Étude Moléculaire De La Formation De Complexes Protéiques Impliqués Dans La Signalisation Des Récepteurs Couplés Aux Protéines G

Total Page:16

File Type:pdf, Size:1020Kb

Étude Moléculaire De La Formation De Complexes Protéiques Impliqués Dans La Signalisation Des Récepteurs Couplés Aux Protéines G Université de Montréal Étude moléculaire de la formation de complexes protéiques impliqués dans la signalisation des récepteurs couplés aux protéines G par Billy Breton Département de Biochimie, Faculté de Médecine Thèse présentée à la Faculté des études supérieures en vue de l’obtention du grade de Ph.D. en Biochimie Mai, 2010 © Billy Breton, 2010 Université de Montréal Faculté des études supérieures Cette thèse intitulée : Étude moléculaire de la formation de complexes protéiques impliqués dans la signalisation des récepteurs couplés aux protéines G présentée par : Billy Breton a été évaluée par un jury composé des personnes suivantes : Sylvie Mader, président-rapporteur Michel Bouvier, directeur de recherche Marc Servant, membre du jury Jean-Philippe Pin, examinateur externe Audrey Claing, représentant du doyen de la FES iii Résumé La communication cellulaire est un phénomène important pour le maintien de l’homéostasie des cellules. Au court des dernières années, cette sphère de recherche sur la signalisation cellulaire a connue des avancées importantes au niveau de l’identification des acteurs principaux impliqués dans la reconnaissance extracellulaire des signaux, ainsi que la compréhension des voies de signalisation engagées par les cellules pour répondre aux facteurs extracellulaires. Malgré ces nouvelles informations, les diverses interrelations moléculaires entre les acteurs ainsi que les voies de signalisation cellulaire, demeurent mal comprises. Le transfert d’énergie de résonance de bioluminescence (BRET) permet la mesure d’interactions protéiques et peut être utilisé dans deux configurations, le BRET480-YFP 1 2 (connu aussi comme le BRET ) et le BRET400-GFP (connu aussi en tant que BRET ). Suite à l’oxydation de son substrat, la luciférase de renilla peut transférer son énergie à une protéine fluorescente, uniquement si elles sont à proximité l’une de l’autre (≤100Å). La combinaison dans un seul essai des BRET480-YFP et BRET400-GFP, a permis de suivre trois paires d’interactions, sur une même population cellulaire. Par contre, l’utilisation de deux substrats pour la réaction de bioluminescence rend impossible la mesure simultanée des différents signaux de BRET, pour ce trois nouvelles configurations de BRET ont été mises au point en utilisant des nouvelles protéines fluorescentes. Ainsi deux des nouvelles couleurs de BRET ayant des émissions résolues, le BRET400-BFP et le BRET400mAmetrine ont pu être combinées pour mesurer l’engagement par un RCPG d’une protéine G, ainsi que l’accumulation du second messager. La combinaison de ces BRET a également permis de révéler la formation d’un complexe entre le récepteur α2A adrénergique (α2AAR), Gαi1, le dimère Gβγ ainsi que la kinase des récepteurs couplés aux protéines G (GRK2), suite à l’activation du récepteur. De plus, seule l’entrée de GRK2 semble être en mesure de causer la désensibilisation du α2AAR, en s’intercalant entre Gαi1 et Gβγ. Par contre, la stabilisation de l’interaction entre α2AAR et la β-arrestine2 semble nécessiter l’activité kinase de GRK2. iv Une autre étude a révélé l’importance de différentes Gα pour la mobilisation du calcium, suite à l’activation du récepteur aux opioïdes de type delta (DOR). Suite à la surexpression de Gα de la famille Gαq, il a été possible de mesurer une influence de ces Gα sur la mobilisation du calcium. Toutefois, cette réponse calcique mesurée en présence des Gαq demeure sensible aux prétraitements à la toxine de Bordetella pertussis, qui inhibe sélectivement l’activité des Gαi. De plus, la co-expression de Gαi et Gαq permet de potentialiser la mobilisation de calcium, démontrant une interrelation entre ces deux familles de protéine Gα, pour la signalisation du DOR. Afin de démontrer l’interrelation directe, des expériences de BRET ont été réalisées entre différentes Gα. En plus de montrer la formation de complexes sélectifs entre les Gα, les expériences de BRET réalisées en parallèle d’analyses de séquences de Gα, ont également mis à jour un site de sélectivité d’interaction entre les Gα, l’hélice α4. Suite à la transposition de cette hélice α4 de Gα12 sur Gαi1, qui normalement n’interagissent pas, il a été possible de forcer l’interaction entre Gα12 et Gαi1, confirmant ainsi que cette hélice α contient l’information permettant une sélectivité d’interaction. Au cours de cette thèse, il a été possible de générer de nouvelles méthodes de mesure d’interactions protéiques qui permettent de multiplexer différents signaux, ce qui a permis de mettre à jour de nouvelles interactions entre divers effecteurs de la signalisation de RCGP. Mots-clés : récepteur couplé aux protéines G (RCPG), protéine