Antarctic Meteorite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physical Properties of Martian Meteorites: Porosity and Density Measurements
Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. -
Fine-Grained Antarctic Micrometeorites and Weathered Carbonaceous Chondrites As Possible Analogues of Ceres Surface: Implications on Its Evolution
EPSC Abstracts Vol. 12, EPSC2018-1024, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Fine-grained Antarctic micrometeorites and weathered carbonaceous chondrites as possible analogues of Ceres surface: implications on its evolution. Jacopo Nava (1), Cristian Carli (2), Ernesto Palomba (2), Alessandro Maturilli (3) and Matteo Massironi (1) (1) Università degli studi di Padova – Dipartimento di Geoscienze, Padova, Italy ([email protected]) (2) IAPS-INAF, Istituto Nazionale di Astrofisica e Planetologia Spaziali, Roma, Italy (3) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany. Abstract more weathered and are mainly made of jarosite plus Fe-carbonates and Fe-K sulfides. All of these IR spectra of several micrometeorites (MMs) and samples show the constant presence of carbon Antarctic weathered carbonaceous chondrites compound, which can be poorly graphitized C. (AWCCs) have been acquired and compared to Ceres Phyllosilicates are rare. For what concerns the spectra. We propose these samples as possible AWCCs we found the CM2 sample GRA 98005 with analogues of Ceres. This allowed us to define a more weathering grade Ce that had one side exposed to the precise composition of Ceres and to suggest a Antarctic environment, and is thus heavily altered, possible evolution of this body. and one side that has been preserved with a pristine composition. Spectra on the pristine side are flat and almost featureless. On the contrary spectra of the 1. Introduction weathered side tend to have a shape close to the average Ceres spectra. This meteorite, on the Ceres is an icy body with a surface composition close weathered side, is dominated by Fe-oxides, Ca-Fe to the carbonaceous chondrites (CCs) [1] that carbonates, anidrite and gypsum plus enstatite and suffered aqueous alteration [2] and geothermal forsterite. -
Aqueous Alteration in Martian Meteorites: Comparing Mineral Relations in Igneous-Rock Weathering of Martian Meteorites and in the Sedimentary Cycle of Mars
AQUEOUS ALTERATION IN MARTIAN METEORITES: COMPARING MINERAL RELATIONS IN IGNEOUS-ROCK WEATHERING OF MARTIAN METEORITES AND IN THE SEDIMENTARY CYCLE OF MARS MICHAEL A. VELBEL Department of Geological Sciences, 206 Natural Science Building, Michigan State University, East Lansing, Michigan 48824-1115 USA e-mail: [email protected] ABSTRACT: Many of the minerals observed or inferred to occur in the sediments and sedimentary rocks of Mars, from a variety of Mars-mission spacecraft data, also occur in Martian meteorites. Even Martian meteorites recovered after some exposure to terrestrial weathering can preserve preterrestrial evaporite minerals and useful information about aqueous alteration on Mars, but the textures and textural contexts of such minerals must be examined carefully to distinguish preterrestrial evaporite minerals from occurrences of similar minerals redistributed or formed by terrestrial processes. Textural analysis using terrestrial microscopy provides strong and compelling evidence for preterrestrial aqueous alteration products in a numberof Martian meteorites. Occurrences of corroded primary rock-forming minerals and alteration products in meteorites from Mars cover a range of ages of mineral–water interaction, from ca. 3.9 Ga (approximately mid-Noachian), through one or more episodes after ca. 1.3 Ga (approximately mid–late Amazonian), through the last half billion years (late Amazonian alteration in young shergottites), to quite recent. These occurrences record broadly similar aqueous corrosion processes and formation of soluble weathering products over a broad range of times in the paleoenvironmental history of the surface of Mars. Many of the same minerals (smectite-group clay minerals, Ca-sulfates, Mg-sulfates, and the K-Fe–sulfate jarosite) have been identified both in the Martian meteorites and from remote sensing of the Martian surface. -
Aluminium-Mg Systematics of Winonaites and Differentiation of the Iab-Winonaite Parent Body
