The Two Golden Rules of Quantum Mechanics with Light Polarization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Concept of Quantum State : New Views on Old Phenomena Michel Paty
The concept of quantum state : new views on old phenomena Michel Paty To cite this version: Michel Paty. The concept of quantum state : new views on old phenomena. Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner. Revisiting the Founda- tions of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, p. 451-478, 2003. halshs-00189410 HAL Id: halshs-00189410 https://halshs.archives-ouvertes.fr/halshs-00189410 Submitted on 20 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « The concept of quantum state: new views on old phenomena », in Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner (eds.), Revisiting the Foundations of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, 451-478. , 2003 The concept of quantum state : new views on old phenomena par Michel PATY* ABSTRACT. Recent developments in the area of the knowledge of quantum systems have led to consider as physical facts statements that appeared formerly to be more related to interpretation, with free options. -
Light and Matter Diffraction from the Unified Viewpoint of Feynman's
European J of Physics Education Volume 8 Issue 2 1309-7202 Arlego & Fanaro Light and Matter Diffraction from the Unified Viewpoint of Feynman’s Sum of All Paths Marcelo Arlego* Maria de los Angeles Fanaro** Universidad Nacional del Centro de la Provincia de Buenos Aires CONICET, Argentine *[email protected] **[email protected] (Received: 05.04.2018, Accepted: 22.05.2017) Abstract In this work, we present a pedagogical strategy to describe the diffraction phenomenon based on a didactic adaptation of the Feynman’s path integrals method, which uses only high school mathematics. The advantage of our approach is that it allows to describe the diffraction in a fully quantum context, where superposition and probabilistic aspects emerge naturally. Our method is based on a time-independent formulation, which allows modelling the phenomenon in geometric terms and trajectories in real space, which is an advantage from the didactic point of view. A distinctive aspect of our work is the description of the series of transformations and didactic transpositions of the fundamental equations that give rise to a common quantum framework for light and matter. This is something that is usually masked by the common use, and that to our knowledge has not been emphasized enough in a unified way. Finally, the role of the superposition of non-classical paths and their didactic potential are briefly mentioned. Keywords: quantum mechanics, light and matter diffraction, Feynman’s Sum of all Paths, high education INTRODUCTION This work promotes the teaching of quantum mechanics at the basic level of secondary school, where the students have not the necessary mathematics to deal with canonical models that uses Schrodinger equation. -
Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function
Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen ( [email protected] ) Faculty of Land and Resources Engineering, Kunming University of Science and Technology. Research Article Keywords: probability origin, wave-function collapse, uncertainty principle, quantum tunnelling, double-slit and single-slit experiments Posted Date: November 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-95171/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093 Abstract The theoretical calculation of quantum mechanics has been accurately verified by experiments, but Copenhagen interpretation with probability is still controversial. To find the source of the probability, we revised the definition of the energy quantum and reconstructed the wave function of the physical particle. Here, we found that the energy quantum ê is 6.62606896 ×10-34J instead of hν as proposed by Planck. Additionally, the value of the quality quantum ô is 7.372496 × 10-51 kg. This discontinuity of energy leads to a periodic non-uniform spatial distribution of the particles that transmit energy. A quantum objective system (QOS) consists of many physical particles whose wave function is the superposition of the wave functions of all physical particles. The probability of quantum mechanics originates from the distribution rate of the particles in the QOS per unit volume at time t and near position r. Based on the revision of the energy quantum assumption and the origin of the probability, we proposed new certainty and uncertainty relationships, explained the physical mechanism of wave-function collapse and the quantum tunnelling effect, derived the quantum theoretical expression of double-slit and single-slit experiments. -
Testing the Limits of Quantum Mechanics the Physics Underlying
