Chain Length Dependent Alkane/β

Total Page:16

File Type:pdf, Size:1020Kb

Chain Length Dependent Alkane/β Soft Matter View Article Online PAPER View Journal | View Issue Chain length dependent alkane/b-cyclodextrin nonamphiphilic supramolecular building blocks† Cite this: Soft Matter, 2016, 12,1579 Chengcheng Zhou,ab Jianbin Huang*a and Yun Yan*a In this work we report the chain length dependent behavior of the nonamphiphilic supramolecular building blocks based on the host–guest inclusion complexes of alkanes and b-cyclodextrins (b-CD). 1H NMR, ESI-MS, and SAXS measurements verified that upon increasing the chain length of alkanes, the Received 2nd November 2015, building blocks for vesicle formation changed from channel type 2alkane@2b-CD via channel type Accepted 19th November 2015 alkane@2b-CD to non-channel type 2alkane@2b-CD. FT-IR and TGA experiments indicated that hydrogen DOI: 10.1039/c5sm02698a bonding is the extensive driving force for vesicle formation. It revealed that water molecules are involved in vesicle formation in the form of structural water. Upon changing the chain length, the average number www.rsc.org/softmatter of water molecules associated with per building block is about 16–21, depending on the chain length. Introduction fabrication of proper nonamphiphilic building blocks for the formation of vesicles and other self-assembled structures still Molecular self-assembly, a ubiquitous process in chemistry, remains challenging. biology, and materials science, provides the foundation for Recently, nonamphiphilic building blocks based on the building a variety of nanostructures.1–6 Among the various host–guest inclusion complexes of cyclodextrins (CDs) and structures, vesicles have always been considered as one of the surfactants have been developed in our lab.23,26–31 CDs are most important types owing to their promising applications in doughnut-like oligosaccharides with a hydrophilic exterior and fields such as drug7 and gene delivery8 and nanoreactors.9 To a hydrophobic cavity.32 The hydrophobic cavity is an ideal harbor meet the different application demands, extensive efforts have in which poorly water-soluble molecules can shelter their hydro- been made to design various building blocks to fabricate phobic parts.33 Therefore, upon addition of surfactants into the functional vesicles.9–13 Amphiphiles have been verified to be a aqueous solution of CD, nonamphiphilic building blocks can be large family of building blocks to form vesicles, such as surfac- formed if the whole hydrophobic tail of surfactants was included Published on 20 November 2015. Downloaded by Beijing University 25/11/2016 14:37:32. tants,14 lipid molecules,15 polymers8,16 and aromatic organic com- into the cavity of CD. Our group revealed that when b-CD pounds.17,18 In the last two decades, nonamphiphiles such as and surfactants, such as sodium dodecyl sulphate (SDS)23,29 or polyoxometalate macroions19–22 have also been found to be effec- Tween 20,30 complex at the molar ratio of 2 : 1, the resultant tive building blocks for vesicle formation. The amphiphilic mole- surfactant@2b-CD inclusion complexes can self-assemble into cules self-assemble into vesicles driven by the hydrophobic effect vesicles, tubes, and lamellar structures simply with increasing and mediated by a hydrophobic–hydrophilic balance.23 In con- concentration. These self-assemblies are predominantly driven trast, the driving forces for nonamphiphilic vesicles can be electro- by hydrogen bonding between b-CDs,29,30 which demonstrates static interactions, van der Waals interactions and hydrogen that the nonamphiphilic building block surfactant@2b-CD has bonding etc.19,24 With superiorities in some aspects over their been fabricated. Most surprisingly, our latest work shows that amphiphilic counterparts, such as better environmental adap- other than surfactants, dodecane can also form a 2 : 1 inclusion tiveness, versatile functionalities, enhanced biocompatibility, complex with b-CD, which further self-assembles into vesicles or etc., nonamphiphiles as a new class of building blocks are bricks depending on concentrations.34 Meanwhile, Hao et al. attracting considerable attention.19,24,25 However, so far the revealed that nonamphiphilic vesicles can be constructed by the 1 : 1 host–guest complexes formed with b-CD and small aromatic 35 a Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory molecules. These results strongly indicate that different for Structural Chemistry of Unstable and Stable Species, College of Chemistry and alkanes may produce different nonamphiphilic building blocks Molecular Engineering, Peking University, Beijing 100871, P. R. China. with b-CD. Therefore, it is highly desired to carry out a systematic E-mail: [email protected], [email protected] study to verify this conclusion. b Institute of Chemistry, Chinese Academy of Sciences, Beijing, China † Electronic supplementary information (ESI) available: 1H NMR, ESI-MS results Herein we show that the