G hétérotrimérique, kinase des récepteurs couplés aux protéines G (GRK), β-arrestin, transfert d’énergie de résonance de bioluminescence (BRET), transfert d’énergie de résonance de fluorescence (FRET), obelin, mobilisation du calcium, multiplexage, luciférase, protéine fluorescence (FP), biocapteurs, opioïde, adrénergique, vasopressine. v Abstract Cellular communication is an important phenomenon for the maintenance of cellular homeostasis. Recently, important progress has been made in the cell signalling research field concerning the identification of the major actors and the cellular pathways engaged in response to these extracellular factors. However, in spite of this new information, the interrelationships at the molecular level between the various cellular actors and the different signalling pathways remain badly understood. Bioluminescence resonance energy transfer (BRET) monitors interactions between 1 proteins and can be used in two configurations, the BRET480-YFP (also known as BRET ) 2 and the BRET400-GFP (also known as BRET ). Following oxidation of its substrate, renilla luciferase transfers its energy to a fluorescent protein, only if they are in close proximity (≤100Å). By combining the BRET480-YFP and BRET400-GFP in one assay, it is possible to follow three pair-wise interactions in the same cellular population. However, using two bioluminescence reaction substrates limits the possibility of measuring the different BRET signals simultaneously. In order to measure multiple BRET signals simultaneously, three new BRET configurations, based on the BRET400-GFP, were developed using fluorescent proteins with different emission wavelengths. Two of the new BRET colors which have resolved emission wavelengths, the BRET400-BFP and BRET400mAmetrine, were combined for measuring the heterotrimeric G protein engagement by the vasopressin V2 receptor, as well as the accumulation of the second messenger. Combining these new BRET techniques reveals for the first time the formation of a complex between the α2A adrenergic receptor (α2AAR), Gαi1, the Gβγ dimer and G protein- receptor kinase (GRK2) following receptor activation. Moreover, only the entry of GRK2 into the receptor complex is required for the α2AAR desensitization, by inserting between Gαi1 and Gβγ. On the other hand, the stabilization of the interaction between α2AAR and β- arrestin2 requires the kinase activity of GRK2. Another study revealed the importance of multiple Gα subunits for calcium mobilization induced upon activation of the delta opioid receptor (DOR). Gαq subfamily vi member overexpression altered the DOR-induced calcium mobilization, but this Gαq calcium mobilization remained sensitive to pre-treatement pertussis toxin, through selective inhibition of the activity of Gαi members. Moreover, Gαi and Gαq co-expression potentiated calcium mobilization, suggesting an interrelationship between these two Gα families in DOR signaling. This Gαi and Gαq interrelationship could result from the formation of a complex close to the receptor. In order to test this hypothesis, BRET experiments were performed, with the aim of measuring the presence of complexes between different Gα. In addition to demonstrating complex formation between Gα subunits, the BRET experiments in parallel with sequence analysis, also revealed a selective interaction site between the Gα, the α4 helix. By swapping the a4 helix of Gαi with the α4 helix of Gα12, which doesn’t normally interact with Gα12, it was possible to force the interaction between Gα12 and Gαi to confirm that this α helix contains information concerning the selectivity of interactions between Gα subunits. During this thesis, new methods were to detect protein interactions and multiplexing these methods allowed the detection of novel interactions between signalling effectors of GPCRs. Keywords : G protein coupled receptor (GPCR), Heterotrimeric G protein, G protein coupled receptor kinase (GRK), β-arresitn, bioluminescence resonance energy transfer (BRET), fluorescence resonance energy transfer (FRET), obelin, calcium mobilization, multiplexing, luciferase, fluorescent protein (FP), opioid, adrenergic, vasopressin. vii Table des matières Introduction ...................................................................................................... 1 Signalisation cellulaire ..................................................................................................... 1 Famille des récepteurs couplés aux protéines G ........................................................... 2 Généralités ..................................................................................................................... 2 Structure ......................................................................................................................... 4 Fonctions .......................................................................................................................