Testing the limits of quantum mechanics The physics underlying non-relativistic quantum mechanics can be summed up in two postulates. Postulate 1 is very precise, and says that the wave function of a quantum system evolves according to the Schrodinger equation, which is a linear and deterministic equation. Postulate 2 has an entirely different flavor, and can be roughly stated as follows: when the quantum system interacts with a classical measuring apparatus, its wave function collapses, from being in a superposition of the eigenstates of the measured observable, to being in just one of the eigenstates. The outcome of the measurement is random and cannot be predicted; the quantum system collapses to one or the other eigenstates, with a probability that is proportional to the squared modulus of the wave function for that eigenstate. This is the Born probability rule. Since quantum theory is extremely successful, and not contradicted by any experiment to date, one can simply accept the 2nd postulate as such, and let things be. On the other hand, ever since the birth of quantum theory, some physicists have been bothered by this postulate. The following troubling questions arise. How exactly is a classical measuring apparatus defined? How large must a quantum system be, before it can be called classical? The Schrodinger equation, which in principle is supposed to apply to all physical systems, whether large or small, does not answer this question. In particular, the equation does not explain why the measuring apparatus, say a pointer, is never seen in a quantum superposition of the two states `pointer to the left’ and `pointer to the right’? And if the equation does apply to the (quantum system + apparatus) as a whole, why are the outcomes random? Why does collapse, which apparently violates linear superposition, take place? Where have the probabilities come from, in a deterministic equation (with precise initial conditions), and why do they obey the Born rule? This set of questions generally goes under the name `the quantum measurement problem’. -
A Light-Matter Quantum Interface: Ion-Photon Entanglement and State Mapping
A light-matter quantum interface: ion-photon entanglement and state mapping Dissertation zur Erlangung des Doktorgrades an der Fakult¨atf¨urMathematik, Informatik und Physik der Leopold-Franzens-Universit¨atInnsbruck vorgelegt von Andreas Stute durchgef¨uhrtam Institut f¨urExperimentalphysik unter der Leitung von Univ.-Prof. Dr. Rainer Blatt Innsbruck, Dezember 2012 Abstract Quantum mechanics promises to have a great impact on computation. Motivated by the long-term vision of a universal quantum computer that speeds up certain calcula- tions, the field of quantum information processing has been growing steadily over the last decades. Although a variety of quantum systems consisting of a few qubits have been used to implement initial algorithms successfully, decoherence makes it difficult to scale up these systems. A powerful technique, however, could surpass any size limitation: the connection of individual quantum processors in a network. In a quantum network, “flying” qubits coherently transfer information between the stationary nodes of the network that store and process quantum information. Ideal candidates for the physical implementation of nodes are single atoms that exhibit long storage times; optical photons, which travel at the speed of light, are ideal information carriers. For coherent information transfer between atom and photon, a quantum interface has to couple the atom to a particular optical mode. This thesis reports on the implementation of a quantum interface by coupling a single trapped 40Ca+ ion to the mode of a high-finesse optical resonator. Single intra- cavity photons are generated in a vacuum-stimulated Raman process between two atomic states driven by a laser and the cavity vacuum field. -
Wave-Particle Duality Relation with a Quantum Which-Path Detector
entropy Article Wave-Particle Duality Relation with a Quantum Which-Path Detector Dongyang Wang , Junjie Wu * , Jiangfang Ding, Yingwen Liu, Anqi Huang and Xuejun Yang Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China; [email protected] (D.W.); [email protected] (J.D.); [email protected] (Y.L.); [email protected] (A.H.); [email protected] (X.Y.) * Correspondence: [email protected] Abstract: According to the relevant theories on duality relation, the summation of the extractable information of a quanton’s wave and particle properties, which are characterized by interference visibility V and path distinguishability D, respectively, is limited. However, this relation is violated upon quantum superposition between the wave-state and particle-state of the quanton, which is caused by the quantum beamsplitter (QBS). Along another line, recent studies have considered quantum coherence C in the l1-norm measure as a candidate for the wave property. In this study, we propose an interferometer with a quantum which-path detector (QWPD) and examine the generalized duality relation based on C. We find that this relationship still holds under such a circumstance, but the interference between these two properties causes the full-particle property to be observed when the QWPD system is partially present. Using a pair of polarization-entangled photons, we experimentally verify our analysis in the two-path case. This study extends the duality relation between coherence and path information to the quantum case and reveals the effect of quantum superposition on the duality relation. -
