Archives Massachusettsinstitute of Techmfllogy

Total Page:16

File Type:pdf, Size:1020Kb

Archives Massachusettsinstitute of Techmfllogy A COMPUTER MODEL OF THE RECTISOL PROCESS USING THE ASPEN SIMULATOR by Rosalyn A. preston SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY December, 1981 Q Massachusetts Institute of Technology 1981 Signature of Author Signatureof Author Department of Chemical Engineering December 7, 1981 Certified by Lawrence B. Evans Thesis Supervisor Accepted by Glenn C Williams Chairman, Departmental Graduate Committee Archives MASSACHUSETTSINSTiTUTE OF TECHMflLOGY JUN 1 13982 i IRRA!ES A COMPUTER MODEL OF THE RECTISOL PROCESS USING THE ASPEN SIMULATOR by Rosalyn A. Preston Submitted to the Department of Chemical Engineering on December 7, 1981 in partial fulfillment of the requirements for the Degree of Master of Science in Chemical Engineering ABSTRACT A computer model of the Rectisol process for acid gas absorption has been developed with the ASPEN process simulator. The model uses a modified ver- sion of the Redlich-Kwong-Soave equation-of-state to represent the phase equilibria for the methanol- water-aromatics-acid gas system. This report de- scribes the development of the physical properties model and the flowsheet simulation. The work is based on the CONOCO design for a commercial scale coal gasification facility. The computer modelling effort was carried out under contract to the Morgan- town Energy Technical Center, U. S. Department of Energy. TABLE OF CONTENTS ACKNOWLEDGEMENTS .... ....... ... vii I. INTRODUCTION . ...... ....... .. .. II. AC:ID GAS ABSORPTION PROCESSES ...... .6 General Features of Acid Gas Absorption . a . 6 Processes . .... ... .... ... · · · 6 Absorption ........ ..... a1 a a 7 Regeneration . .. ... .. a a a 7 Solvent Selection . ....... * a a 9 Heat Integration .... ...... * a a 10 Solvent Recovery ........a . .. 12 Advantages of the Rectisol Process ... a a 12 Rectisol Process Description . ..... * a a 13 III. DEVELOPMENT OF PHYSICAL PROPERTIES MODEL .. a a 19 Selection of the Thermodynamic Model .. a .. 19 Modified Redlich-Kwong-SoaveEquation-of-State 21 Experimental Phase Equilibrium Data .... 23 Development of Modified Redlich-Kwong-Soave Model Parameters .... ...... ..... 25 Evaluation of the Preliminary Thermodynamic Model . ..... ........... 27 Enthalpy Calculations .. ...... ... 32 IV. SIMULATION OF THE RECTISOL PROCESS ..... ... 36 Basis for the Process Simulation . ...... 36 Absorption Section ..... ...... 38 Flash Regeneration Section .. ...... 43 Naphtha Extractor .... .... .. 43 Azeotrope Column ..... ..a a .a 44 Methanol-Water Column . ....... 49 iii Hot Regeneration Column .. * O . .. · 50 Water Wash Column ... a 0 0 · a a a 52 Heat Exchangers .... .. 52 Methanol Make-up . .... 53 a * a a a a a e· Flowsheet Convergence . ··· · 53 V. RECTISOL PROCESS SIMULATION RESULTS.... 55 VI.CONCLUSION. ........ ...U a a a a a a 59 APPENDIX A OVERALL RECTISOL MODEL APPENDIX B ABSORPTION SECTION SIM[LATION APPENDIX C AZEOTROPE COLUMN SIMUIL MTION APPENDIX D METHANOL-WATER COLUMN SIMULATION APPENDIX E HOT REGENERATION COLUMI[ SIMULATION APPENDIX F WATER WASH COLUMN SIMU LATION LITERATURE CITED BIBLI OGRAPHY iv LIST OF FIGURES 1. The Pipeline Gas Demonstration Plant . 2 2. The Rectisol Process . 4 3. Comparison of Equilibrium Loading of Chemical and Physical Solvents . .. 11 4. Block Flow Diagram of the Rectisol Process . 14 5. Process Flow Diagram of the Rectisol Process . 15 6. Process Flow Diagram of the Rectisol Process . 16 7. Henry's Law Constants for Nitrogen in a Methanol and Carbon Dioxide Mixture . 30 8. Block Flow Diagram of the Rectisol Computer Model 39 9. Effect of Solvent Rate and Number of Trays on Carbon Dioxide Absorption . ....... 42 10. Ternary Diagram for Methanol-Benzene-Water . 45 11. McCabe-Thiele Plot for Azeotrope Column . 48 v LIST OF TABLES 1. Comparison of Modified RKS Model Predictions with Experimental Data for Methanol-Hydrogen Sulfide- Carbon Dioxide- Nitrogen . 33 2. Binary Interaction Parameters for the Modified Redlich-Kwong-Soave Equation-of-State 34 ......... 