Recommended publications
  • Endothelin System and Therapeutic Application of Endothelin Receptor
    xperim ACCESS Freely available online & E en OPEN l ta a l ic P in h l a C r m f o a c l a o n l o r g u y o J Journal of ISSN: 2161-1459 Clinical & Experimental Pharmacology Research Article Endothelin System and Therapeutic Application of Endothelin Receptor Antagonists Abebe Basazn Mekuria, Zemene Demelash Kifle*, Mohammedbrhan Abdelwuhab Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia ABSTRACT Endothelin is a 21 amino acid molecule endogenous potent vasoconstrictor peptide. Endothelin is synthesized in vascular endothelial and smooth muscle cells, as well as in neural, renal, pulmonic, and inflammatory cells. It acts through a seven transmembrane endothelin receptor A (ETA) and endothelin receptor B (ETB) receptors belongs to G protein-coupled rhodopsin-type receptor superfamily. This peptide involved in pathogenesis of cardiovascular disorder like (heart failure, arterial hypertension, myocardial infraction and atherosclerosis), renal failure, pulmonary arterial hypertension and it also involved in pathogenesis of cancer. Potentially endothelin receptor antagonist helps the treatment of the above disorder. Currently, there are a lot of trails both per-clinical and clinical on endothelin antagonist for various cardiovascular, pulmonary and cancer disorder. Some are approved by FAD for the treatment. These agents are including both selective and non-selective endothelin receptor antagonist (ETA/B). Currently, Bosentan, Ambrisentan, and Macitentan approved
    [Show full text]
  • GPCR/G Protein
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com GPCR/G Protein G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. G proteins are specialized proteins with the ability to bind the nucleotides guanosine triphosphate (GTP) and guanosine diphosphate (GDP). In unstimulated cells, the state of G alpha is defined by its interaction with GDP, G beta-gamma, and a GPCR. Upon receptor stimulation by a ligand, G alpha dissociates from the receptor and G beta-gamma, and GTP is exchanged for the bound GDP, which leads to G alpha activation. G alpha then goes on to activate other molecules in the cell. These effects include activating the MAPK and PI3K pathways, as well as inhibition of the Na+/H+ exchanger in the plasma membrane, and the lowering of intracellular Ca2+ levels. Most human GPCRs can be grouped into five main families named; Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin, forming the GRAFS classification system. A series of studies showed that aberrant GPCR Signaling including those for GPCR-PCa, PSGR2, CaSR, GPR30, and GPR39 are associated with tumorigenesis or metastasis, thus interfering with these receptors and their downstream targets might provide an opportunity for the development of new strategies for cancer diagnosis, prevention and treatment. At present, modulators of GPCRs form a key area for the pharmaceutical industry, representing approximately 27% of all FDA-approved drugs. References: [1] Moreira IS. Biochim Biophys Acta. 2014 Jan;1840(1):16-33.