GPS and the Search for Axions
GPS and the Search for Axions A. Nicolaidis1 Theoretical Physics Department Aristotle University of Thessaloniki, Greece Abstract: GPS, an excellent tool for geodesy, may serve also particle physics. In the presence of Earth’s magnetic field, a GPS photon may be transformed into an axion. The proposed experimental setup involves the transmission of a GPS signal from a satellite to another satellite, both in low orbit around the Earth. To increase the accuracy of the experiment, we evaluate the influence of Earth’s gravitational field on the whole quantum phenomenon. There is a significant advantage in our proposal. While the geomagnetic field B is low, the magnetized length L is very large, resulting into a scale (BL)2 orders of magnitude higher than existing or proposed reaches. The transformation of the GPS photons into axion particles will result in a dimming of the photons and even to a “light shining through the Earth” phenomenon. 1 Email: [email protected] 1 Introduction Quantum Chromodynamics (QCD) describes the strong interactions among quarks and gluons and offers definite predictions at the high energy-perturbative domain. At low energies the non-linear nature of the theory introduces a non-trivial vacuum which violates the CP symmetry. The CP violating term is parameterized by θ and experimental bounds indicate that θ ≤ 10–10. The smallness of θ is known as the strong CP problem. An elegant solution has been offered by Peccei – Quinn [1]. A global U(1)PQ symmetry is introduced, the spontaneous breaking of which provides the cancellation of the θ – term. As a byproduct, we obtain the axion field, the Nambu-Goldstone boson of the broken U(1)PQ symmetry. -
Research-Based Interactive Simulations to Support Quantum Mechanics Learning and Teaching
Research-based interactive simulations to support quantum mechanics learning and teaching Antje Kohnle School of Physics and Astronomy, University of St Andrews Abstract Quantum mechanics holds a fascination for many students, but its mathematical complexity can present a major barrier. Traditional approaches to introductory quantum mechanics have been found to decrease student interest. Topics which enthuse students such as quantum information are often only covered in advanced courses. The QuVis Quantum Mechanics Visualization project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Some simulations allow students to collect data to see how quantum-mechanical quantities are determined experimentally. Through text explanations, simulations aim to be self-contained instructional tools. Simulations are research-based, and evaluation with students informs all stages of the development process. Simulations and activities are iteratively refined using individual student observation sessions, where students freely explore a simulation and then work on the associated activity, as well as in-class trials using student surveys, pre- and post-tests and student responses to activities. A recent collection of QuVis simulations is embedded in the UK Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. -
Photons and Polarization
Photons and Polarization Now that we’ve understood the classical picture of polarized light, it will be very enlightening to think about what is going on with the individual photons in some polarization experiments. This simple example will reveal many features common to all quantum mechanical systems. Classical polarizer experiments Let’s imagine that we have a beam of light polarized in the vertical di- rection, which could be produced by passing an unpolarized beam of light through a vertically oriented polarizer. If we now place a second vertically oriented polarizer in the path of the beam, we know that all the light should pass through (assuming reflection is negligible). On the other hand, if the second polarizer is oriented at 90 degrees to the first, none of the light will pass through. Finally, if the second polarizer is oriented at 45 degrees to the first (or some general angle θ) then the intensity of the transmitted beam will be half (or generally cos2(θ) times) the intensity of the original polarized beam. If we insert a third polarizer with the same orientation as the second polarizer, there is no further reduction in intensity, so the reduced intensity beam is completely polarized in the direction of the second polarizer. Photon interpretation of polarization experiments The results we have mentioned do not depend on what the original in- tensity of the light is. In particular, if we turn down the intensity so much that the individual photons are observable (e.g. with a photomultiplier), we get the same results.1 We must then conclude that each photon carries in- formation about the polarization of the light. -