chain length of alkanes has a great and the effect of urea on the self-assembly of alkane/b-CD. See DOI: 10.1039/ influence on the structure of nonamphiphilic building blocks c5sm02698a formed with b-CD. In the case of short chained alkanes with This journal is © The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 1579--1585 | 1579 View Article Online Paper Soft Matter 5 to 10 carbons, the building block is channel type 2alkane@2b-CD, Atomic force microscopy (AFM) which can be looked on as the dimer of alkane@b-CD. Upon AFM measurements in tapping mode under ambient condi- increasing the chain length to 12–14 carbons, the building blocks tions were conducted on a D3100 AFM (VEECO, USA). One drop take the form of alkane@2b-CD. Interestingly, upon further increas- of the alkane/b-CD solution was spin-coated on a mica surface, ing the chain length to 16 and 18 carbons, the building block and then placed at room temperature to dry before AFM changes back to the form of 2alkane@2b-CD but with non- observation. channel type arrangement of b-CD. All these nonamphiphilic building blocks self-assemble into unilamellar and bilamellar Fourier transform infrared (FT-IR) vesicles in dilute solutions. Our results revealed for the first time that variation of the chain length has significant effects FT-IR measurements were performed on a Nicolet Magna IR on the fundamental structure of the nonamphiphilic building 750 equipped with an infrared microspectrograph (Thermo blocks, which brings new perspectives in designing self- Scientific Co., USA). The vesicle samples were frozen in liquid assembled structures. nitrogen and subsequently lyophilized for 48 h before FT-IR measurements. 1 Experimental section H NMR measurements The lyophilized alkane/b-CD precipitates were dissolved into Materials 1 DMSO-d6 for H NMR measurements to determine the actual n-Pentane and n-hexane were purchased from Beijing Chemical ratio of alkane to b-CD. The measurements were performed on Works. n-Tetradecane, n-hexadecane and n-octadecane were an AVANCE III 500 MHz NMR (Bruker, Switzerland). All the purchased from Alfa Aesar. n-Octane, n-decane and b-cyclodextrin proton signals were calibrated with the TMS at 0.00 ppm. By (b-CD) with a water content of 14% were purchased from Sino- comparing the integration between b-CD (H1 protons, d 4.83 ppm) pharm Chemical Reagent Co. Ultrapure water was used throughout and the total proton integration of alkanes, the alkane/b-CD the experiment. complex ratio can be determined. Sample preparation ESI-MS measurements For the precipitated samples, alkane was added into the b-CD ESI-MS measurements were carried out on an APEX IV FT-MS solutions of 16 mM and then the samples were vortex mixed (Bruker, USA). The operating conditions of the ESI source: sufficiently to create the white precipitates. After removing the positive ion mode; spray voltage À3300 V; capillary voltage supernatant, the alkane/b-CD precipitates were lyophilized for À3800 V, capillary temperature 230 1C; skimmer1 33.0 V, further measurements. Since the solubility of alkane/b-CD skimmer2 28.0 V; sheath gas nitrogen pressure 0.3 bar. The complexes is about 2 mM, vesicular samples were prepared 1 mM alkane/b-CD vesicle samples were diluted 10 times by by weighting desired amounts of lyophilized alkane/b-CD pre- methanol and introduced via direct infusion at a flow rate of cipitates into test tubes followed by addition of water to give the 3.00 mL minÀ1. Published on 20 November 2015. Downloaded by Beijing University 25/11/2016 14:37:32. alkane/b-CD concentration of 2 mM. The resultant solutions were thermostatically incubated at 25 1C (for at least 24 h) to SAXS measurements allow self-assembly formation. SAXS measurement of the b-CD powder and lyophilized alkane/ b-CD precipitates was conducted on a high-flux small-angle Dynamic light scattering (DLS) X-ray scattering instrument (SAXSess, Anton Paar) equipped Dynamic light scattering (DLS) measurements were conducted with a Kratky blockcollimation system. A Philips PW3830 on an ALV/DLS/SLS5022F light scattering-apparatus, equipped sealed-tube X-ray generator (Cu Ka) was employed to simulta- with a 22 mW He–Ne laser (632.8 nm wavelength) with a neously measure the small-angle and wide-angle X-ray scat- refractive index matching bath of filtered toluene surrounding tering (WAXS and SAXS) of the samples. The scanning the cylindrical scattering cell. The samples were filtered by patterns extend to the high-angle range (the q range covered 450 nm filters. The scattering angle was set from 301 to 901. by the imaging plate is from 0.0 to 27.2 nmÀ1, q =4p sin y/l, where l is the wavelength of 0.1542 nm and 2y is the TEM observation scattering angle). The scattering angles were calibrated with The morphology of the self-assemblies was observed using a aluminum. JEM-100CX II transmission electron microscope (JEOL, Japan). A drop of the sample was placed on 230 mesh copper grids TGA and DSC measurements coated with Formvar film.