3. Composition of Feed Gas to Rectisol Process 37 4. Desulfurized Gas Composition . .. 56 5. Acid Gas Composition . o. ..... .. 56 6. Regenerated Methanol Composition.. ........ 56 7. Cooling and Heating Duties for the Rectisol Process 58 vi ACKNOWLEDGMENTS I would like to express my appreciation to all the ASPEN staff who gave me help and support on this project, especially to Herb Britt and Chau-Chyun Chen for assisting me in almost every aspect, to Joe Boston and Paul Mathias for their help with modelling the physical properties, and to Willie Chan and Fred Ziegler for their debugging efforts. I would also like to thank my advisor, Professor L. B. Evans, forhis gui- dance and optimism throughout. vii I. INTRODUCTION The objective of this work was to develop a computer model of the Rectisol process (Hochgesand, 1970; Scholz, 1969) using the ASPEN process simulator. This simulation was pre- pared as part of a program to transfer ASPEN technology to the Morgantown Energy Technology Center (METC) of the United States Department of Energy. The overall program involved develop- ment of computer models for the major process units in the CONOCO Slagging Lurgi Coal Gasification process. The computer modelling effort took CONOCO's design for a commercial scale coal gasification facility as the basis (CONOCO, 1980). This facility, shown schematically in Figure 1, is designed to generate pipeline quality substitute natural gas from coal. Briefly, the process gasifies coal with steam and oxygen, generated by cryogenic air separation. The gas- ification takes place at high pressure in a moving bed slagging gasifier using Lurgi technology. Crude synthesis gas is re- covered from the top of the gasifier, while the ash is with- drawn in a molten slag form from the bottom. The synthesis gas is subsequently directed to the Rectisol unit for purifi- cation. Here, light oils and sulfur compounds are removed from the gas and recovered. Following purification, the gases are allowed to undergo water-gas shift and methanation reac- tions simultaneously. Carbon dioxide produced in the shift reaction must then be washed out with hot carbonate solution to improve the BTU quality of the substitute natural gas. The final gas treatment involves compression and drying. 1 w 2 cl Cd 0 Cd ro ad4 ordH a) c-) d E a) 3d for 0 E o0 EC E Cd o 0 a, - P .Ha) Ct= - W o 0 p xEC Cd 0 0\ TO 0co 0:z; e, 0oa) CD a, a) a) fAt o o 3 The Rectisol process itself features refrigerated meth- anol as the solvent into which the acid gases in the synthesis gas are absorbed. The process is comprised of an absorption section followed by a series of regeneration processes in which the rich solvent is purified and the absorbed compounds recov- ered. The diagram in Figure 2 illustrates the particular Rectisol design proposed for the CONOCO coal gasification facility. The Rectisol computer model described in this report provides a stream-by-stream heat and material balance for the process. In addition, the model predicts the composition of the outlet streams for a given set of operating conditions. Therefore, the model can be used to assess the effect of var- ious process variables on the composition of the desulfurized gas and acid gas products. The model also predicts the purity of the regenerated methanol solvent for specific regeneration operating conditions. Separate models of the absorbers and distillation columns yield a rigorous tray-to-tray analysis of each column. Overall, the Rectisol simulation represents a flexible tool which may be applied in future design and sen- sitivity studies and in trouble-shooting after process start- up. The input to the simulation is based on the process flow- sheet and feed streams from the CONOCO commercial design. Since Rectisol is a proprietary process licensed by Lurgi Min- eraloltechnik GmbH, the CONOCO design did not provide any in- formation on the actual process operating conditions. For this reason, development of the computer model entailed a 4 o .H 34 d i a) Z ) 0 ~o D ts o oo M *H O 0 Fz ¢ C: E0 U2 U) W o0 0 Ho a) U2a4 o &4 PE-4 .H 0 V: m X E E-1 Z 0 5 fair amount of design work to establish reasonable process operating conditions. The following chapters describe the development of the Rectisol model. The work initially involved a literature search to locate published process data regarding Rectisol. Subsequently, considerable effort was devoted to developing a good thermodynamic model of the system to provide adequate physical properties predictions. The actual computer model- ling work required testing of several ASPEN models which were still in the development stage. Further, it was necessary to perform sensitivity studies on the design variables in order to establish suitable operating conditions. It was orig- inally intended to use the final Rectisol model to examine the sensitivity of the process to various design variables. However, lack of computer funds curtailed the project once the model was developed. 6 II. ACID GAS ABSORPTION PROCESSES This section discusses the general features of acid gas absorption processes in order to provide some background for the detailed description of the Rectisol process. In addition, the discussion serves to present the basic design variables which must be considered in designing a process to remove acid gases. General Features of Acid Gas Absorption Processes Removal of acid gases, primarily carbon dioxide and hydro- gen sulfide, is important for many industrial plants producing a gaseous intermediate or final product. In the production of substitute natural gas by coal gasification, hydrogen is generated together with a substantial quantity of carbon dioxide. Since carbon dioxide has no heating value, it must be separated out of the final pipeline gas to raise the overall BTU value. The separation may occur at several points in the process. Removal prior to shift conversion of the carbon monoxide and water to hydrogen and carbon dioxide favors the equilibrium hydrogen concentration. However, since carbon dioxide is pro- duced in this reaction, further treating to remove carbon di- oxide may be required.
Recommended publications
  • Hydrocarbon Processing®
    HYDROCARBON PROCESSING® 2012 Gas Processes Handbook HOME PROCESSES INDEX COMPANY INDEX Sponsors: SRTTA HYDROCARBON PROCESSING® 2012 Gas Processes Handbook HOME PROCESSES INDEX COMPANY INDEX Sponsors: Hydrocarbon Processing’s Gas Processes 2012 handbook showcases recent advances in licensed technologies for gas processing, particularly in the area of liquefied natural gas (LNG). The LNG industry is poised to expand worldwide as new natural gas discoveries and production technologies compliment increasing demand for gas as a low-emissions fuel. With the discovery of new reserves come new challenges, such as how to treat gas produced from shale rock—a topic of particular interest for the growing shale gas industry in the US. The Gas Processes 2012 handbook addresses this technology topic and updates many others. The handbook includes new technologies for shale gas treating, synthesis gas production and treating, LNG and NGL production, hydrogen generation, and others. Additional technology topics covered include drying, gas treating, liquid treating, effluent cleanup and sulfur removal. To maintain as complete a listing as possible, the Gas Processes 2012 handbook is available on CD-ROM and at our website for paid subscribers. Additional copies may be ordered from our website. Photo: Lurgi’s synthesis gas complex in Malaysia. Photo courtesy of Air Liquide Global E&C Solutions. Please read the TERMS AND CONDITIONS carefully before using this interactive CD-ROM. Using the CD-ROM or the enclosed files indicates your acceptance of the terms and conditions. www.HydrocarbonProcessing.com HYDROCARBON PROCESSING® 2012 Gas Processes Handbook HOME PROCESSES INDEX COMPANY INDEX Sponsors: Terms and Conditions Gulf Publishing Company provides this program and licenses its use throughout the Some states do not allow the exclusion of implied warranties, so the above exclu- world.