77th Annual Meteoritical Society Meeting (2014) 5155.pdf ALUMINIUM-MG SYSTEMATICS OF WINONAITES AND DIFFERENTIATION OF THE IAB-WINONAITE PARENT BODY. Y. Hidaka1, V. Debaille1 and G. Hublet1. 1Laboratoire G-Time, Université Libre de Bruxelles, Brussels, Belgium. Introduction: Primitive achondrites such as winonaites are important materials to investigate the early differentiation processes of asteroids. Winonaites are considered to originate from the same parent body than IAB non-magmatic iron meteorites [1]. Short-lived radionuclide chronometers are useful to understand the first few million years of the solar system history. The Al-Mg system is one of the most established short- lived systematics that provides a very good time resolution. Previous Hf-W isotopic studies have revealed that IAB- winonaite parent body had accreted ~1 Ma after CAI formation [2] and its magmatic activity ceased ~4 Ma later [3]. However, there is no other chronological data of winonaites from other short-lived radionuclide systems, in particular from fully lithophile systematics, as W is siderophile. Therefore, we consider here additional Al-Mg chronological data of winonaites to investigate the early evolutionary history of the silicate portion of their parent body. Results and Discussion: We have investigated two winonaite meteorites NWA 725 and Y-8005, with a present focus on the first one. NWA 725 is officially classified as an acapulcoite, but oxygen isotopic data of this meteorite indicated that NWA 725 and paired meteorites are actually winonaites [4, 5]. NWA 725 has been reported as chondrule-bearing, the least metamorphosed primitive achondrite [6]. The evolutionary models of IAB-winonaite parent body [1, 2] indicated that this parent body should preserve intact, chondritic areas during partial melting and silicate-metal segregation processes. -
'San Juan', a New Mass of the Campo Del Cielo Meteorite Shower
‘San Juan’, a new mass of the Campo del Cielo meteorite shower Marcela Eliana SAAVEDRA1, María Eugenia VARELA1, Andrew J. CAMPBELL 2 and Dan TOPA 3 1Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE)-CONICET, San Juan, Argentina. 2Deptartment of the Geophysical Sciences, University of Chicago, , Chicago, USA. 3Central Research Laboratories, Natural History Museum, , Vienna, Austria. Email: [email protected] Editor: Diego A. Kietzmann Recibido: 19 de marzo de 2021 Aceptado: 15 de junio de 2021 Disponible online: 15 de junio de 2021 ABSTRACT Petrographic and chemical (major, minor and trace element) studies of silicate inclusions and metal from the San Juan A and B samples revealed that they are new masses belonging to the Campo del Cielo IAB iron meteorite shower. These masses must have being transported from the large strewn field in the Chaco and Santiago del Estero Provinces to the surroundings of San Juan city, where they have being recover in the year 2000. The sizes of the two masses of San Juan, collected 770 km SW from Santiago del Estero, is in agreement with the previously suggested anthropic hypothesis for the transport of Campo del Cielo. Keywords: IAB iron meteorites, Campo del Cielo meteorite, San Juan meteorite. RESUMEN San Juan, una nueva masa de la lluvia de meteoritos de Campo del Cielo Estudios petrográficos y químicos (elementos mayores, menores y trazas) de inclusiones de silicatos y de metal de las muestras A y B de San Juan, reveló que son nuevas masas que pertenecen a la lluvia de meteoritos de Campo del Cielo. -
A New Primitive Achondrite from Northwest Africa
A New Primitive Achondrite from Northwest Africa Kseniya K. Androsova* University of Calgary, Calgary, AB, Canada [email protected] and Alan R. Hildebrand University of Calgary, Calgary, AB, Canada Summary The winonaite and acapulcoite/lodranite meteorites constitute small groups of primitive achondrites that have experienced thermal metamorphism sometimes accompanied by varying degrees of partial melting. Petrographic and elemental abundance studies [optical microscope observations and electron microprobe analysis] have been conducted on several meteorites recovered in Northwest Africa (NWA). One meteorite has fine-grained, granulitic texture, abundant, evenly distributed metal and troilite grains, and highly reduced mineral compositions [Olivine (Fa6.0±0.4), low-Ca pyroxene (Fs7.5±0.4, Wo1.3±0.2), high-Ca pyroxene (Fs3.2±0.2, Wo45.8±0.7)]. Based on these criteria it appears that the data are consistent with the sample being a winonaite. The overall textural resemblance of this meteorite to NWA 1463 and /or NWA 725 (somewhat anomalous) winonaites (both having multiple relict chondrules) may suggest that this meteorite is paired with one or both. Although, until its oxygen isotope composition is obtained the classification of this meteorite as a winonaite (vs. as an acapulcoite) remains uncertain, its primitive achondritic nature is quite evident. Introduction The winonaite meteorites represent a class of rare primitive achondrites (together with the acapulcoite/lodranite association) that have sometimes undergone partial melting but generally have chondritic mineralogy and composition. Winonaites can be characterized by fine- to medium-grained, mostly granulitic textures, highly reduced mineral compositions, and unique oxygen isotope signatures (Benedix et al., 1998). Although most of the winonaites lack chondrules, several have been reported to have regions containing relict chondrules. -