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • Structural Chemistry and Molecular Biology Edited by A. Rich and N
    1218 BOOK REVIEWS original references when specific numbers or critical inter- The theme of the chemistry of proteins section is the pretations are required. However, on balance the book attempt to predict the conformation of a protein molecule should be a valuable adjunct to the library of anyone con- from its amino-acid sequence. The apparent ease with which, templating work in the field of nonmetallic magnetic solids in nature, the molecule finds its way from disorder to order and I would recommend its purchase subject to the quali- makes Edsall optimistic that we can learn how it is done. fications noted above. In the same section Hamilton and McConnell review the W. L. ROTI-I use of spin labels to investigate conformational detail. Inorganic and Structures Branch A group of papers on inherited diseases which are as- Physical Chemistry Laboratory sociated with defective proteins is appropriate: Pauling was General Electric Company the first to recognize that human sickle-cell anaemia must P.O. Box 1088 reflect a difference in haemoglobin molecules. Among many Schenectady similar variants of haemoglobin and other proteins disco- New York 12301 vered since, not all are disadvantageous to the organism; U.S.A. some offer useful variety in activity or in the rate of their synthesis. The papers on hydrogen bonding are sufficiently closely related to show some 'resonance' between them. Donohue effectively criticizes four common assumptions: (1) that H- Structural chemistry and molecular biology. Edited bond geometry around the acceptor atom correlates well by ALEXANDER RICH and NORMAN DAVIDSON. Pp. with the arrangement of orbitals occupied by unshared elec- iv + 907.
    [Show full text]
  • Intramolecular Bridges
    Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017 Supplementary material Figure S1 The IMS-MS instrument A small sample of experiments, in chronological order, that calculated K0 with respect to the given chemical standard 2,4-lutidine (107 Da) Lubman DM, Kronick MN (1983) Multiwavelength-selective ionization of organic-compounds in an ion mobility spectrometer. Anal Chem 55(6):867–873 Lubman DM (1984) Temperature-dependence of plasma chromatography of aromatic-hydrocarbons. Anal Chem 56(8):1298–1302 Karpas Z (1989) Ion mobility spectrometry of aliphatic and aromatic-amines. Anal Chem 61(7):684–689 Karpas, Z. (1989). Evidence of proton-induced cyclization of α, ω-diamines from ion mobility measurements. International journal of mass spectrometry and ion processes, 93(2), 237-242. Karpas, Z., Berant, Z., & Stimac, R. M. (1990). An ion mobility spectrometry/mass spectrometry (IMS/MS) study of the site of protonation in anilines. Structural Chemistry, 1(2), 201-204. Morrissey, M. A., & Widmer, H. M. (1991). Ion-mobility spectrometry as a detection method for packed-column supercritical fluid chromatography. Journal of Chromatography A, 552, 551-561. Bell, S. E., Ewing, R. G., Eiceman, G. A., & Karpas, Z. (1994). Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes. Journal of the American Society for Mass Spectrometry, 5(3), 177-185. Snyder AP, Maswadeh WM, Eiceman GA, Wang YF, Bell SE (1995) Multivariate statistical-analysis characterization of application-based ion mobility spectra. Anal Chim Acta 316 (1):1–14 Wessel, M. D., Sutter, J. M., & Jurs, P. C. (1996). Prediction of reduced ion mobility constants of organic compounds from molecular structure.