    [Show full text]
  • Peripheral Regulation of Pain and Itch
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1596 Peripheral Regulation of Pain and Itch ELÍN INGIBJÖRG MAGNÚSDÓTTIR ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0746-6 UPPSALA urn:nbn:se:uu:diva-392709 2019 Dissertation presented at Uppsala University to be publicly examined in A1:107a, BMC, Husargatan 3, Uppsala, Friday, 25 October 2019 at 13:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor emeritus George H. Caughey (University of California, San Francisco). Abstract Magnúsdóttir, E. I. 2019. Peripheral Regulation of Pain and Itch. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1596. 71 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0746-6. Pain and itch are diverse sensory modalities, transmitted by the somatosensory nervous system. Stimuli such as heat, cold, mechanical pain and itch can be transmitted by different neuronal populations, which show considerable overlap with regards to sensory activation. Moreover, the immune and nervous systems can be involved in extensive crosstalk in the periphery when reacting to these stimuli. With recent advances in genetic engineering, we now have the possibility to study the contribution of distinct neuron types, neurotransmitters and other mediators in vivo by using gene knock-out mice. The neuropeptide calcitonin gene-related peptide (CGRP) and the ion channel transient receptor potential cation channel subfamily V member 1 (TRPV1) have both been implicated in pain and itch transmission. In Paper I, the Cre- LoxP system was used to specifically remove CGRPα from the primary afferent population that expresses TRPV1.
    [Show full text]
  • REVIEW Dimerization and Oligomerization of G-Protein
    435 REVIEW Dimerization and oligomerization of G-protein-coupled receptors: debated structures with established and emerging functions La´szlo´ Szidonya1, Miklo´s Cserzo˝ 1 and La´szlo´ Hunyady1,2 1Department of Physiology, Semmelweis University, PO Box 259, H-1444 Budapest, Hungary 2Laboratory for Neurobiochemistry and Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, H-1444 Budapest, Hungary (Correspondence should be addressed to L Hunyady; Email: [email protected]) Abstract Dimerization or oligomerization of G-protein-coupled homo- or heterodimeric or oligomeric complexes, in which receptors (GPCRs) is a novel concept, which may lead to receptor monomers have stable direct interactions. However, the reevaluation of the actions of pharmacological ligands, overwhelming amounts of data suggest that many GPCRs hormones, neurotransmitters, and other mediators acting on exhibit functional properties that require direct or indirect GPCRs. Although a large number of data obtained using interactions between clustered receptors. Although it is different biophysical, biochemical and structural methods, difficult to conclude, about the exact nature of these and functional approaches argue for dimerization or interactions, dimerization or oligomerization of GPCRs is a oligomerization of these receptors, several publications useful paradigm for pharmacologists to study properties of criticized the applied methods and challenged the concept. receptors, which require functionally important clustering of The aim of this paper is to review the data that support the receptors, such as trafficking of newly synthesized receptors to concept of receptor oligomerization, and the most important the cell surface, allosteric modulation of ligand binding, arguments against it. We conclude that it will require major signaling specificity, co-internalization, or cross-inhibition of methodical improvements to obtain decisive proof, whether GPCRs.