The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. -
Meteorites on Ice
PSRD: Antarctic Meteorites http://www.psrd.hawaii.edu/Nov01/metsOnIce.html posted November 7, 2001 Meteorites on Ice --- Antarctic meteorites provide a continuous and readily available supply of extraterrestrial materials, stimulating new research and ideas in cosmochemistry, planetary geology, astronomy, and astrobiology. Written by Linda M.V. Martel Hawai'i Institute of Geophysics and Planetology Annual collections of meteorites from Antarctica are a steady source of new non-microscopic extraterrestrial material including lunar and Martian samples and rare and unusual flotsam from asteroids. This article summarizes research on new kinds of Antarctic meteorites that is not simply changing how meteorites are classified but causing a revolution in our knowledge of the materials and processes in the solar nebula, our solar system, and the formation of asteroids, planets, and ultimately our world. When the 2001-2002 Antarctic Search for Meteorites (ANSMET) field party begins scouting for meteorites on the ice this season, we will be continuing a 25-year tradition of exploration along the Transantarctic Mountains. As a new ANSMET meteorite hunter, I will report to PSRD on this season's search and recovery of specimens and how studies of Antarctic meteorites are unraveling the secrets of solar system formation. Reference: U. S. Antarctic Search for Meteorites program. Finding Rocks That Fall From Outer Space The U. S. Antarctic Search for Meteorites (ANSMET) program is a collaborative effort of the National Science Foundation (NSF), NASA, and the Smithsonian Institution. Field collection is supported currently by a grant from the NSF Office of Polar Programs to Principal Investigator Dr. Ralph Harvey at Case Western Reserve University in Cleveland, Ohio. -
Bartoschewitz - Catalogue of Meteorites
BARTOSCHEWITZ - CATALOGUE OF METEORITES *FALL TOTAL BC- BC - NAME COUNTRY FIND WEIGHT TYPE No. SPECIMEN WEIGHT (kg) (gms) 1.1 CHONDRITES - ORDINARY OLIVINE BRONZITE CHONDRITES ACFER 005 Algeria March 1989 0,115 H 3.9/4 613.1 cut endpiece 32,70 ACFER 006 Algeria March 1989 0,561 H 3.9/4 614.1 slice 1,30 ACFER 011 Algeria 1989 3,8 H 5 399.1 cut fragm. 3,00 ACFER 020 Algeria 1989 0,708 H 5 401.1 cut fragm. 2,50 ACFER 028 Algeria 1989 3,13 H 3.8 844.1 part slice 1,70 ACFER 050 Algeria 1989 1,394 H 5-6 443.1 complete slice 105,00 ACFER 084 Algeria Apr. 16, 1990 6,3 H 5 618.1 cut corner piece 12,60 ACFER 089 Algeria 1990 0,682 H 5 437.1 complete slice 62,00 ACFER 098 Algeria 1990 5,5 H 5 615.1 cut fragment 29,20 ACFER 222 Algeria 1991 0,334 H 5-6 536.1 cut fragm. with crust 2,50 ACFER 284 Algeria 1991 0,12 H 5 474.1 slice 11,00 ACHILLES USA, Kansas 1924 recogn. 1950 16 H 5 314.1 slice 3,40 ACME USA, New Mexico 1947 75 H 5 303.1 slice 10,80 AGEN France *Sept. 5, 1815 30 H 5 208.1 fragm. with crust 54,40 ALAMOGORDO USA, New Mexico 1938 13,6 H 5 2.1 fragment 0,80 ALLEGAN USA *July 10, 1899 35 H 5 276.0 5 small fragments 1,52 ALLEGAN USA *July 10, 1899 35 H 5 276.1 5 small fragments 1,50 ALLEGAN USA *July 10, 1899 35 H 5 276.2 chondrules 0,02 ALLEN USA, Texas 1923 recogn. -
Mineralogy and Petrology of New Antarctic Nakhlite Mil 03346
