Eruptive Potential of Volcanoes in Marie Byrd Land

Total Page:16

File Type:pdf, Size:1020Kb

Eruptive Potential of Volcanoes in Marie Byrd Land enhanced image reveals the temperature of the surface and the This work was funded by National Science Foundation grant brightness temperature of the crater area. The trace indicates DPP 77-27010. that the brightness temperature is approximately 60°K above References the background at the summit, which woud include the lava lake. Since this is a subresolution feature, cooler surfaces within Dozier, J. 1981. A method for satellite identification of surface tempera- the same picture element, or pixel, are also contributing to the ture fields of sub-pixel resolution. Remote Sensing of Environment, 11, pixel radiant temperature. The resulting pixel temperature is 221-229. thus less than the true brightness temperature of the crater area. Hussey, W. J. 1979. The TIROS-N/NOAA operational satellite system. rhe installation of the high resolution picture transmission Washington, D.C.: U.S. Department of Commerce/National Oceanic (HRPT) system at McMurdo Station makes it possible to monitor and Atmospheric Administration, National Earth Satellite Service. the thermal regime at Antarctica, including anomalous thermal Kyle, P. R. 1979. Volcanic activity at Mount Erebus, 1978-79. Antarctic areas such as Mount Erebus, in a way that was previously Journal of the U.S., 14(5), 35-36. impossible. Its near-polar location allows many additional pass- Kyle, P. R., Dibble, R., Giggenbach, W., and Keys, J. 1982. Volcanic es per day, greatly increasing the probability of receiving cloud- activity associated with the anorthoclase phonolite lava lake, Mount free imagery. Erebus, Antarctica. In C. Craddock (Ed.), Antarctic geoscience. Madi- son: University of Wisconsin Press. We extend special thanks to Jann Knapp for her cartographic Matson, M., and Dozier, J. 1981. Identification of subresolution high assistance, to Mike Matson for his help with the temperature temperature sources using a thermal IR sensor. Photogrammetric Engi- plot, and to John Pritchard for the enhanced imagery. neering and Remote Sensing, 47(9), 1311-1318. Eruptive potential of volcanoes in volcanic deposits, and examining ash layers in ice cores. Emis- Marie Byrd Land sion of steam from volcanic vents has been observed in Marie Byrd Land (figure and table), and the intermittent emission of steam can be inferred where fumarolic ice towers (produced by condensation and freezing of water vapor) occur around a crater WESLEY E. LEMASURIER rim (LeMasurier and Wade 1968). The K-Ar method of dating is not nearly as useful as the Geology Department carbon-14 method for determining the very recent behavior of a University of Colorado-Denver volcano, because the precision of the K-Ar method decreases Denver, Colorado 80202 rapidly in materials younger than 500,000 years, whereas the carbon-14 method is most precise when used on materials only a D. C. REX few thousand years old or younger. Thus, in the table, the materials in the columns labeled "Less than 200,000 years" were Department of Earth Sciences essentially too young to be dated by the K-Ar method. It is University of Leeds certainly possible to date some materials that are younger than United Kingdom 200,000 years by K-Ar, under favorable circumstances (Dalrym- ple and Lanphere 1969), but the materials from Marie Byrd Land could not be accurately dated if they were younger than 200,000 Those who study young volcanoes frequently are asked years old. about the eruptive potential of these volcanoes, even when they On the other hand, the record provided by ash layers in the are located in a region as remote as Marie Byrd Land. In Marie ice cores at Byrd Station and Dome C makes it clear that some Byrd Land, human hazard is not a concern, but the possibility of volcano or volcanoes have been active in Marie Byrd Land climatic impact interests scientists beyond the immediate com- within the past 75,000 years. Cow and Williamson (1971) record- munity of antarctic geologists. Volcanologists commonly try to ed 25 bands of ash in the Byrd Station core, with an especially predict the future behavior of a volcano on the basis of its large number of bands in the interval estimated to be 16,000 to history, which in temperate regions often can be determined 30,000 years old. Prevailing wind directions and the coarseness from historical records and carbon-14 dating of organic remains of the ash virtually require a source among the Marie Byrd Land buried by volcanic deposits (see, for example, Crandall, volcanoes (Cow and Williamson 1971), and the petrographic Mullineaux, and Rubin 1975). In Marie Byrd Land, however, characteristics of the ash support this inference (LeMasurier there is no history of human observation and no organic mate- 1972). Similarly, Kyle and others (1981) analyzed ash estimated rial for carbon-14 dating. Moreover, the rate of erosion of lava is to be 25,000 years old from the Dome C core and inferred its so slow that even 10-million-year-old volcanoes are deceptively source to be Mount Takahe. The new K-Ar data that provide the fresh in appearance. basis for this paper do not invalidate any of the earlier con- The methods available for inferring the eruptive potential of clusions; they simply provide a basis for a wider range of spec- volcanoes in Marie Byrd Land are studying the emission of ulation about which volcanoes have erupted in the recent past volcanic gasses, determining the potassium-argon (K-Ar) age of and which ones are likely to erupt in the future. 