    [Show full text]
  • Review of Technologies for Gasification of Biomass and Wastes
    Review of Technologies for Gasification of Biomass and Wastes Final report NNFCC project 09/008 A project funded by DECC, project managed by NNFCC and conducted by E4Tech June 2009 Review of technology for the gasification of biomass and wastes E4tech, June 2009 Contents 1 Introduction ................................................................................................................... 1 1.1 Background ............................................................................................................................... 1 1.2 Approach ................................................................................................................................... 1 1.3 Introduction to gasification and fuel production ...................................................................... 1 1.4 Introduction to gasifier types .................................................................................................... 3 2 Syngas conversion to liquid fuels .................................................................................... 6 2.1 Introduction .............................................................................................................................. 6 2.2 Fischer-Tropsch synthesis ......................................................................................................... 6 2.3 Methanol synthesis ................................................................................................................... 7 2.4 Mixed alcohols synthesis .........................................................................................................
    [Show full text]
  • Multi-Objective Optimization of a Rectisol Process
    Jiří Jaromír Klemeš, Petar Sabev Varbanov and Peng Yen Liew (Editors) Proceedings of the 24th European Symposium on Computer Aided Process Engineering – ESCAPE 24 June 15-18, 2014, Budapest, Hungary. Copyright © 2014 Elsevier B.V. All rights reserved. Multi-objective Optimization of a Rectisol® Process Manuele Gatti a,*, Emanuele Martelli a, Franҫois Maréchal b, Stefano Consonni a a Politecnico di Milano, Dipartimento di Energia, Via Lambruschini 4, Milano, Italy b Industrial Process Energy Systems Engineering (IPESE), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [email protected] Abstract This work focuses on the design, simulation and optimization of a Rectisol®-based process tailored for the selective removal of H2S and CO2 from gasification derived synthesis gas. Such task is quite challenging due to the need of addressing simultaneously the process design, energy integration and utility design. The paper, starting from a Rectisol® configuration recently proposed by the authors, describes the models and the solution strategy used to carry out the multi-objective optimization with respect to exergy consumption, CO2 capture level and capital cost. Keywords: Rectisol, CO2 Capture, Numerical Optimization, PGS-COM, Pareto frontier 1. Introduction Coal to Liquids (CTL) as well as Integrated Gasification Combined Cycle (IGCC) plants take advantage from the conversion of a cheap, fossil fuel like coal into a clean synthetic gas, mainly composed of hydrogen, carbon monoxide, carbon dioxide and other minor species, either to produce Liquid Fuels or Electricity as output. In such plants, sulfur-containing compounds are among the most critical contaminants, and they should be separated from the raw syngas not only to cope with emissions regulations but, in the specific case of CTL, also to avoid any potential detrimental impact on the catalyst of the downstream chemical synthesis process.
    [Show full text]
  • Hydrogen Sulfide Capture: from Absorption in Polar Liquids to Oxide
    Review pubs.acs.org/CR Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal−Organic Framework Adsorbents and Membranes Mansi S. Shah,† Michael Tsapatsis,† and J. Ilja Siepmann*,†,‡ † Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States ‡ Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States ABSTRACT: Hydrogen sulfide removal is a long-standing economic and environ- mental challenge faced by the oil and gas industries. H2S separation processes using reactive and non-reactive absorption and adsorption, membranes, and cryogenic distillation are reviewed. A detailed discussion is presented on new developments in adsorbents, such as ionic liquids, metal oxides, metals, metal−organic frameworks, zeolites, carbon-based materials, and composite materials; and membrane technologies for H2S removal. This Review attempts to exhaustively compile the existing literature on sour gas sweetening and to identify promising areas for future developments in the field. CONTENTS 4.1. Polymeric Membranes 9785 4.2. Membranes for Gas−Liquid Contact 9786 1. Introduction 9755 4.3. Ceramic Membranes 9789 2. Absorption 9758 4.4. Carbon-Based Membranes 9789 2.1. Alkanolamines 9758 4.5. Composite Membranes 9790 2.2. Methanol 9758 N 5. Cryogenic Distillation 9790 2.3. -Methyl-2-pyrrolidone 9758 6. Outlook and Perspectives 9791 2.4. Poly(ethylene glycol) Dimethyl Ether 9759 Author Information 9792 2.5. Sulfolane and Diisopropanolamine 9759 Corresponding Author 9792 2.6. Ionic Liquids 9759 ORCID 9792 3. Adsorption 9762 Notes 9792 3.1.