    [Show full text]
  • Cell Surface Targeting of ␮-␦ Opioid Receptor Heterodimers by RTP4
    Cell surface targeting of ␮-␦ opioid receptor heterodimers by RTP4 Fabien M. De´ caillot, Raphael Rozenfeld, Achla Gupta, and Lakshmi A. Devi* Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 Edited by Susan G. Amara, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved August 22, 2008 (received for review April 29, 2008) ␮ opioid receptors are G protein–coupled receptors that mediate heterodimers, respectively. These findings, together with the the pain-relieving effects of clinically used analgesics, such as observation that the development of tolerance correlates with morphine. Accumulating evidence shows that ␮-␦ opioid het- the enhanced surface expression (through externalization) of ␦ erodimers have a pharmacologic profile distinct from those of the receptors in dorsal root ganglion neurons expressing ␮ receptors ␮ or ␦ homodimers. Because the heterodimers exhibit distinct (15), support the idea that mechanisms and/or proteins that signaling properties, the protein and mechanism regulating their modulate the level of ␮-␦ complexes serve as critical factors in levels have significant effects on morphine-mediated physiology. the development of tolerance (16). Thus, the factors influencing We report the characterization of RTP4, a Golgi chaperone, as a the homodimer-to-heterodimer ratio become a key issue in regulator of the levels of heterodimers at the cell surface. We show determining the net effect of an opiate. Moreover, they could that the association with RTP4 protects ␮-␦ receptors from ubiq- redirect the coupling of opioid receptors to a distinct signal uitination and degradation. This leads to increases in surface transduction pathway (17, 18). But very little is known about the heterodimer levels, thereby affecting signaling.
    [Show full text]
  • Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors
    RESEARCH ARTICLE Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors Viktoria Hasselhof1☯, Anastasia Sperling1☯, Kerstin Buttler1, Philipp StroÈ bel2, JuÈ rgen Becker1, Thiha Aung3,4, Gunther Felmerer3, JoÈ rg Wilting1* 1 Institute of Anatomy and Cell Biology, University Medical School GoÈttingen, GoÈttingen, Germany, 2 Institute of Pathology, University Medical Center GoÈttingen, GoÈttingen, Germany, 3 Division of Trauma Surgery, Plastic and Reconstructive Surgery, University Medical Center GoÈttingen, GoÈttingen, Germany, a11111 4 Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Citation: Hasselhof V, Sperling A, Buttler K, StroÈbel Millions of patients suffer from lymphedema worldwide. Supporting the contractility of lym- P, Becker J, Aung T, et al. (2016) Morphological phatic collectors is an attractive target for pharmacological therapy of lymphedema. How- and Molecular Characterization of Human Dermal ever, lymphatics have mostly been studied in animals, while the cellular and molecular Lymphatic Collectors. PLoS ONE 11(10): e0164964. doi:10.1371/journal.pone.0164964 characteristics of human lymphatic collectors are largely unknown. We studied epifascial lymphatic collectors of the thigh, which were isolated for autologous transplantations. Our Editor: Robert W Dettman, Northwestern University, UNITED STATES immunohistological studies identify additional markers for LECs (vimentin, CCBE1). We show and confirm differences between initial and collecting lymphatics concerning the Received: July 1, 2016 markers ESAM1, D2-40 and LYVE-1. Our transmission electron microscopic studies reveal Accepted: October 4, 2016 two types of smooth muscle cells (SMCs) in the media of the collectors with dark and light Published: October 20, 2016 cytoplasm.
    [Show full text]
  • Role of Endothelin-1 in the Gastrointestinal Tract of Horses In
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Role of endothelin-1 in the gastrointestinal tract of horses in health and disease Ramaswamy Monickarasi Chidambaram Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Medicine Commons Recommended Citation Chidambaram, Ramaswamy Monickarasi, "Role of endothelin-1 in the gastrointestinal tract of horses in health and disease" (2003). LSU Doctoral Dissertations. 1717. https://digitalcommons.lsu.edu/gradschool_dissertations/1717 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ROLE OF ENDOTHELIN-1 IN THE GASTROINTESTINAL TRACT OF HORSES IN HEALTH AND DISEASE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy The Interdepartmental Program in Veterinary Medical Sciences through the Department of Comparative Biomedical Sciences By Ramaswamy M. Chidambaram BVSc, Madras Veterinary College, India, 1996 MSc, Atlantic Veterinary College, Canada, 2000 May, 2003 Dedicated to my parents, Dr. S. Chidambaram Pillai and Mrs. R. Monickarasi, and my siblings for their inspiration and support toward my pursuit of higher knowledge ii ACKNOWLEDGEMENTS I express my sincere thanks and heartfelt gratitude to my mentor Dr. Rustin Moore and Dr. Changaram Venugopal, for their involvement and personal help offered toward the completion of my dissertation.