34 ANTARCTIC JOURNAL Some characteristics of the evolutionary history of individual volcanoes can be used to refine the information available from K-Ar dating. Hawaiian volcanoes are known to have evolved through an initial, relatively rapid, shield-building phase, fol- lowed by the development of a summit caldera and, in turn, by the eruption of small cinder cones after the caldera formed (MacDonald 1972). A similar history seems to have charac- terized the development of volcanoes in Marie Byrd Land, though the time scale apparently is very much longer there than for Hawaiian volcanoes. Recent K-Ar data (LeMasurier and Rex in preparation) suggest that Marie Byrd Land volcanoes go through an initial trachytic, shield-building phase that may last roughly 0.5-2.5 million years. This is followed by caldera forma- tion and then by a period of very infrequent basaltic cinder cone activity that may last as long as 10 million years. Thus, if the pre- caldera lavas in these volcanoes are very young, the chances for a major eruption would seem to be relatively high, particularly if the volcano displays fumarolic activity like that at Mount Berlin. On the other hand, very recent cinder cone activity, like that at Mount Andrus, is not especially suggestive of a high potential for future activity, because cinder cone activity repre- sents the waning stage and possibly the termination of activity at a particular volcano. The pre-caldera lavas at Mount Andrus, for example, are more than 10 million years old. Mount Bursey has a similar history. The table summarizes the available information on relatively recent manifestations of volcanic activity in Marie Byrd Land. In our estimation, the volcanoes that have very young pre-caldera - rocks have the highest potential for future eruptive behavior. Hence, the farther to the right a volcano is listed on the table, the greater its potential for future activity is presumed to be. It should be noted that even a major eruption here is not likely to Actively steaming fumarolic ice tower situated on the west rim of Berlin Crater, Mount Berlin, December 1977. have much climatic impact. Very little subaerial ash has been produced by eruptions of these volcanoes in the past, and the possibility of large volumes of ash being injected into the strat- osphere during future eruptions seems very slight (LeMasurier is possible on any of these, if the eruptive histories of Mount 1972). Andrus and Mount Bursey are reasonably representative, but About 18 major volcanoes in Marie Byrd Land have formed the next cinder cone eruption might take place on a volcano that within the past 10 million years. Small-scale cinder cone activity has been dormant for 2 to 5 million years. Therefore, it probably Indications of potential activity in the volcanoes of Marie Byrd Land Method Observation Actively steaming vents Direct Fumarolic ice towers witnesses observed 4-6 vents. observation Mt. Berlin (135050W 76003S). Observed in 1967 (LeMasurier and Mt. Berlin. On 22 Nov. 1977, 6 2 weeks and observed 2 Wade 1968) and again in 1977. Visited a second time within the following steaming vents. On 11 Dec. 1977, 6 witnesses Mt. Hampton (1 25050W 76050S). Observed in 1967 (LeMasurier Mt. Kauffman (1 32030W 75035S). steaming vents on the north flank of the volcano. and Wade 1968), but has not been revisited since, observed 3-4 Cinder cones Pre-caldera rocks K-Ar dating <200,000 yrs. <1 million yrs. <200,000 yrs. <1 million yrs. Huff Peak, Mt. Bursey Mt. Andrus (1 32020W Shepard Island (1 32040W Mt. Takahe (11 2000W (132°40W 76°0OS) 7550S) 7425S) 7615S) Mt. Obiglio, Grant Island Mt. Waesche (1 27000W Mt. Murphy (111 000W Mt. Berlin (1 31 50W 7428S) 77°1 OS) 75°20S) Toney Mountain (1 1600W 75°50S) Mt. Waesche 35 1982 REVIEW is not unreasonable to represent the volcanoes that have pre- 2, Field Work 1958-59, Part 7, 1-27. Columbus: Ohio State University caldera lavas less than 1 million years old as active," and the Research Foundation. remaining ones that are less than 10 million years old as dor- Crandell, D. R., Mullineaux, D. R., and Rubin, M. 1975. Mount St. mant. A more conservative representation might show only Helens volcano: Recent and future behavior.