    [Show full text]
  • Statement of Considerations Request by Hydrogen
    STATEMENT OF CONSIDERATIONS REQUEST BY HYDROGEN ENERGY OF CALIFORNIA FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT DE-FEOOO0663; W{A)-2010-006; CH-1545 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel. Hydrogen Energy of California (HECA) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement, entitled, "Hydrogen Energy California Project Commercial Demonstration of Advanced IGCC with Full Carbon Capture." Referring to item 2 of the attached waiver petition, the petitioner will design, construct. and operate an Integrated Gasification Combined Cycle (lGCC) power plant with CO2 capture and sequestration (CCS) that will take blends of coal and petroleum coke, combined with non-potable water, and convert them into hydrogen and CO2. The CO2 will be separated from the hydrogen using the methanol-based Rectisol process. The hydrogen gas will be used to fule a power station, and the CO2 will transported by pipeline to nearby oil reservoirs where it will be used for enhanced oil recovery and sequestered. The project, which will be located in Kern County. California,. is designed to capture more than 2,000,000 tons per year of CO2• The work under this agreement is expected to take place between October 2010 and November 2018, at a total cost of $2.839 billion. HECA will provide 89% cost share or $2.531 billion. DOE will provide the remaining 11 % or $308 million. In its response to questions 5 and 6 of the attached waiver petition.
    [Show full text]
  • Selection of Wash Systems for Sour Gas Removal 4Th International Freiberg Conference on IGCC & Xtl Technologies
    Selection of Wash Systems for Sour Gas Removal 4th International Freiberg Conference on IGCC & XtL Technologies 5 May 2010 B. Munder, S. Grob, P.M. Fritz With contribution of A. Brandl, U. Kerestecioglu, H. Meier, A. Prelipceanu, K. Stübner, B. Valentin, H. Weiß Outline — Overview of Absorptive Sour Gas Removal Processes — Criteria for Choice of Absorptive Sour Gas Removal Processes — Comparison of Amine Wash Processes and the Rectisol® Process ● Qualitative comparison ● Case Studies: Sour gas removal for 1. Fuel gas production for IGCC from coal 2. Coal to Liquid (CtL) process 3. Biomass to Liquid (BtL) process — Summary and Conclusion Linde AG Engineering Division 4th International Freiberg Conference on IGCC & XtL Technologies Selection of Wash Systems for Sour Gas Removal 2 B. Munder, S. Grob, P.M Fritz / 5 May 2010 Overview of Absorptive Sour Gas Removal Processes — Chemical sour gas removal processes: Acid gases are chemically bound to the solvent. ● Amines: e.g. MEA, DEA, DIPA, MDEA, MDEA+additive (e.g. aMDEA® process) ® ® ● Liquid oxidation process on iron basis for removal of H2S: e.g. SulFerox , LO-CAT — Physical sour gas removal processes: Acid gases are dissolved in the solvent. ● Methanol (Rectisol® process) ● Polyethylenglycol Ether (e.g. Selexol®, Genosorb®, Sepasolv® processes) ● n-Methyl-2-Pyrrolidone (NMP; e.g. Purisol® process) — Physical-chemical sour gas removal processes: ● Methanol + Amine (e.g. Amisol® process) ● Sulfolane + Amine (e.g. Sulfinol® process) Linde AG Engineering Division 4th International Freiberg
    [Show full text]
  • IEAGHG Technicalreview
    IEAGHG Technical Review 2017-TR3 March 2017 Reference data and Supporting Literature Reviews for SMR Based Hydrogen Production with CCS IEA GREENHOUSE GAS R&D PROGRAMME vsdv International Energy Agency The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 28 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under 39 Technology Collaboration Programmes (Implementing Agreements). These agreements cover more than 200 individual items of research, development and demonstration. IEAGHG is one of these Implementing Agreements. DISCLAIMER This report was prepared as an account of the work sponsored by IEAGHG. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEAGHG, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product of process disclosed or represents that its use would not infringe privately owned rights, including any parties intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply any endorsement, recommendation or any favouring of such products.