Photon Polarization in Nonlinear Breit-Wheeler Pair Production and $\Gamma$ Polarimetry
PHYSICAL REVIEW RESEARCH 2, 032049(R) (2020) Rapid Communications High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ polarimetry Feng Wan ,1 Yu Wang,1 Ren-Tong Guo,1 Yue-Yue Chen,2 Rashid Shaisultanov,3 Zhong-Feng Xu,1 Karen Z. Hatsagortsyan ,3,* Christoph H. Keitel,3 and Jian-Xing Li 1,† 1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China 2Department of Physics, Shanghai Normal University, Shanghai 200234, China 3Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (Received 24 February 2020; accepted 12 August 2020; published 27 August 2020) The interaction of an unpolarized electron beam with a counterpropagating ultraintense linearly polarized laser pulse is investigated in the quantum radiation-dominated regime. We employ a semiclassical Monte Carlo method to describe spin-resolved electron dynamics, photon emissions and polarization, and pair production. Abundant high-energy linearly polarized γ photons are generated intermediately during this interaction via nonlinear Compton scattering, with an average polarization degree of more than 50%, further interacting with the laser fields to produce electron-positron pairs due to the nonlinear Breit-Wheeler process. The photon polarization is shown to significantly affect the pair yield by a factor of more than 10%. The considered signature of the photon polarization in the pair’s yield can be experimentally identified in a prospective two-stage setup. Moreover, with currently achievable laser facilities the signature can serve also for the polarimetry of high-energy high-flux γ photons. DOI: 10.1103/PhysRevResearch.2.032049 Rapid advancement of strong laser techniques [1–4] en- that an electron beam cannot be significantly polarized by a ables experimental investigation of quantum electrodynamics monochromatic laser wave [46–48]. -
Arxiv:1907.08877V2 [Physics.Plasm-Ph] 27 Nov 2019 Smaller Than the Laser Wavelength
Polarized ultrashort brilliant multi-GeV γ-rays via single-shot laser-electron interaction Yan-Fei Li,1, 2 Rashid Shaisultanov,2 Yue-Yue Chen,2 Feng Wan,1, 2 Karen Z. Hatsagortsyan,2, ∗ Christoph H. Keitel,2 and Jian-Xing Li1, 2, y 1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China 2Max-Planck-Institut f¨urKernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (Dated: November 28, 2019) Generation of circularly-polarized (CP) and linearly-polarized (LP) γ-rays via the single-shot interaction of an ultraintense laser pulse with a spin-polarized counterpropagating ultrarelativistic electron beam has been investigated in nonlinear Compton scattering in the quantum radiation-dominated regime. For the process simulation a Monte Carlo method is developed which employs the electron-spin-resolved probabilities for polarized photon emissions. We show efficient ways for the transfer of the electron polarization to the high- energy photon polarization. In particular, multi-GeV CP (LP) γ-rays with polarization of up to about 95% can be generated by a longitudinally (transversely) spin-polarized electron beam, with a photon flux meeting the requirements of recent proposals for the vacuum birefringence measurement in ultrastrong laser fields. Such high-energy, high-brilliance, high-polarization γ-rays are also beneficial for other applications in high-energy physics, and laboratory astrophysics. Polarization is a crucial intrinsic property of a γ-photon. Nevertheless, the nonlinear regime of Compton scattering is In astrophysics the γ-photon polarization provides detailed beneficial for the generation of polarized γ-photons, because insight into the γ-ray emission mechanism and on properties the polarization is enhanced at high γ-photon energies [12], of dark matter [1, 2]. -
Macroscopic Rotation of Photon Polarization Induced by a Single Spin
ARTICLE Received 17 Nov 2014 | Accepted 7 Jan 2015 | Published 17 Feb 2015 DOI: 10.1038/ncomms7236 OPEN Macroscopic rotation of photon polarization induced by a single spin Christophe Arnold1, Justin Demory1, Vivien Loo1, Aristide Lemaıˆtre1, Isabelle Sagnes1, Mikhaı¨l Glazov2, Olivier Krebs1, Paul Voisin1, Pascale Senellart1,3 &Loı¨c Lanco1,4 Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10 À 3 degrees due to poor spin–photon coupling. Here we report the enhancement by three orders of magnitude of the spin–photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ±6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. 1 Laboratoire de Photonique et de Nanostructures, CNRS UPR 20, Route de Nozay, 91460 Marcoussis, France. 2 Ioffe Physical-Technical Institute of the RAS, 194021 St-Petersburg, Russia. 3 De´partement de Physique, Ecole Polytechnique, F-91128 Palaiseau, France. 4 Universite´ Paris Diderot—Paris 7, 75205 Paris CEDEX 13, France.