Recommended publications
  • Region 19 Antarctica Pg.781
    Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al.
    [Show full text]
  • Integrated Tephrochonology Copyedited
    U.S. Geological Survey and The National Academies; USGS OFR-2007-xxxx, Extended Abstract.yyy, 1- Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core N.W. Dunbar,1 W.C. McIntosh,1 A.V. Kurbatov,2 and T.I Wilch 3 1NMGB/EES Department, New Mexico Tech, Socorro NM, 87801, USA ( [email protected] , [email protected] ) 2Climate Change Institute 303 Bryand Global Sciences Center, Orono, ME, 04469, USA ([email protected]) 3Department of Geological Sciences, Albion College, Albion MI, 49224, USA ( [email protected] ) Summary Mount Berlin and Mt. Takahe, two West Antarctica volcanic centers have produced a number of explosive, ashfall generating eruptions over the past 500,000 yrs. These eruptions dispersed volcanic ash over large areas of the West Antarctic ice sheet. Evidence of these eruptions is observed at two blue ice sites (Mt. Waesche and Mt. Moulton) as well as in the Siple Dome and Byrd (Palais et al., 1988) ice cores. Geochemical correlations between tephra sampled at the source volcanoes, at blue ice sites, and in the Siple Dome ice core suggest that at least some of the eruptions covered large areas of the ice sheet with a volcanic ash, and 40 Ar/ 39 Ar dating of volcanic material provides precise timing when these events occurred. Volcanic ash from some of these events expected to be found in the WAIS Divide ice core, providing chronology and inter-site correlation. Citation: Dunbar, N.W., McIntosh, W.C., Kurbatov, A., and T.I Wilch (2007), Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10 th ISAES X, edited by A.
    [Show full text]
  • Tephrochronology: Methodology and Correlations, Antarctic Peninsula Area
    Tephrochronology: Methodology and correlations, Antarctic Peninsula Area Mats Molén Thesis in Physical Geography 30 ECTS Master’s Level Report passed: November 9 2012 Supervisor: Rolf Zale Tephrochronology: Methodology and correlations, Antarctic Peninsula Area Abstract Methods for tephrochronology are evaluated, in the following way: Lake sediments <500 years old from three small Antarctic lakes were analysed for identification of tephras. Subsamples were analysed for a) grain size, and identification and concentration of volcanogenic grains, b) identification of tephra horizons, c) element abundance by EPMA WDS/EDS and LA-ICP-MS, and d) possible correlations between lakes and volcanoes. Volcanogenic minerals and shards were found all through the sediment cores in all three lakes, in different abundances. A high background population of volcanogenic mineral grains, in all samples, made the identification of tephra horizons difficult, and shards could only be distinguished by certainty after chemical analysis of elements. The tephra layers commonly could not be seen by the naked eye, and, hence they are regarded as cryptotephras. Because of the small size of recent eruptions in the research area, and the travel distance of ash, most shards are small and difficult to analyse. Nine possible tephra horizons have been recorded in the three lakes, and preliminary correlations have been made. But because of analytical problems, the proposed correlations between the lakes and possible volcanic sources are preliminary. Table of contents 1. Introduction . 1 1.1. Advances and problems of tephrochronology . 1 1.1.1. General observations .. 1 1.1.2. Difficulties in tephrochronology work .. 2 1.1.3. The current research .. 4 1.2.