    [Show full text]
  • Androgen Receptor As a Driver of Therapeutic Resistance in Advanced Prostate Cancer Barbara Kahn, Joanne Collazo, and Natasha Kyprianou 
    Int. J. Biol. Sci. 2014, Vol. 10 588 Ivyspring International Publisher International Journal of Biological Sciences 2014; 10(6): 588-595. doi: 10.7150/ijbs.8671 Review Androgen Receptor as a Driver of Therapeutic Resistance in Advanced Prostate Cancer Barbara Kahn, Joanne Collazo, and Natasha Kyprianou Departments of Urology and Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA. Corresponding author: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2014.01.24; Accepted: 2014.03.01; Published: 2014.06.01 Abstract The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT in- duces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of an- drogen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kine- sin-inhibitors, have yielded clinically disappointing results.
    [Show full text]
  • Utilization of Biased G Protein-Coupled Receptor Signaling Towards Development of Safer and Personalized Therapeutics
    molecules Review Utilization of Biased G Protein-Coupled Receptor Signaling towards Development of Safer and Personalized Therapeutics Metehan Ilter 1 , Samman Mansoor 2 and Ozge Sensoy 3,* 1 Department of Biomedical Engineering, The School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey; [email protected] 2 Department of Biomedical Engineering and Bioinformatics, The Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey; [email protected] 3 Department of Computer Engineering, The School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey * Correspondence: [email protected]; Tel.: +90-(216)-681-5100 (ext. 5621) Academic Editor: Irina S. Moreira Received: 26 April 2019; Accepted: 24 May 2019; Published: 29 May 2019 Abstract: G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of b-arrestin mediated signaling and also separability of G protein and b-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0178134 A1 JAEHINE Et Al
    US 2011 0178134A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0178134 A1 JAEHINE et al. (43) Pub. Date: Jul. 21, 2011 (54) NOVEL PHENYL-SUBSTITUTED (30) Foreign Application Priority Data IMIDAZOLIDINES, PROCESS FOR PREPARATION THEREOF, MEDICAMENTS Feb. 7, 2008 (EP) .................................. O829O133.1 COMPRISING SAID COMPOUNDS AND USE Publication Classification THEREOF (51) Int. Cl. (75) Inventors: Gerhard JAEHNE, Frankfurt A6II 3/4439 (2006.01) (DE); Siegfried STENGELIN, C07D 233/02 (2006.01) Eppstein-Bremthal (DE); Matthias C07D 40/06 (2006.01) GOSSEL, Hofheim (DE); Thomas A63L/466 (2006.01) KLABUNDE, Frankfurt (DE): A6IP3/04 (2006.01) Irvin WINKLER, Liederbach A6IP3/10 (2006.01) (DE); Antony BIGOT, Massy A6IP 25/00 (2006.01) (FR); Anita DIU-HERCEND, A6IP 25/28 (2006.01) Charenton Le Pont (FR); Gilles A6IP 25/32 (2006.01) TIRABOSCHI, Montgeron (FR) A6IP 25/34 (2006.01) A6IP 25/18 (2006.01) (73) Assignee: SANOFI-AVENTIS, Paris (FR) (52) U.S. Cl. ................... 514/341; 548/321.1; 546/274.4: 514/391 (21) Appl. No.: 12/852,038 (57) ABSTRACT (22) Filed: Aug. 6, 2010 The invention relates to compounds of formula (I) wherein Related U.S. ApplicationO O Data theE. groups have salts. stated Said meanings,E. and a to theirE. physiologicall CNE (63) Continuation of application No. PCT/EP2009/ as anti-obesity drugs and for treating cardiometabolic Syn 000588, filed on Jan. 30, 2009. drome. US 2011/0178134 A1 Jul. 21, 2011 (C-C2)-aryl, O—(C-C)-aryl, O—(C-C)-alkylene I0081. The invention further provides both stereoisomer (C-C2)-aryl, S(O), (C-C2)-aryl; mixtures of the formula I and the pure stereoisomers of the 0053 R6, R7 are each independently H, halogen, CF, formula I, and also diastereoisomer mixtures of the formula I SFs.