    [Show full text]
  • Gasification-Based Fuels and Electricity Production from Biomass, Without and with Carbon Capture and Storage Eric D
    October 2005 Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Eric D. Larson,* Haiming Jin,** Fuat E. Celik* * Princeton Environmental Institute, Princeton University, Princeton, NJ **Thayer School of Engineering, Dartmouth College, Hanover, NH 1 INTRODUCTION................................................................................................................. 2 2 OVERVIEW OF CONVERSION PROCESSES............................................................... 4 3 STATUS OF TECHNOLOGIES......................................................................................... 9 3.1 PRODUCTION OF CLEAN SYNTHESIS GAS......................................................................... 9 3.1.1 Biomass Gasification .............................................................................................. 9 3.1.2 Gas Cleanup.......................................................................................................... 10 3.2 CONVERSION OF SYNTHESIS GAS TO FINAL PRODUCTS ................................................. 15 3.2.1 Synthesis of Fischer-Tropsch Fuels...................................................................... 16 3.2.2 Synthesis of Dimethyl Ether.................................................................................. 17 3.2.3 Hydrogen Production............................................................................................ 18 4 DETAILED PROCESS DESCRIPTIONS AND MASS/ENERGY BALANCES ........ 18 4.1 PRODUCING CLEAN
    [Show full text]
  • Review, Modeling, Heat Integration, and Improved Schemes of Rectisol
    Review, modeling, Heat Integration, and improved schemes of Ò Rectisol -based processes for CO2 capture a,* a b a Manuele Gatti , Emanuele Martelli , François Marechal , Stefano Consonni a Politecnico di Milano, Dipartimento di Energia, via Lambruschini 4, Milano 20156, Italy b Industrial Process Energy Systems Engineering (IPESE), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland Received 5 January 2014 Received in revised form 24 April 2014 Accepted 1 May 2014 Available online 10 May 2014 1. Introduction boiler, originate SO2. For this reason, coal gasification plants always include an Acid Gas Removal (AGR) unit capable of abating the Coal to Liquids (CTL) as well as Coal to Substitute Natural Gas content of sulphur species in syngas below the limits imposed by (Coal-to-SNG) and Integrated Gasification Combined Cycle (IGCC) the downstream processes, e.g. 50 ppb for a FischereTropsch (FT) plants can exploit and convert cheap fossil fuels, like coal, petcoke, synthesis catalysts and 50 ppm for gas turbines. Besides H2S waste and biomass, into a clean synthetic gas, mainly composed of removal, AGR units are also suitable to separate CO2 from syngas hydrogen, carbon monoxide, carbon dioxide and other minor spe- and make it available as an almost pure separate stream, ready for cies, to produce either liquid fuels or electricity. Within this syngas utilization or long-term sequestration. This feature has been conversion process, a key step is the removal of sulphur species (i.e., exploited so far only in those gasification-based polygeneration H2S, COS, CS2, mercaptans and organic sulfides) which poison plants co-producing urea or other chemicals requiring CO2 as a downstream catalysts and, if syngas is burned in a gas turbine or feedstock [1], and in the North Dakota coal gasification facility [2]to make available a CO2 stream for Enhanced Oil Recovery (EOR) (see e.g., [3]).
    [Show full text]
  • Summary of Dakota Gasification Company's CO Capture and Transport, and Future Options for Gasification Systems
    Summary of Dakota Gasification Company’s CO2 Capture and Transport, and Future Options for Gasification Systems CSLF Mid-Year Meeting and Technology Workshop Regina, Saskatchewan, Canada June 17, 2015 Mike Holmes, Deputy Associate Director for Research Energy & Environmental Research Center © 2015 University of North Dakota Energy & Environmental Research Center. Energy & Environmental Research Center (EERC) More than 254,000 square feet of state-of-the-art laboratory, demonstration, and office space. Presentation Topics • Why Carbon Management? • Background and Summary Great Plains Synfuels Plant • Precombustion Capture Options 3 Why Carbon Management? New U.S. Environmental Protection Agency (EPA) Greehouse Gas Rules Average Emissions for Electric Power Proposed Existing Plant 2500 Rules (Reductions by State) 2000 Proposed Limits Minnesota 41% 1500 for New Plants Montana 21% 1000 North Dakota 11% Emissions (lbs CO2/MWHr) 500 South Dakota 25% 0 Bittuminous Subbituminous Lignite Natural Gas Wyoming 19% ________________ Proposed CO2 limits for new power generation. Washington 72% Regulatory and Climate Drivers How Do We Get More Oil Out of the Bakken? The more we understand about the Bakken petroleum system, the more oil we recognize in it. Currently, only a 3%–5% recovery factor. Small improvements in recovery yield billions of barrels of oil. Can CO2 be a game changer in the Bakken? As a Commodity to Enhance Oil Recovery Bakken CO2 Demand for North Dakota – A 30,000-ft View Based on the following: • Traditional evaluation techniques • NDIC OOIP estimates • 4% incremental recovery • Net utilization of 5000 and 8000 ft3/bbl 2–3.2 Bt of CO2 needed, yielding 4–7 Bbbl of oil.