    [Show full text]
  • Igneous Rocks of Peter I Island Hemisphere Tectonic Reconstructions
    LeMasurier, W. E., and F. A. Wade. In press. Volcanic history in Marie Byrd Land: implications with regard to southern Igneous rocks of Peter I Island hemisphere tectonic reconstructions. In: Proceedings of the International Symposium on Andean and Antarctic Vol- canology Problems, Santiago, Chile (0. Gonzalez-Ferran, edi- tor). Rome, International Association of Volcanology and Chemistry of Earths Interior. THOMAS W. BASTIEN Price, R. C., and S. R. Taylor. 1973. The geochemistry of Dune- Ernest E. Lehmann Associates din Volcano, East Otago, New Zealand: rare earth elements. Minneapolis, Minnesota 55403 Contributions to Mineralogy and Petrology, 40: 195-205. Sun, S. S., and G. N. Hanson. 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle CAMPBELL CRADDOCK sources of alkali basalts and nephelinites. Contributions to Department of Geology and Geophysics Mineralogy and Petrology, 52: 77-106. The University of Wisconsin, Madison Sun, S. S., and G. N. Hanson. 1976. Rare earth element evi- Madison, Wisconsin 53706 dence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology, 54: 139-155. Peter I Island lies in the southeastern Pacific Ocean at 68°50S. 90°40W. about 240 nautical miles off the Eights Coast of West Antarctica. Ris- ing from the continental rise, it is one of the few truly oceanic islands in the region. Few people have been on the island, and little is known of its geology. Thaddeus von Bellingshausen discovered and named the island in 1821, and it was not seen again until sighted by Pierre Charcot in 1910. A Nor- wegian ship dredged some rocks off the west coast in 1927, and persons from the Norvegia achieved the first landing in 1929.
    [Show full text]
  • What If Antarctica's Volcanoes Erupt
    What if Antarctica's dormant, ice-covered volcanoes wake up? John Smellie, Department of Geology, University of Leicester (This article was originally published in The Conversation, on 4 September 2017 [https://theconversation.com/what-if-antarcticas-dormant-ice-covered-volcanoes-wake-up-83450]) Antarctica is a vast icy wasteland covered by the world’s largest ice sheet. This ice sheet contains about 90% of fresh water on the planet. It acts as a massive heat sink and its meltwater drives the world’s oceanic circulation. Its existence is therefore a fundamental part of Earth’s climate. Less well known is that Antarctica is also host to several active volcanoes, part of a huge "volcanic province" which extends for thousands of kilometres along the Western edge of the continent. Although the volcanic province has been known and studied for decades, recently about 100 "new" volcanoes were recently discovered beneath the ice by scientists who used satellite data and ice- penetrating radar to search for hidden peaks. These sub-ice volcanoes may be dormant. But what would happen if Antarctica’s volcanoes awoke? IMAGE: Some of the volcanoes known about before the latest discovery. Source: antarcticglaciers.org (image: JL Smellie) We can get some idea by looking to the past. One of Antarctica’s volcanoes, Mount Takahe, is found close to the remote centre of the West Antarctic Ice Sheet. In a new study, scientists implicate Takahe in a series of eruptions rich in ozone-consuming halogens that occurred about 18,000 years ago. These eruptions, they claim, triggered an ancient ozone hole, warmed the southern hemisphere causing glaciers to melt, and helped bring the last ice age to a close.
    [Show full text]
  • This Document Has Been Archived
    This document has been archived. U.S. Antarctic Program, 1998-1999 ......................... iii Biology and medical research .................................. 1 Long-term ecological research.................................14 Environmental research..........................................16 Geology and geophysics ..........................................17 Glaciology .............................................................35 Ocean and climate studies ......................................40 Aeronomy and astrophysics ....................................45 Technical projects..................................................56 U.S. Antarctic Program, 1998-1999 iii U.S. Antarctic Program, 1998-1999 In Antarctica, the U.S. Antarctic Program will · a U.S.–French–Australian collaboration to support 142 research projects during the 1998- study katabatic winds along the coast of 1999 austral summer and the 1999 austral East Antarctica winter at the three U.S. stations (McMurdo, · continued support of the Center for Astro- Amundsen-Scott South Pole, and Palmer), physical Research in Antarctica at the geo- aboard its two research ships (Laurence M. graphic South Pole Gould and Nathaniel B. Palmer) in the Ross Sea and in the Antarctic Peninsula region, at re- · measuring, monitoring, and studying at- mote field camps, and in cooperation with the mospheric trace gases associated with the national antarctic programs of the other Ant- annual depletion of the ozone layer above arctic Treaty nations. Many of the projects Antarctica. that make up the program, which is funded Science teams will also make use of a conti- and managed by the National Science Foun- nent-wide network of automatic weather sta- dation (NSF), are part of the international ef- tions, a network of six automated geophysical fort to understand the Antarctic and its role in observatories, ultraviolet-radiation monitors global processes. NSF also supports research at the three U.S.