    [Show full text]
  • Structural Inorganic Chemistry
    Structural Inorganic Chemistry A. F. WELLS FIFTH EDITION \ CLARENDON PRESS • OXFORD Contents ABBREVIATIONS xxix PARTI 1. INTRODUCTION 3 The importance of the solid State 3 Structural formulae of inorganic Compounds 11 Geometrical and topological limitations on the structures of v molecules and crystals 20 The complete structural chemistry of an element or Compound 23 Structure in the solid State 24 Structural changes on melting 24 Structural changes in the liquid State 25 Structural changes on boiling or Sublimation 26 A Classification of crystals 27 Crystals consisting of infinite 3-dimensional complexes 29 Layer structures 30 Chain structures 33 Crystals containing finite complexes 36 Relations between crystal structures 36 2. SYMMETRY 38 Symmetry elements 38 Repeating patterns, unit cells, and lattices 38 One- and two-dimensional lattices; point groups 39 Three-dimensional lattices; space groups 42 Point groups; crystal Systems 47 Equivalent positions in space groups 50 Examples of 'anomalous' symmetry 5 1 Isomerism 52 Structural (topological) isomerism 54 Geometrical isomerism 56 Optical activity 57 3. POLYHEDRA AND NETS 63 Introduction 63 The basic Systems of connected points 65 viii Contents Polyhedra 68 Coordination polyhedra: polyhedral d'omains 68 The regulär solids 69 Semi-regular polyhedra 71 Polyhedra related to the pentagonal dodecahedron and icosahedron 72 Some less-regular polyhedra 74 5-coordination 76 7-coordination 77 8-coordination 78 9-coordination 79 10-and 11-coordination 80 Plane nets 81 Derivation of plane nets
    [Show full text]
  • On the Primary Ionization Mechanism (S) in Matrix-Assisted Laser
    Hindawi Publishing Corporation Journal of Analytical Methods in Chemistry Volume 2012, Article ID 161865, 8 pages doi:10.1155/2012/161865 Research Article On the Primary Ionization Mechanism(s) in Matrix-Assisted Laser Desorption Ionization Laura Molin,1 Roberta Seraglia,1 Zbigniew Czarnocki,2 Jan K. Maurin,3, 4 Franciszek A. Plucinski,´ 3 and Pietro Traldi1 1 National Council of Researches, Institute of Molecular Sciences and Technologies, Corso Stati Uniti 4, I35100 Padova, Italy 2 Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland 3 National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland 4 National Centre for Nuclear Research, 05-400 Otwock, Swierk,´ Poland Correspondence should be addressed to Pietro Traldi, [email protected] Received 25 May 2012; Accepted 19 October 2012 Academic Editor: Giuseppe Ruberto Copyright © 2012 Laura Molin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A mechanism is proposed for the first step of ionization occurring in matrix-assisted laser desorption ionization, leading to − protonated and deprotonated matrix (Ma) molecules ([Ma + H]+ and [Ma − H] ions). It is based on observation that in solid state, for carboxyl-containing MALDI matrices, the molecules form strong hydrogen bonds and their carboxylic groups can act as both donors and acceptors. This behavior leads to stable dimeric structures. The laser irradiation leads to the cleavage of these − hydrogen bonds, and theoretical calculations show that both [Ma + H]+ and [Ma − H] ions can be formed through a two-photon absorption process.
    [Show full text]
  • 1991 Structure and Raman Spectra of Nbox.Pdf
    100 Chem. Mater. 1991,3, 100-107 Presumably it was some GaSb-Ga mixture. indicative of the absence of vinyl radicals. To elucidate our understanding of GaSb growth by using TMGa and Summary TVSb, the pyrolysis rates for this combination of reactants The pyrolysis of TVSb has been investigated in a flow were also studied. CH, radicals from (CH3N), pyrolysis tube reactor using Dzand He carrier gases. For TVSb were found to enhance TVSb pyrolysis in He. TMGa also alone, the most likely pyrolysis reaction involves an Sb- increases the TVSb pyrolysis rate, mainly due to the centered reductive elimination pathway. A less likely methyl radicals produced. A heterogeneous pyrolysis re- possibility is pyrolysis via homolysis of the Sb-C bonds, action appears at high surface area. At V/III ratios nor- yielding vinyl radicals. Unfortunately, examination of the mally used for OMVPE growth, carbonaceous deposits organic byproducts in both He and D, yields insufficient were formed. Thus, TVSb may be a useful precursor for information to form a definitive hypothesis. However, in OMVPE only at V/III ratios less than unity. He the pyrolysis rate for TVSb is more rapid than for TMSb. Since vinyl radicals form stronger bonds than Acknowledgment. We acknowledge financial support methyl radicals, this datum contradicts the Sb-C bond from the Office of Naval Research, the Office of Naval homolysis mechanism. Again, the activation energy for Technology, and the Air Force Office of Scientific Re- pyrolysis is less than the expected Sb-vinyl bond strength. search. Finally, the addition of C7D, produces no CH,=CHD, Registry No.
