Different Foot Positioning During Calf Training to Induce Portion-Specific
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Influence of the Muscle–Tendon Unit's Mechanical And
3345 The Journal of Experimental Biology 209, 3345-3357 Published by The Company of Biologists 2006 doi:10.1242/jeb.02340 Influence of the muscle–tendon unit’s mechanical and morphological properties on running economy Adamantios Arampatzis*, Gianpiero De Monte, Kiros Karamanidis, Gaspar Morey-Klapsing, Savvas Stafilidis and Gert-Peter Brüggemann Adamantios Arampatzis, German Sport University of Cologne, Institute of Biomechanics and Orthopaedics, Carl-Diem-Weg 6, 50933 Cologne, Germany *Author for correspondence (e-mail: [email protected]) Accepted 18 May 2006 Summary The purpose of this study was to test the hypothesis that at three different lengths for each MTU. A cluster analysis runners having different running economies show was used to classify the subjects into three groups differences in the mechanical and morphological according to their VO2 consumption at all three velocities properties of their muscle–tendon units (MTU) in the (high running economy, N=10; moderate running lower extremities. Twenty eight long-distance runners economy, N=12; low running economy, N=6). Neither the (body mass: 76.8±6.7·kg, height: 182±6·cm, age: 28.1±4.5 kinematic parameters nor the morphological properties of years) participated in the study. The subjects ran on a the GM and VL showed significant differences between treadmill at three velocities (3.0, 3.5 and 4.0·m·s–1) for groups. The most economical runners showed a higher 15·min each. The VO2 consumption was measured by contractile strength and a higher normalised tendon spirometry. At all three examined velocities the kinematics stiffness (relationship between tendon force and tendon of the left leg were captured whilst running on the strain) in the triceps surae MTU and a higher compliance treadmill using a high-speed digital video camera of the quadriceps tendon and aponeurosis at low level operating at 250·Hz. -
Measurements of Excitatory Postsynaptic Potentials in the Stretch Reflex of Normal Subjects and Spastic Patients
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.42.12.1100 on 1 December 1979. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1979, 42, 1100-1105 Measurements of excitatory postsynaptic potentials in the stretch reflex of normal subjects and spastic patients T. NOGUCHI, S. HOMMA, AND Y. NAKAJIMA From the Department of Physiology, School of Medicine, Chiba University, Chiba, Japan SUM MARY The patellar tendon was tapped by random impulses of triangular waveform and motor unit spikes were recorded from the quadriceps femoris muscle. The cross-correlogram of the taps and the motor unit spikes revealed a primary correlation kernel, the width of which was interpreted as an indicator of the mean time-to-peak of excitatory postsynaptic potentials (EPSPs) elicited monosynaptically in an alpha-motoneurone by the triangular taps. The mean time-to-peak was 7.6+1.3 ms in normal subjects and 9.0+1=.8 ms in spastic patients (P<0.005). The prolonged time-to-peak of EPSP in spastic patients is consistent with the hypothesis that as a result of degeneration of the corticomotoneuronal tract the Ia axons sprout and form more guest. Protected by copyright. synaptic contacts on distal portions of the dendrites of alpha-motoneurones. Brief stretching of a muscle by taps of triangular peak, termed the primary correlation kernel waveform and low amplitude can selectively (Knox, 1974). The width of the kernel, the cor- excite primary endings of the muscle spindle. The relation time, corresponds to the time-to-peak of primary spindle afferent impulses then ascend an EPSP elicited by the triangular stretch. -
Natural History of Limb Girdle Muscular Dystrophy R9 Over 6 Years: Searching for Trial Endpoints Alexander P
RESEARCH ARTICLE Natural history of limb girdle muscular dystrophy R9 over 6 years: searching for trial endpoints Alexander P. Murphy1 , Jasper Morrow2, Julia R. Dahlqvist3 , Tanya Stojkovic4, Tracey A. Willis5, Christopher D. J. Sinclair2, Stephen Wastling2, Tarek Yousry2 , Michael S. Hanna2 , Meredith K. James1, Anna Mayhew1 , Michelle Eagle1, Laurence E. Lee2, Jean-Yves Hogrel6 , Pierre G. Carlier6, John S. Thornton2, John Vissing3, Kieren G. Hollingsworth7,* & Volker Straub1,* 1The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, United Kingdom, NE1 4EP 2Department of Molecular Neurosciences, MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom 3Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark 4Institute of Myology, AP6HP, G-H Pitie-Salp etri^ ere, 47-83 boulevard de l’hopital,^ 75651 Paris Cedex 13, France 5The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom 6Institute of Myology, Neuromuscular