    [Show full text]
  • Petrographic and Field Characteristics of Marie Byrd Land Volcanic Rocks Volcanic Rocks of the Ross Island Area
    References flows in the basal sequences, but ultramafic nodules Cast, Paul W., G. R. Tilton, and Carl Hedge. 1964. Iso- are much more common in the parasitic cones. Most topic composition of lead and strontium from Ascension of the nodules examined contain about 50 percent and Cough Islands. Science, 145(3637): 1181-1185. olivine, plus variable proportions of orthopvroxene, Halpern, M. 1968. Ages of antarctic and Argentine rocks clinopyroxene, and a brown garnet tentativel y identi- bearing on continental drift. Earth and Planetary Science Letters, 5: 159-167. fied as melanite. Harrington, H. J . 1958. Nomenclature of rock units in the Stratovolcanoes, many exceeding 4,000 m (13,000 Ross Sea region, Antarctica. Nature, 182(4631): 290. feet) in height, make up most of the Flood, Ames, Jones, L. M. and G. Faure. 1968. Origin of the salts in and Executive Committee Ranges, Mount Takahe, Taylor Valley. Antarctic Journal of the U.S., 111(5): Toney Mountain, and the Crary Mountains. They are 177-178. Wade, F. Alton. 1967. Geology of the Marie Byrd Land composed of trachyandesite flows and tuff breccias, coastal sector of West Antarctica. Antarctic Journal of and apparently lesser amounts of trachyte and the U.S., 11(4): 93-94. rhyolite. Mounts Waesche and Hartigan are stratovol- canoes that are exceptional in that each is composed of a large proportion of basalt. The trachyandesites are rich in olivine and soda-iron pyroxene, which may be found in the groundmass or as phenocrysts. Some Petrographic and Field Characteristics of these rocks carry modal nepheline and socialite. of Marie Byrd Land Volcanic Rocks Feldspar phenocrysts in the trachyandesites are most commonly anorthoclase, similar to that described by \VESLEY E.
    [Show full text]
  • Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 9-1-2014 Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lough, Amanda Colleen, "Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs" (2014). All Theses and Dissertations (ETDs). 1319. https://openscholarship.wustl.edu/etd/1319 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Douglas Wiens, Chair Jill Pasteris Philip Skemer Viatcheslav Solomatov Linda Warren Michael Wysession Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs by Amanda Colleen Lough A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2014 St. Louis, Missouri © 2014, Amanda Colleen Lough Table of Contents List of Figures .............................................................................................................................
    [Show full text]
  • Late Quaternary Volcanic Activity in Marie Byrd Land: Potential 40Ar/39Ar-Dated Time Horizons in West Antarctic Ice and Marine Cores
    Late Quaternary volcanic activity in Marie Byrd Land: Potential 40Ar/39Ar-dated time horizons in West Antarctic ice and marine cores T. I. Wilch* Department of Geological Sciences, Albion College, Albion, Michigan 49224 W. C. McIntosh Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, and New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 N. W. Dunbar New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 ABSTRACT More than 12 40Ar/39Ar-dated tephra lay- ies is to determine the basal age of the ice sheet. ers, exposed in bare ice on the summit ice cap The 1968 Byrd Station ice core in the West Late Quaternary volcanic activity at three of Mount Moulton, 30 km from their inferred Antarctic Ice Sheet has an inferred basal age of major alkaline composite volcanoes in Marie source at Mount Berlin, range in age from 492 only 74 ka (Hammer et al., 1994). The exten- Byrd Land, West Antarctica, is dominated by to 15 ka. These englacial tephra layers provide sive lateral flow of ice from the ice divide area explosive eruptions, many capable of deposit- a minimum age of 492 ka for the oldest iso- to Byrd Station may have removed or disturbed ing ash layers as regional time-stratigraphic topically dated ice in West Antarctica. This much of the basal ice record. Consequently, the horizons in the West Antarctic Ice Sheet and well-dated section of locally derived glacial ice 74 ka date of the Byrd core provides only a in Southern Ocean marine sediments.
