Liléopsis De L'est(Lilaeopsis Chinensis)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Introduction to Common Native & Invasive Freshwater Plants in Alaska
Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
Amphitropic Amphiantarctic Disjunctions in Apiaceae Subfamily
Journal of Biogeography (J. Biogeogr.) (2010) 37, 1977–1994 ORIGINAL Amphitropic amphiantarctic disjunctions ARTICLE in Apiaceae subfamily Apioideae Krzysztof Spalik1*, Marcin Piwczyn´ ski2, Clark A. Danderson3, Renata Kurzyna-Młynik1, Tiffany S. Bone3 and Stephen R. Downie3 1Department of Plant Systematics and ABSTRACT Geography, Faculty of Biology, Institute of Aim Four genera of the plant family Apiaceae subfamily Apioideae – Apium, Botany, University of Warsaw, Warszawa, Poland, 2Department of Plant Taxonomy and Chaerophyllum, Daucus and Lilaeopsis – are characterized by amphitropic and Geography, Institute of Ecology and amphiantarctic distribution patterns, and in Australasia the subfamily is also Environment Protection, Nicolaus Copernicus represented by the tribe Aciphylleae. We infer the molecular ages of achieving University, Torun´, Poland, 3Department of amphitropic distribution for these lineages, reconstruct the biogeographical Plant Biology, University of Illinois at Urbana- histories of Apium, Chaerophyllum, Daucus and Lilaeopsis, and identify the sister Champaign, Urbana, IL, USA group of Aciphylleae. Location Worldwide, with an emphasis on South America and Australasia. Methods Divergence times were estimated employing a Bayesian approach (beast) with fossil pollen of basal apioids as calibration points and using a data set of nuclear ribosomal DNA internal transcribed spacer (nrDNA ITS) sequences from 284 accessions of Apioideae. Additionally, maximum-likelihood analyses were performed for data subsets comprising Apium, Daucus and Lilaeopsis. For Chaerophyllum, maximum-likelihood and beast analyses were carried out using combined chloroplast DNA and ITS data. Biogeographical scenarios were inferred using diva and lagrange. Results The sister group to Aciphylleae is the Sino-Himalayan Acronema clade and the divergence between these two lineages is dated at 34.8 Ma, whereas the radiation of Aciphylleae started 11.0 Ma. -
Endangered Species Series No. 4 Petition to List The
. 1 OC t,(.3 t r a-k. PETITION TO LIST THE HUACHUCA WATER UMBELL Lilaeopsis schaffneriana subspecies recurva AS A FEDERALLY ENDANGERED SPECIES May 31, 1993 GREATER GILA BIODIVERSITY PROJECT ENDANGERED SPECIES SERIES NO. 4 May 31, 1993 Mr. Bruce Babbitt Secretary of the Interior Office of the Secretary Department of the Interior 18th and "C" Street, N.W. Washington, D.C. 20240 Kieran Suckling, the Greater Gila Biodiversity Project, the Southwest Center For Biological Diversity, and the Biodiversity Legal Foundation, hereby formally petition to list the Huachuca Water Umbell (Lilaeopsis schaffneriana subspecies recurva) as endangered pursuant to the Endangered Species Act, 16 U.S.C. 1531 et seq. (hereafter referred to as "ESA"). This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14 (1990), which grants interested parties the right to petition for issue of a rule from the Assistant Secretary of the Interior. Petitioners also request that Critical Habitat be designated concurrent with the listing, pursuant to 50 CFR 424.12, and pursuant to the Administrative Procedures Act (5 U.S.C. 553). Petitioners understand that this petition action sets in motion a specific process placing definite response requirements on the U.S. Fish and Wildlife Service and very specific time constraints upon those responses. Petitioners Kieran Suckling is a Doctoral Candidate, endangered species field researcher, and conservationist. He serves as the Director of the Greater Gila Biodiversity Project and has extensively studied the status and natural history of Lilaeopsis schaffneriana subspecies recurva. The Greater Gila Biodiversity Project is a non-profit public interest organization created to protect imperiled species and habitats within the Greater Gila Ecosystem of southwest New Mexico and eastern Arizona. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E. -
Federal Register/Vol. 63, No. 250/Wednesday, December 30
71838 Federal Register / Vol. 63, No. 250 / Wednesday, December 30, 1998 / Proposed Rules * * * * * streams or rivers in Cochise and Santa appointment, during normal business Dated: December 22, 1998. Cruz counties, Arizona. If this proposal hours at the above address. Donald Barry, is made final, section 7 of the Act would FOR FURTHER INFORMATION CONTACT: prohibit destruction or adverse Tom Assistant Secretary for Fish and Wildlife and Gatz, Endangered Species Coordinator, Parks. modification of critical habitat by any at the above address (telephone 602/ [FR Doc. 98±34412 Filed 12±23±98; 3:59 pm] activity funded, authorized, or carried 640±2720 ext. 240; facsimile 602/640± BILLING CODE 4310±55±C out by any Federal agency. Section 4 of the Act requires us to consider 2730). economic and other impacts of SUPPLEMENTARY INFORMATION: DEPARTMENT OF THE INTERIOR specifying any particular area as critical habitat. We solicit data and comments Background Fish and Wildlife Service from the public on all aspects of this Lilaeopsis schaffneriana ssp. recurva proposal, including data on the 50 CFR Part 17 (referred to as Lilaeopsis in this economic and other impacts of the proposed rule), the Huachuca water RIN 1018±AF37 designation. We may revise this umbel, is a plant found in cienegas proposal to incorporate or address new (desert marshes), streams and springs in Endangered and Threatened Wildlife information received during the southern Arizona and northern Sonora, and Plants; Proposed Determination of comment period. Mexico, typically in mid-elevation Critical Habitat for the Huachuca Water DATES: We will accept comments until wetland communities often surrounded Umbel, a Plant March 1, 1999. -