Lunar and Planetary Science XXXVI (2005) 2351.pdf MINERALOGY AND PETROLOGY OF NEW ANTARCTIC NAKHLITE MIL 03346. G. McKay1 and C. Schwandt2, 1Code KR, NASA Johnson Space Center, Houston, TX 77058, USA, [email protected], 2Lockheed Martin, 2400 NASA Parkway, Houston, TX 77058, USA. Introduction: Among the ~1300 meteorites re- Olivine is subhedral to anhedral, and often partially turned from Antarctica by the 2003-2004 ANSMET encloses clinopyroxene. Olivine rims occasionally expedition was a 715g nakhlite, MIL 03346, recovered have skeletal overgrowths into the mesostasis (Fig. 2). from the Miller Range. Samples of this meteorite were (Overgrowths are also common on pyroxene, but at a distributed to investigators on December 16, 2004. We much smaller scale.) Two olivine grains exceed all but were allocated PTS MIL 03346,63,100. This abstract the largest pyroxene grains in size, but there are also a is our preliminary report on the mineralogy and petrol- few smaller interstitial grains. ogy of this important new sample. The mesostasis is partially crystallized to very fine- Petrography: Like other nakhlites, MIL is an oli- grained skeletal olivine, pyroxene, and Ti-magnetite vine-bearing clinopyroxene cumulate with a dark- (Figs. 2, 3). Feldspar may also be present, although we colored, fine-grained intercumulus mesostasis. The cli- have yet to confirm its identity. Sulfide and phosphate nopyroxene grains are subhedral to euhedral prisms, are also present, but the latter is too small to analyze. and often appear elongated. Optical photomicrographs of MIL 03346 can be seen in the on-line JSC Antarctic Meteorite Newsletter at: http://www-curator.jsc.nasa.gov/antmet/amn/amnaug04/petdes2.htm. -
NASA Renews Search for Antarctic Meteorites 16 November 2016
NASA renews search for antarctic meteorites 16 November 2016 available for study from Earth's moon, Mars and asteroids. Among them are the first meteorites discovered to come from the moon and Mars, and the well-known ALH 84001 Martian meteorite, which helped renew interest in Mars exploration in the 1990s. Meteorites are natural objects that fall to Earth from space and survive intact so they can be collected on the ground, or—in this case—on ice. Antarctica provides a unique environment for the collection of meteorites, because the cold desert climate preserves meteorites for long periods of time. Movements of the ice sheets can concentrate meteorites in certain locations, making them relatively easy for scientists to find. To search for meteorites, ANSMET deploys small field parties Members of the Antarctic Search for Meteorites during the Antarctic summer (winter in the northern (ANSMET) program collect a carbonaceous chondrite hemisphere). Even in summer conditions are harsh, meteorite from a glacial moraine at the base of Mt. Ward, Antarctica. Credit: Christine Floss with temperatures dropping to well below zero degrees Fahrenheit (-18 degrees Celsius). The ANSMET teams are flown to remote areas, where they live in tents on the ice and search for Three federal entities, including NASA, are meteorites using snowmobiles or on foot. reaffirming their commitment to search for Antarctic meteorites, to help learn more about the primitive building blocks of the solar system and answer questions about Earth's neighbors like the moon and Mars. NASA, the National Science Foundation (NSF) and the Smithsonian Institution (SI) recently renewed their agreement to search for, collect and curate Antarctic meteorites in a partnership known as ANSMET—the Antarctic Search for Meteorites Program. -
Petrologic and Minerochemical Trends of Acapulcoites, Winonaites and Lodranites: New Evidence from Image Analysis and EMPA Investigations †
Geosciences 2015, 5, 222-242; doi:10.3390/geosciences5030222 OPEN ACCESS geosciences ISSN 2076-3263 www.mdpi.com/journal/geosciences Article Petrologic and Minerochemical Trends of Acapulcoites, Winonaites and Lodranites: New Evidence from Image † Analysis and EMPA Investigations Vanni Moggi Cecchi 1,‡,* and Stefano Caporali 2,3,‡ 1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, 50121 Florence, Italy 2 Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy 3 Consorzio INSTM, Via Giusti 9, 50121 Florence, Italy; E-Mail: [email protected] † This paper is an extended version of our paper published in the 42nd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011. ‡ These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-055-275-7456; Fax: +39-055-275-6322. Academic Editor: Jesus Martinez-Frias Received: 1 April 2015 / Accepted: 23 June 2015 / Published: 2 July 2015 Abstract: A comprehensive classification of primitive achondrites is difficult due to the high compositional and textural variability and the low number of samples available. Besides oxygen isotopic analysis, other minerochemical and textural parameters may provide a useful tool to solve taxonomic and genetic problems related to these achondrites. The results of a detailed modal, textural and minerochemical analysis of a set of primitive achondrites are presented and compared with literature data. All the samples show an extremely variable modal composition among both silicate and opaque phases. A general trend of troilite depletion vs.