Investigation Center, Pitie-Salp etri^ ere Hospital, Paris, France 7Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom Correspondence Abstract Alexander P. Murphy, The John Walton Objective Muscular Dystrophy Research Centre, : Limb girdle muscular dystrophy type R9 (LGMD R9) is an autoso- Institute of Genetic Medicine, Newcastle mal recessive muscle disease for which there is currently no causative treatment. University, Newcastle Hospitals NHS The development of putative therapies requires sensitive outcome measures for Foundation Trust, Central Parkway, clinical trials in this slowly progressing condition. This study extends functional Newcastle Upon Tyne, United Kingdom NE1 assessments and MRI muscle fat fraction measurements in an LGMD R9 cohort 4EP. -
Calf Stretching and Strengthening Exercises
Julie Dass Injury Clinic 108 Milton Road Phone: 01234349464 Clapham Email: [email protected] Bedford MK416as Exercise plan: Patient: Date: Calf Stretches and Strengthening Mrs Julie Dass 31st Mar 2017 Exercises Eccentric calf strengthening exercise Stand with your toes on the edge of a step or a box. Hold onto something stable for support if required. We will assume the leg you are trying to strengthen is your left leg (the injured side). Lift your left leg off the step, and go onto your toes on your right leg. Now place your left foot beside the right, and place all your weight on your left leg. Drop your heels downwards below the level of the step. Use your right leg (non-injured leg) to lift yourself back to the start position. Make sure you keep your leg straight during the exercise. This exercise can help strengthen the calf muscle and may be useful for treating Achilles tendinopathy. Full squat single leg Stand on one leg, and bend your knee to the full squat (90 degrees) position. Make sure when you squat you keep the middle of your knee cap in line with the middle toes of your foot. Do not let your knee drift off to one side. Also keep your hips and pelvis level as you squat, so you go down in a straight line. Be careful not to slump forwards as you squat, maintain good posture. Always keep your foot flat on the ground, do not let your heel raise up. Video: http://youtu.be/afJNrDNonAc Full wall squat Open your legs slightly wider than shoulder width, stand with your back resting against a wall, and bend your knees to the full squat position (90 degrees). -
Evaluation of Hamstring Flexibility by Using Two Different Measuring Instruments
Bakirtzoglou, P., Ioannou, P. & Bakirtzoglou, F.: EVALUATION OF HAMSTRING... SportLogia 6 (2010) 2: 28-32 EVALUATION OF HAMSTRING FLEXIBILITY BY USING TWO DIFFERENT MEASURING INSTRUMENTS Bakirtzoglou Panteleimon1, Ioannou Panagiotis2 & Bakirtzoglou Fotis3 1Organisation for Vocational Education and Training in Greece, Athens, Greece 2Faculty of Physical Education and Sports Science, Thessaloniki, Greece 3General Hospital of Thessaloniki "Agios Dimitrios", Thesaloniki, Greece SHORT SCIENTIFIC ARTICLE DOI: 10.5550/sgia.1002028 COBISS.BH-ID 1846808 UDC: 616.728.3:796.012.23 SUMMARY The purpose of the present study was to investigate the effect of two different methods of measurement for hamstring flexibility. Forty male students athletes with mean age 23.45±0.44 years and forty non-athletes students with a mean age 23.08±0.98 years participated in this study. Hamstring flexibility was evaluated by two different methods of measurement: a) a Myrin goni- ometer and b) sit and reach test. Statistical analysis included the use of Independent Samples T- test while significance was set at p<0.01. The results indicated that athletes students scored better than non-athletes students only when hip joint’s mobility was measured with a Myrin goniometer. In conclusion the evaluation of joint's mobility should be done by using a method of measure- ment that would isolate the articulation of measurement from the interjection of other joints or muscular teams something that is achieved by the use of Myrin goniometer than the use of Sit and Reach test. Key words: hamstrings, Myrin goniometer, sit and reach test. INTRODUCTION 1986; Hoeger et al, 1990; Hui and Yuen, 2000). -
Does Feet Position Alter Triceps Surae EMG Record During Heel-Raise Exercises in Leg Press Machine? Reginaldo S