Arizona Game and Fish Department Heritage Data Management System
ARIZONA GAME AND FISH DEPARTMENT HERITAGE DATA MANAGEMENT SYSTEM Plant Abstract Element Code: PDAPI19051 Data Sensitivity: Yes CLASSIFICATION, NOMENCLATURE, DESCRIPTION, RANGE NAME: Lilaeopsis schaffneriana (Schlecht) var. recurva (A.W. Hill) Affolter COMMON NAME: Huachuca water umbel, Huachuca water-umbel, Huachuca waterumbel, Schaffner’s grasswort, Cienega False-rush SYNONYMS: Lilaeopsis recurva A.W. Hill, L. schaffneriana ssp. recurva FAMILY: Apiaceae AUTHOR, PLACE OF PUBLICATION: A.W. Hill, J. Linn. Soc. Bot. 47: 525-551. 1927. TYPE LOCALITY: Santa Cruz Valley near Tucson, Pima County, Arizona, U.S.A. TYPE SPECIMEN: LT: GH. C.G. Pringle s.n. 19 May 1881. LT: US. ST: NY, GH. TAXONOMIC UNIQUENESS: In the genus Lilaeopsis, the species schaffneriana is 1 of 5 species in North America, and contains only 1 variety recurva. According to Affolter (1985), “The genus Lilaeopsis Greene contains approximately 20 species. It is well developed in the temperate zones of North America, South America, Australia and New Zealand. 6 or 7 species recognized in North America.” According to NatureServe (2003), “The USFWS listed this taxon as Lilaeopsis schaffneriana ssp. recurva (Federal Register, Jan. 6, 1997). As of 11/31/99, L. schaffneriana var. recurva is used in its List of Endangered and Threatened Plants. The latter rank, is also used by Kartesz (1999). However, subspecies seems to be the rank used by Affolter (1985, p. 61), and is accepted in the Gray Index (online, 8/2000).” It is also used by the Missouri Botanical Garden (2003). DESCRIPTION: Herbaceous, semi-aquatic to aquatic perennial with cylindrical, wavy, yellowish green, slender hollow leaves borne individually or in clusters, that grow from the nodes of creeping rhizomes; inconspicuous septa at irregular intervals. -
Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir. -
Evolution Along the Crassulacean Acid Metabolism Continuum
Review CSIRO PUBLISHING www.publish.csiro.au/journals/fpb Functional Plant Biology, 2010, 37, 995–1010 Evolution along the crassulacean acid metabolism continuum Katia SilveraA, Kurt M. Neubig B, W. Mark Whitten B, Norris H. Williams B, Klaus Winter C and John C. Cushman A,D ADepartment of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV 89557-0200, USA. BFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA. CSmithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama. DCorresponding author. Email: [email protected] This paper is part of an ongoing series: ‘The Evolution of Plant Functions’. Abstract. Crassulacean acid metabolism (CAM) is a specialised mode of photosynthesis that improves atmospheric CO2 assimilation in water-limited terrestrial and epiphytic habitats and in CO2-limited aquatic environments. In contrast with C3 and C4 plants, CAM plants take up CO2 from the atmosphere partially or predominantly at night. CAM is taxonomically widespread among vascular plants andis present inmanysucculent species that occupy semiarid regions, as well as intropical epiphytes and in some aquatic macrophytes. This water-conserving photosynthetic pathway has evolved multiple times and is found in close to 6% of vascular plant species from at least 35 families. Although many aspects of CAM molecular biology, biochemistry and ecophysiology are well understood, relatively little is known about the evolutionary origins of CAM. This review focuses on five main topics: (1) the permutations and plasticity of CAM, (2) the requirements for CAM evolution, (3) the drivers of CAM evolution, (4) the prevalence and taxonomic distribution of CAM among vascular plants with emphasis on the Orchidaceae and (5) the molecular underpinnings of CAM evolution including circadian clock regulation of gene expression. -
Weed Risk Assessment for Lilaeopsis Brasiliensis (Glaziou) Affolter (Apiaceae) – Brazilian Micro Sword
United States Department of Weed Risk Assessment Agriculture for Lilaeopsis brasiliensis (Glaziou) Animal and Affolter (Apiaceae) – Brazilian micro Plant Health Inspection sword Service May 19, 2017 Version 1 Top: Lawn-like habit of Lilaeopsis brasiliensis under high light in an aquarium. Bottom left: A clump with offshoots being produced along rhizomes. Bottom right: A clump growing in rock wool. All photos obtained with permission (Nelson, 2017) from Tropica’s (2017) website. AGENCY CONTACT Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Lilaeopsis brasiliensis (Brazilian micro sword) 1. Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). -
Lilaeopsis Mauritiana G
United States Department of Weed Risk Assessment Agriculture for Lilaeopsis mauritiana G. Petersen Animal and & Affolter (Apiaceae) – Mauritius Plant Health Inspection micro sword Service May 19, 2017 Version 1 Left: Lawn-like habit of Lilaeopsis mauritiana under high light in an aquarium. Right: Drawing of a clump without rhizomes. All photos obtained with permission (Nelson, 2017) from Tropica’s (2017) website. AGENCY CONTACT Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Lilaeopsis mauritiana (Mauritius micro sword) 1. Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015).