    [Show full text]
  • LAC Linde Ammonia Concept (PDF 895.0
    Making our world more productive LAC™ Linde Ammonia Concept Putting our engineering and operational expertise to work for you Direct path to ammonia efficiency with LAC™ Most operators of ammonia plants face Linde is the only company worldwide that More flexibility for you: similar challenges. On the one hand, they designs, owns and operates hydrogen, would welcome greater flexibility – over both synthesis gas and ammonia plants using its → Wide feedstock envelope – extending their feedstock envelope and their choice of own technologies. LAC thus builds on the from natural gas and hydrogen-rich gas to possible co-products. And, on the other, they unique, hands-on insights Linde has gained naphtha and heavy fuel oil need to optimize plant economics. as both engineer and operator of ammonia → Clean syngas generation provides (NH₃) plants over the decades. This standout co-product flexibility (e.g. hydrogen, Linde Engineering developed the Linde concept eliminates the inert gas “ballast” carbon monoxide and methanol, Ar, N₂, O₂, Ammonia Concept (LAC) specifically to meet during syngas generation and further CO₂) these challenges. Not only does it increase intensifies ammonia synthesis. A streamlined → Higher capital efficiency – fewer units process flexibility compared with conventional process flow also enhances plant reliability required, lower gas flows and less “ballast” ammonia processes, it also enables a smaller overall. (low CAPEX) equipment footprint for maximum capital → Process efficiency gains enabled by inert- efficiency. The vast, long-standing experience Linde has free syngas generation (low OPEX) gained in this area enables it to customize all → Cost savings with lower losses LAC builds to individual feedstock, co-product, → Less maintenance with smaller footprint process efficiency and cost targets.
    [Show full text]
  • CO2 As Injection Gas for Enhanced Oil Recovery (EOR) from Fields In
    NTNU – Norwegian University of Science and Technology Department of Petroleum Engineering and Applied Geophysics __________________________________ CO2 as Injection Gas for Enhanced Oil Recovery and Estimation of the Potential on the Norwegian Continental Shelf by Odd Magne Mathiassen Chief Reservoir Engineer Norwegian Petroleum Directorate Trondheim / Stavanger, May 2003 ________________________________ Part I of II CO2 injection for Enhanced Oil Recovery 2 ___________________________________________________________________________ ACKNOWLEDGEMENT I would like to thank my supervisor Professor Ole Torsæter at the Norwegian University of Science and Technology for excellent guiding and help in my work with this thesis. I would also like to thank my employer, the Norwegian Petroleum Directorate, for giving me the opportunity and time to complete the thesis. My thanks also go to my colleagues Mr. Gunnar Einang, Mr. Søren Davidsen and Mr. Jan Bygdevoll for valuable discussions while working with this thesis. Finally, I would like to thank Dr. Eric Lindeberg and senior researcher Idar Akervoll at the Sintef Research for valuable information on CO2 related issues. SUMMARY The main objective of this thesis is to investigate the possibility of using CO2 as injection gas for enhanced oil recovery and estimate the potential of additional oil recovery from mature oil fields on the Norwegian Continental Shelf (NCS). Because of the lack of CO2 data from offshore oil fields, a literature study on CO2 flood experience worldwide was undertaken. In addition, the physical properties of CO2 and CO2 as a solvent have been studied. The literature study makes it possible to conclude that CO2 has been an excellent solvent for enhanced oil recovery from onshore oil fields, especially in the USA and Canada.
    [Show full text]