RESEARCH ARTICLE http://dx.doi.org/10.17784/mtprehabjournal.2017.15.529 Does feet position alter triceps surae EMG record during heel-raise exercises in leg press machine? Reginaldo S. Pereira1, Jônatas B. Azevedo2*, Fabiano Politti2*, Marcos R. R. Paunksnis1, Alexandre L. Evangelista3, Cauê V. La Scala Teixeira4,5, Andrey J. Serra6, Angelica C. Alonso1, Rafael M. Pitta1, Aylton Figueira Júnior1, Victor M. Reis7, Danilo S. Bocalini1 ABSTRACT Background: muscle activation measured by electromyography (EMG) provides additional insight into functional differences between movements and muscle involvement. Objective: to evaluate the EMG of triceps surae during heel-raise exercise in healthy subjects performed at leg press machine with different feet positions. Methods: ten trained healthy male adults aged between 20 and 30 years voluntarily took part in the study. After biometric analyses the EMG signals were obtained using a 8-channel telemeterized surface EMG system (EMG System do Brazil, Brazil Ltda) (amplifier gain: 1000x, common rejection mode ratio >100 dB, band pass filter: 20 to 500 Hz). All data was acquired and processed using a 16-bit analog to digital converter, with a sampling frequency of 2kHz on the soleus (Sol), medial (GM) and lateral (GL) gastrocnemius muscles in both legs, in accordance with the recommendations of SENIAN. The root mean square (RMS) of the EMG amplitude was calculated to evaluate muscle activity of the three muscles. After being properly prepared for eletromyography procedures, all subjects were instructed to perform 3 sets of 5 repetitions during heel-raise exercise using the maximal load that enabled 10 repetitions on leg press 45° machine, each set being performed with one of the following feet positions: neutral (0º), internal and external rotation (both with 45° from neutral position). -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
ANTERIOR KNEE PAIN Home Exercises
ANTERIOR KNEE PAIN Home Exercises Anterior knee pain is pain that occurs at the front and center of the knee. It can be caused by many different problems, including: • Weak or overused muscles • Chondromalacia of the patella (softening and breakdown of the cartilage on the underside of the kneecap) • Inflammations and tendon injury (bursitis, tendonitis) • Loose ligaments with instability of the kneecap • Articular cartilage damage (chondromalacia patella) • Swelling due to fluid buildup in the knee joint • An overload of the extensor mechanism of the knee with or without malalignment of the patella You may feel pain after exercising or when you sit too long. The pain may be a nagging ache or an occasional sharp twinge. Because the pain is around the front of your knee, treatment has traditionally focused on the knee itself and may include taping or bracing the kneecap, or patel- la, and/ or strengthening the thigh muscle—the quadriceps—that helps control your kneecap to improve the contact area between the kneecap and the thigh bone, or femur, beneath it. Howev- er, recent evidence suggests that strengthening your hip and core muscles can also help. The control of your knee from side to side comes from the glutes and core control; that is why those areas are so important in management of anterior knee pain. The exercises below will work on a combination of flexibility and strength of your knee, hip, and core. Although some soreness with exercise is expected, we do not want any sharp pain–pain that gets worse with each rep of an exercise or any increased soreness for more than 24 hours. -
Functional Relevance of the Small Muscles Crossing the Ankle Joint – the Bottom-Up Approach
Current Issues in Sport Science 2 (2017) Functional relevance of the small muscles crossing the ankle joint – the bottom-up approach Benno M. Nigg1, *, Jennifer Baltich1, 2, Peter Federolf 1, 3, Sabina Manz1 & Sandro Nigg1 1 Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Canada 2 New Balance Research Laboratory, Boston, USA 3 Institute for Sport Science, University of Innsbruck, Austria * Corresponding author: Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, Tel: +1 403 2203436, Email: [email protected] REPORT ABStraCT Article History: It has been suggested that increasing muscle strength could help reducing the frequency of run- Submitted 22th September 2016 ning injuries and that a top-down approach using an increase in hip muscle strength will result in a Accepted 19th January 2017 reduced range of movement and reduced external moments at the knee and ankle level. This paper Published 23th February 2017 suggests, that a bottom-up approach using an increase of strength of the small muscles crossing the ankle joint, should reduce movement and loading at the ankle, knee and hip. This bottom-up Handling Editor: approach is discussed in detail in this paper from a conceptional point of view. The ankle joint has Markus Tilp two relatively “large” extrinsic muscles and seven relatively small extrinsic muscles. The large muscles University of Graz, Austria have large levers for plantar-dorsi flexion but small levers for pro-supination. In the absence of strong small muscles the large muscles are loaded substantially when providing balancing with respect to Editor-in-Chief: pro-supination. -
SOP DC-407 Calving Cows-Heifers