    [Show full text]
  • Download the Pdf File
    Frontiers in Materials Discovery, Characterization and Application Workshop held in Schaumburg, IL Aug 2nd-3rd, 2014 Organized by George Crabtree: University of Chicago and Argonne National Laboratory John Parise: Stony Brook University and FJointrontiers Photon in Sciences Materials Institute Discovery, Characterization and Application Chemical and Engineering Materials Division Neutron Scattering Directorate Oak Ridge National Laboratory Workshop report on Frontiers in Materials Discovery, Characterization and Application Schaumburg, IL, Aug 2nd-3rd, 2014. Organizers: George Crabtree (University of Chicago and Argonne National Laboratory) and John Parise (Stony Brook University and Joint Photon Sciences Institute) Sponsored by: Oak Ridge National Laboratory This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non- exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public- access-plan). 1 Table of Contents I. Executive Summary II. Introduction III. Sessions Chemical Spectroscopy Materials Science and Engineering Structural Chemistry IV. Principal Findings and Recommendations Appendix I. Workshop Agenda Appendix II. List of Participants Appendix III. Invitation Letter Appendix IV. Acknowledgements 2 I. Executive Summary Materials are at the heart of technologies which will define the future economy and provide solutions to the compelling challenges facing society from energy security to future transport and infrastructure.
    [Show full text]
  • New Horizons for Structural Chemistry ACS August 2019, San Diego
    New Frontiers beyond one million: new horizons for structural chemistry ACS August 2019, San Diego Dr. Juergen Harter CEO 28th August 2019 2 Running order and key themes • Data growth • Insights • CSD growth / structural chemistry data growth • AI / ML based • Chemical space, diversity, coverage, trends over time • From advanced search & visualisations • Advances in instrumentation and techniques • Derived from underlying high-quality data • Yielding more data with higher accuracy and precision • New science & innovation • Automation & Software development • Powered by scientific hypotheses underpinned by data • Evolution of existing tool set / future tools development • Spotting emerging trends • Where does the community best fit? • Digital Drug Design & Manufacturing Centres • Publishing advances • Semantic representation & analyses • Interdisciplinarity – connecting / linking other domains • Machine / human experts - symbiosis • Biology / Pharmacology / Medicine • Reasoning / Inferencing (based on ontologies) • Quality and precision of data and meta data • Evolution of data standards, and data architecture (more capabilities & flexibility) • Data initiatives (FAIR, InChI, PIDs, CIF2.0) • Bulk operations: integrity checks, quality analyses, data metrics 3 The Cambridge Structural Database (CSD) 1,015,011 ❑ Over 1 Million small-molecule ❑ Every published Structures published crystal structures structure that year ❑ Over 80,000 datasets ❑ Inc. ASAP & early view Structures deposited annually ❑ CSD Communications published ❑ Patents previously
    [Show full text]
  • Crystallography Education Policies for the Physical and Life Sciences
    Crystallography Education Policies for the Physical and Life Sciences Sustaining the Science of Molecular Structure in the 21st Century Prepared by the American Crystallographic Association and the United States National Committee for Crystallography ©2006 Crystallography Education Policies for the 21st Century USNC/Cr and ACA ©2006 Preface In 2001 and 2003, the United States National Committee for Crystallography (USNC/Cr) Education Subcommittee conducted two surveys (Appendix B). The first survey aimed to determine the content and extent of coverage of crystallography in university curricula, while the second solicited the views of the broader crystallographic community on the status of crystallography education and training in the US, in both the physical and the life sciences. The results of these surveys suggested that, perhaps due to rapid technological advances in the field of modern crystallography, there appears to be a declining number of profes- sional crystallographers, as well as a lack of sufficient education and training in crystallog- raphy for individuals who wish to understand and/or use crystallography in their hypothesis- driven research. Recognizing the opportunity to communicate to the broader scientific community the research opportunities afforded by crystallography, as well as the value of crystallographic information, the education committees of the American Crystallographic Association (ACA) and USNC/Cr organized a crystallography education summit, which took place June 1-2, 2005 at the conclusion of the ACA national meeting in Orlando, FL. A broad range of individuals known for their experience and contributions in crystallography educa- tion and training participated in this summit (Appendix A). The outcome of this process is this consensus policy statement on crystallography education and training.