    [Show full text]
  • G-Protein-Coupled Receptor Oligomerization and Its Potential for Drug Discovery
    REVIEWS G-PROTEIN-COUPLED RECEPTOR OLIGOMERIZATION AND ITS POTENTIAL FOR DRUG DISCOVERY Susan R. George*‡§, Brian F. O’Dowd*§ and Samuel P. Lee* G-protein-coupled receptors (GPCRs) represent by far the largest class of targets for modern drugs. Virtually all therapeutics that are directed towards GPCRs have been designed using assays that presume that these receptors are monomeric. The recent realization that these receptors form homo-oligomeric and hetero-oligomeric complexes has added a new dimension to rational drug design. However, this important aspect of GPCR biology remains largely unincorporated into schemes to search for new therapeutics. This review provides a synopsis of the current thinking surrounding GPCR homo-oligomerization and hetero- oligomerization and shows how new models point towards unexplored avenues in the development of new therapies. POLYMORPHISM The G-protein-coupled receptors (GPCRs) are the largest assumption that monomeric receptors participate in The occurrence in a population class of cell-surface receptors and are encoded by >1,000 the processes. Despite the fact that, for many other of two or more variant alleles of genes in the human genome1. GPCRs are activated by a classes of receptors, such as the tyrosine-kinase recep- a gene, for which the frequency diverse array of ligands, including hormones, peptides, tors, constitutive or ligand-induced oligomerization has of the rarer alleles is greater than amino acids, ions and photons of light, and transduce long been known to be essential for signalling7, only a can be explained by recurrent mutation alone. signals through a wide range of effectors. Not surpris- monomeric model for GPCRs was generally accepted.
    [Show full text]
  • New Drugs and Emerging Therapeutic Targets in the Endothelin Signaling Pathway and Prospects for Personalized Precision Medicine
    Physiol. Res. 67 (Suppl. 1): S37-S54, 2018 https://doi.org/10.33549/physiolres.933872 REVIEW New Drugs and Emerging Therapeutic Targets in the Endothelin Signaling Pathway and Prospects for Personalized Precision Medicine A. P. DAVENPORT1, R. E. KUC1, C. SOUTHAN2, J. J. MAGUIRE1 1Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom, 2Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom Received January 26, 2018 Accepted March 29, 2018 Summary Key words During the last thirty years since the discovery of endothelin-1, Allosteric modulators • Biased signaling • G-protein coupled the therapeutic strategy that has evolved in the clinic, mainly in receptors • Endothelin-1 • Monoclonal antibodies • Pepducins • the treatment of pulmonary arterial hypertension, is to block the Single nucleotide polymorphisms action of the peptide either at the ETA subtype or both receptors using orally active small molecule antagonists. Recently, there Corresponding author has been a rapid expansion in research targeting ET receptors A. P. Davenport, Experimental Medicine and Immunotherapeutics, using chemical entities other than small molecules, particularly University of Cambridge, Addenbrooke's Hospital, Cambridge, monoclonal antibody antagonists and selective peptide agonists CB2 0QQ, United Kingdom. Fax: 01223 762576. E-mail: and antagonists. While usually sacrificing oral bio-availability, [email protected] these compounds have other therapeutic advantages with the potential to considerably expand drug targets in the endothelin Introduction pathway and extend treatment to other pathophysiological conditions. Where the small molecule approach has been During the last thirty years since the discovery retained, a novel strategy to combine two vasoconstrictor of endothelin-1 (ET-1), the therapeutic strategy that has targets, the angiotensin AT1 receptor as well as the ETA receptor evolved in the clinic, mainly in the treatment of in the dual antagonist sparsentan has been developed.
    [Show full text]