Macdonald Campus Farm Cattle Complex Standard Operating Procedure # DC-407 CALVING COWS/ HEIFERS 1. PURPOSE To facilitate comfort and ease of calving and to identify and address any complications which may arise. 2. RESPONSIBILITY 2.1 All permanent, casual and student staff 2.2 Dairy Manager and Technician 2.3 Herd Veterinarian 3. MATERIALS 3.1 Halter 3.2 Chains and handles 3.3 Pail with Endure® and warm water 3.4 Lubricating gel 3.5 Insemination gloves 3.6 Paper towel 3.7 Calf puller 3.8 Iodine 4. GENERAL 4.1 3 general stages of Calving: Stage and Time Events I – Preparatory Calf rotates to upright position Uterine contraction begins (15 minute intervals) (2 to 6 hours) Water sac expelled Cow usually lying down II – Delivery Fetus enters birth canal (30 minutes – 4 hours) Uterine contractions: (2-minute intervals) Expulsion and delivery of the calf Expulsion of the fetal membrane or placenta III – Cleaning (2 to 8 hours) 4.2 Normal delivery should be completed within 2 to 3 hours after the water sac appears in the heifers, and 1 to 2 hours in cow/heifers. If prolonged, the calf may be born dead or weak. 4.3 Most calf fatalities are caused by injuries or suffocation resulting from difficult or delayed parturition. (See Table 2: Factors Contributing to Calving Problems). 4.4 Any abnormal fetal positions must be corrected in the early stages of delivery. 4.5 Heifers and cows with small pelvic areas will likely need assistance. 4.6 If a cow has had more than one calf, the calving time may be considerably shorter. -
Thigh and Calf Discrimination in the Motor Innervation of the Chick Hindlimb Following Deletions of Limb Segments1
0270~6474/83/0306-1199$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 3, No. 6, pp. 1199-1215 Printed in U.S.A. June 1983 THIGH AND CALF DISCRIMINATION IN THE MOTOR INNERVATION OF THE CHICK HINDLIMB FOLLOWING DELETIONS OF LIMB SEGMENTS1 VIRGINIA WHITELAW** AND MARGARET HOLLYDAY$3 * Departmen,t of Biophysics and Theoretical Biology and $ Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Illinois 60637 Received August 11, 1982; Revised December 27, 1982; Accepted January 17, 1983 Abstract In this paper we report studies on the organization of the motor projections to chick hindlimbs lacking limb segments as a result of surgical manipulations during early embryonic development. The innervation of partial limbs, missing either a thigh or both a calf and a foot, was studied using both retrograde and orthograde horseradish peroxidase nerve-tracing techniques, as well as by serial reconstruction. In addition, [3H]thymidine autoradiography was used to characterize motoneuron production and loss. Motor organization was assessed both before and after the period of naturally occurring motoneuron death. Prior to the period of cell death, we verified by autoradiography that the organization of the motor column (i.e., motoneuron birthdates and settling patterns) was normal despite deletions of the periphery. It was also found that, initially, the entire motor column projected to the partial limbs, entering via normal crural and sciatic pathways. The proximal branching patterns of the nerves leaving the plexus were normal; however, the distal projections of the nerves which would normally serve the missing limb segment were truncated. -
Communicating with the Calf
12 Communicating with the calf This chapter describes how to interpret the wellbeing of a calf from its behaviour and appearance. The main points in this chapter • Calves give many signals that indicate that they are in good (or poor) health and quick observations by the rearer can help treat any disease conditions early. • It is important for rearers to form bonds with their calves so the calves will cooperate more fully, particularly following treatment for diseases. • It is important for rearers to develop their own ‘dictionary of calf language’. • Rearers should learn to closely observe and interpret changes in both calf appearance and in their normal behaviour, which might be symptomatic of stress. • Calf scours comes in many forms and colours, all of which can be used to help diagnose a cause. • It is important to understand how calves react to people so that rearers’ management practices can be changed accordingly. • Farm owners and managers should communicate with their calf rearers. • Developing a set of standard operating procedures, and writing them down, can help maintain consistency in managing and training new staff in the desired skills of calf rearing. • Contract calf rearers can provide the right motivation and skills to rear calves better than staff on the home farm. Success or failure in raising calves depends to a great extent on the rearers’ attitude to the calves and their ability to react promptly to the calves’ numerous signals (Figure 12.1). Interpreting these signals is a skill that can be easily learnt. Recent developments in calf rearing are directed towards reducing the average time spent with each calf.