    [Show full text]
  • The CMS Tumbler
    The CMS June Tumbler 2021 The monthly newsletter of the Cascade Mineralogical Society, Inc., Kent, Washington Connect with us! Next Meeting: Website: https://www.cascademineralogicalsociety.org Club Facebook: https://www.facebook.com/CasMinSoc/ June 10, 2021 Show Facebook: https://www.facebook.com/cascadegemandmineralshow 7:00 p.m. Instagram: https://www.instagram.com/cascadegemandmineralshow/ This month remember American Legion Hall to wish a 25406 97th Pl S Happy Birthday to Michelle Patterson on June 2 Kent, WA Leonard Bahr on June 7 Charles Benedict on June 10 The Program is about Isaac Fu on June 11 Charleen Shoemaker on June 11 Picture Stones Michael Watson on June 11 Shelley Opel on June 16 The Show & Tell Becky Patterson on June 21 Theme is something Margaret Squires on June 27 Brenda Haworth on June 29 you've done or acquired in Dick Morgan on June 29 the last 15 months and also remember to wish a Happy Anniversary to Table of Contents Calendar...........................................................3 Robert & Mrs. Waddell on June 8 (7 years) Cartoons...................................................3 & 11 From the Top of the Rock Pile.........................5 Land Use Bills..................................................5 Ice Towers........................................................7 Young Richard's Almanac................................7 Colors Around the World..................................8 May Field Trip Report.......................................9 Field Trips........................................................11 Shows..............................................................12 Except where otherwise noted, material from The Tumbler may be reprinted for non-commercial purposes, provided that the author(s) and source are acknowledged. For commercial use, the author(s) must be contacted for permission; if no contact information is given, contact them via the editor. Tips, suggestions, recipes and experiments printed in this newsletter are the experiences and/or opinions of the individuals submitting them.
    [Show full text]
  • Mount Etna Kilauea
    Mount Etna Location: Sicily, Italy Height: 3,329 m (10,922 ft) Formed: 500,000 years ago Status: Active Mount Etna is the tallest active volcano in Europe, and the 59th tallest volcano in the world. It is also one of the most active volcanoes in the world, in an almost constant state of volcanic activity. This is due to the fact that it sits on top of the convergent boundary between the Eurasian and African tectonic plates. Throughout its history the eruptions of Mt. Etna have alternated between explosive, violent eruptions and flowing, gentle eruptions. There have been several major eruptions of Mt. Etna, leading to the formation of calderas on the summit of the mountain. Between 35,000 and 15,000 years ago, Mt. Etna released large pyroclastic flows, some of which traveled as far as 800 km from the volcano. In the last 100 years, there have been several major eruptions. These occurred in 1928, 1949, 1971, 1981, 1983, 1991, 1993, every year from 2001-2005, every year from 2007-2009, 2011, 2012, 2014, and most recently on December 3, 2015. Although Etna’s eruptions have been known to be violent and destructive, it has only claimed 77 lives in recorded history, and most of the damage it causes is to property and structures. In fact, most citizens that live near Mt. Etna consider it be a blessing, as its volcanic soils are rich and good for farming. Mt. Etna is closely monitored and is one of the most popular tourist destinations in Italy. Kilauea Location: Hawaii, U.S.
    [Show full text]
  • Heat Flow Variations in the Antarctic Continent
    International Journal of Terrestrial Heat Flow and Applied Geothermics VOL. 3, NO. 1 (2020); P. 01-10. ISSN: 2595-4180 DOI: https://doi.org/10.31214/ijthfa.v3i1.51 http://ijthfa.com/ Heat flow variations in the Antarctic Continent Suze Nei P. Guimarães, Fábio P. Vieira, Valiya M. Hamza 1 Department of Geophysics, National Observatory, Rio de Janeiro, Brazil. Email address [email protected] (S.N.P. Guimarães) Corresponding author Abstract The present work provides a reappraisal of terrestrial heat flow variations in the Antarctic continent, based on recent advances in data analysis and regional assessments. The data considered include those reported at the website of IHFC and 78 additional sites where measurements have been made using a variety of techniques. These include values Keywords based on the Method of Magmatic Heat Budget (MHB) for 41 localities in areas of recent Terrestrial Heat Flow volcanic activity and estimates that rely on basal temperatures of glaciers in 372 localities Antarctic Continent that are known to host subglacial lakes. The total number of data assembled is 491, which o o has been useful in deriving a 10 x10 grid system of homogenized heat flow values and in deriving a new heat flow map of the Antarctic continent. The results reveal that the Received: December 5, 2019 Antarctic Peninsula and western segment of the Antarctic continent has distinctly high heat flow relative to the eastern regions. The general pattern of differences in heat flow between Accepted: February 10, 2020 eastern and western of Antarctic continent is in striking agreement with results based on seismic velocities.
    [Show full text]