    [Show full text]
  • Structural CHEMISTRY
    structural CHEMISTRY With over 10 years industry experience per structural scientist, Nitto Avecia Pharma Services’ strategic, systematic approach provides high quality solutions for identification, characterization, and development of highly sensitive methodologies. INDUSTRY-LEADING STRUCTURAL CHEMISTRY SERVICES • Extractables/leachables • Elemental analysis • Peptide mapping • Residual Solvent Screening studies • Structural elucidation • Glycan analysis by GC/MS • Reference standard/drug of unknowns • Enantiomeric studies • Melamine analysis by substance characterization GC/MS and LC/MS • Purification of impurities • Residual analysis in • Structural elucidation and degradation products support of biotechnology- • Structural characterization of target/lead • Amino acid analysis derived products of protein variants and compounds isoforms LEADING-EDGE INSTRUMENTATION • LC/MS/MS: Quadrupole, • GC/MS (EI and CI • ICP-MS • IC triple quadrupole of mass ionization) • ICP-OES • FTIR spectrometers with APCI • UPLC-MS/MS • Flame AA • DSC/TGA and ESI • GC (multiple detectors) • GFAA • TOC • LC/MS-QTOF • HPLC (multiple detectors) WWW.AVECIAPHARMA.COM 10 VANDERBILT, IRVINE CA 92618 TEL: 949.951.4425 TOLL: 877.445.6554 structural CHEMISTRY PARTNER WITH NITTO AVECIA PHARMA SERVICES’ STRUCTURAL CHEMISTRY TEAM With a multidisciplinary team including biochemists, synthetic organic chemists, and analytical chemists, Avecia Pharma offers an array of approaches and techniques to characterize drug structures and analyze their purity at every step of the
    [Show full text]
  • Chemical Crystallography and Crystal Engineering ISSN 2052-2525 Gautam R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref editorial IUCrJ Chemical crystallography and crystal engineering ISSN 2052-2525 Gautam R. Desiraju CHEMISTRYjCRYSTENG Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India Ever since it was shown that the crystal structure of NaCl could be determined from the diffraction pattern of the substance, the subject of chemistry has been inextricably linked with crystallography. While the accuracy of the molecular parameters obtained from a crystallographic study are generally comparable with those obtained from spectroscopy or computation, the generality and ease of application of crystallographic methods ensured their indispensability in structural chemistry. All that is required today is a single-crystal of the compound under consideration, a standard diffractometer and a computer. Various types of bonding – ionic, covalent, electron deficient, quadruple, ‘Today, there is very little organometallic and the so-called non-covalent bonds, like the hydrogen bond, the doubt that chemistry owes metallic bond and more lately, the halogen bond – could only have been understood if a method existed that allowed for the very accurate measurement of molecular and as much to crystallography intermolecular geometrical parameters in a variety of compounds. Any development in as crystallography does solid-state chemistry obviously predicates a thorough knowledge of crystal structure and to chemistry. This mutual the momentous progress in this field owes much to the determination of structures that span the range from silicates and minerals, to complex oxides, perovskite super- synergy defines modern conductors, zeolites and catalysts right through to our present day appreciation of chemical crystallography.’ aperiodic crystals.
    [Show full text]
  • Chemistry, Ph.D. 1
    Chemistry, Ph.D. 1 CHEMISTRY, PH.D. The mission of the Department of Chemistry at the University of Wisconsin–Madison is to conduct world-class, groundbreaking research in the chemical sciences while offering the highest quality of education to undergraduate students, graduate students, and postdoctoral associates. Our leadership in research includes the traditional areas of physical, analytical, inorganic, and organic chemistry, and has rapidly evolved to encompass environmental chemistry, chemical biology, biophysical chemistry, soft and hard materials chemistry, nanotechnology and chemistry education research. We pride ourselves on our highly interactive, diverse, and collegial scientific environment. Our emphasis on collaboration connects us to colleagues across campus, around the country, and throughout the world. The Department of Chemistry is ranked very highly in all recent national rankings of graduate programs. We offer a doctor of philosophy in chemistry. Specializations within the program are analytical, inorganic, materials, organic, physical chemistry, chemical biology as well as chemistry education research. Breadth coursework may be taken in other departments including physics, mathematics, computer sciences, biochemistry, chemical engineering, and in fields other than the student's specialization within the Department of Chemistry. Excellent facilities are available for research in a wide variety of specialized fields including synthetic and structural chemistry; natural product and bio-organic chemistry; molecular dynamics
    [Show full text]