of Information Geometry to Hypothesis Testing and Signal
    CMCAA 2016 ApplicationsApplications ofof InformationInformation GeometryGeometry toto HypothesisHypothesis TestingTesting andand SignalSignal DetectionDetection Yongqiang Cheng National University of Defense Technology July 2016 OutlineOutline 1. Principles of Information Geometry 2. Geometry of Hypothesis Testing 3. Matrix CFAR Detection on Manifold of Symmetric Positive-Definite Matrices 4. Geometry of Matrix CFAR Detection 1.1. PrinciplesPrinciples ofof InformationInformation GeometryGeometry Important problems in statistics Distribution (likelihood): p(x|θ) where . x is a vector of data . θ is a vector of unknowns 1. How much does the data x tell about the unknown θ ? 2. How good is an estimator θ ˆ ? 3. How to measure difference between two distributions? 4. How about the structure of a statistical model specified by a family of distributions? 3 1.1. PrinciplesPrinciples ofof InformationInformation GeometryGeometry What is information geometry? Data Distributions Manifold Data processing Statistics Information Geometry 4 1.1. PrinciplesPrinciples ofof InformationInformation GeometryGeometry . Information geometry is the study of intrinsic properties of manifolds of probability distributions by way of differential geometry. The main tenet of information geometry is that many important structures in information theory and statistics can be treated as structures in differential geometry by regarding a space of probabilities as a differentiable manifold endowed with a Riemannian metric and a family of affine connections. Statistics Information Theory Probability Theory Relationships with Information Geometry other subjects Physics Differential Geometry Systems Riemannian Theory Geometry 5 1.1. PrinciplesPrinciples ofof InformationInformation GeometryGeometry n . Statistical manifold ,,GpR (|)|x θ x ,θ logp log p . Riemannian metric GEθ ij θθ . Affine connections 1 jim ()θ El (,)x θ l (,)x θ Ell (,)x θ (,)x θ l (,)x θ θθji m2 j i m .
    [Show full text]