Role of Endothelin Axis in Pancreatic Tumor Microenvironment

Total Page:16

File Type:pdf, Size:1020Kb

Role of Endothelin Axis in Pancreatic Tumor Microenvironment University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 Role of Endothelin Axis in Pancreatic Tumor Microenvironment Suprit Gupta University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Cancer Biology Commons Recommended Citation Gupta, Suprit, "Role of Endothelin Axis in Pancreatic Tumor Microenvironment" (2017). Theses & Dissertations. 203. https://digitalcommons.unmc.edu/etd/203 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. i Role of Endothelin Axis in Pancreatic Tumor Microenvironment By Suprit Gupta Presented to the Faculty of The Graduate College in the University of Nebraska In Partial fulfillment of Requirements For the degree of Doctor of Philosophy Department of Biochemistry and Molecular Biology Under the Supervision of Dr. Maneesh Jain University of Nebraska Medical Center Omaha, Nebraska April 2017 ii iii Role of Endothelin Axis in Pancreatic Tumor Microenvironment (TME) Suprit Gupta, PhD. University of Nebraska Medical Center 2017 Supervisor: Maneesh Jain, PhD. Endothelins (ETs) are a family of three 21 amino-acid vasoactive peptides ET-1, ET-2 and ET-3 that mediate their effects via two G-protein couple receptors ETAR and ETBR which are expressed on various cell types. Apart from their physiological role in vasoconstriction, there is emerging evidence supporting the role of endothelin axis (ET- axis) in cancer. Due to the expression of ET receptors on various cell-types, ET-axis can exert pleotropic effects and contribute to various aspects of cancer pathobiology. Several studies have provided a fragmented picture of the diverse roles or ET-axis in various tumors. However, the comprehensive picture of the pathobiological role of this axis in any given cancer is poorly understood. Given that PC epitomizes the complexity of tumor microenvironment (TME), which is an active player in disease progression and therapy resistance, the overarching goal of this dissertation was to define the role of ET-axis in this lethal malignancy. Specifically, the dissertation was aimed at defining the expression pattern of ET axis in PC TME and elucidating the pathobiological significance of ET axis in PC. Immunohistochemistry (IHC) analysis of surgically resected tumor tissues from PC patients indicated expression of ECE-1, ET-1, ETAR and ETBR expression in both primary and metastatic lesions. In addition to tumor cells, ETAR and ETBR expression was observed on blood vessels (BV), stromal cells including stellate cells and infiltrating immune cells. The expression of ETAR and ETBR in various cellular compartments was also analyzed using marker for tumor cell (CK19), blood vessel (CD31), stellate cell (alpha SMA) and macrophages (CD68 and F4/80). Importantly, analysis of survival data showed ETBR positivity on BV is correlated with poor prognosis of the PC patients. iv Bioinformatics analysis of TCGA database revealed high positive correlation of the pro- fibrotic gene signatures with both ETAR and ETBR particularly Collagen I (Col1A2, Col3A1, Col5A2, Col6A3), Platelet derived growth factor receptor beta (PDGFRβ), Fibroblast activation protein (FAP), suggesting a pro-fibrotic role of ET axis in PC. In the second part of the dissertation, we studied the impact of ET-axis inhibition in autochthonous tumors that develop in genetically engineered mouse model (KPC). Treatment with dual ET receptor antagonist Bosentan induced cell death in the autochthonous tumors, decreased IHC signal for extracellular matrix proteins (α-SMA, Collagen I, Fibronectin and CTGF). Transcriptomic analysis using fibrosis gene array indicated anti-fibrogenic effects of Bosentan in KPC tumors. Further, treatment of murine pancreatic stellate cells (PSCs) and human cancer associated fibroblasts (CAFs) with recombinant ET-1 in vitro induced the expression of pro-fibrotic genes was abrogated by selective inhibition of ETAR (BQ123) and ETBR (BQ788) signaling with synergistic effects observed with dual receptor inhibition. Further, ET-1 stimulation induced a significant increase in the p-ERK and p-AKT in a time dependent manner and dual receptor antagonist Bosentan significantly attenuated the ET-1 mediated induction. Our study also demonstrates that targeting ETAR with a specific inhibitor BQ123 enhances perfusion selectively in the tumor and reduces hypoxia in xenograft PC tumors. The third part of the dissertation describes a possible involvement of ET axis in inflammation associated pancreatic tumor progression in presence if mutated KrasG12D. The expression of ET axis components initially is restricted to pancreatic acinar and islet cell compartment in physiological conditions. However, during inflammation or injury the acinar expression is abrogated and is seen in early pre-cancerous lesions and neoplastic cells. The reprogramming of acinar phenotype into early pre-neoplastic lesions indicates an essential role of ET axis in pancreatic acinar to ductal metaplasia. This trans-differentiation is followed by excessive accumulation of ECM proteins and v inflammatory reaction in the pancreas, indicating further involvement of ET axis in influencing micro-environmental factors in initiation and progression of pancreatic cancer. The fourth part of the dissertation describes the generation of the mouse model aimed at delineating the role of ET-1 in PC progression. Genetically engineered mouse model of PC (K-rasG12D; Trp53R172H/+; Pdx-1-Cre) that harbors a Kras and p53 mutation in the pancreas were crossed with the ET-1 flox/flox mice. Taken together, studies in this dissertation demonstrate that ET axis plays a pleotropic role in the TME, and targeting ET axis can modulate the obstructive and immunosuppressive TME and make it potentially more amenable for chemotherapy and immunotherapy. vi TABLE OF CONTENTS 1A:Introduction................................................................................................................1 1. Synopsis……………………………………………………………………………………2 2. Introduction to Endothelins (ETs)………………………………………………………..3 3. The Endothelin system……………………………………………………………………5 4. Role of Endothelin(s) in inflammation………………………………………………….10 4.1 ETs in fibroblasts……………………………………………….……………..12 4.2 ETs in Immune system……………………………………………………….16 4.3 ETs in endothelial cells……………………………………………………….19 5. Endothelin in normal pancreas physiology……………………………………………22 5.1 Role in pancreatic islets………………………………………………………22 5.2 Role in acinar cells……………………………………………………………25 5.3 Role in pancreatic microcirculation………………………………………….26 6. Endothelin in pancreas pathophysiology………………………………………………27 6.1 Role in pancreatitis and inflammation………………………………………27 6.2 Role in pancreatic stellate cells and pancreas cancer……………………34 7. Conclusions and Future perspective…………………………………………………..36 1B: General Hypothesis and Objectives………………………………………………….71 1. Background and Rationale……………………………………………………………72 2. Hypothesis……………………………………………………………………………...73 3. Objectives………………………………………………………………………………73 Chapter 2: Materials and Methods…………………………………………………………76 1. Cell Culture……………………………………………………………………………..77 2. Tissue specimens……………………………………………………………………...77 vii 3. Immunohistochemistry and Immunofluorescence………………………………….78 4. RNA isolation, reverse transcription and RT- PCR analysis……………………...80 5. In vitro assays of cell migration………………………………………………………80 6. In vitro 2D co-culture…………………………………………………………………..81 7. In vitro assays of cell proliferation……………………………………………………82 8. Cell cycle analysis……………………………………………………………………..82 9. Annexin V staining and flow cytometry……………………………………………...82 10. Cytotoxicity assay using MTT………………………………………………………...83 11. Western blotting………………………………………………………………………..83 12. In vivo ET axis antagonism using Bosentan………………………………………..84 13. RNA extraction from mouse tissues, reverse transcription and real time PCR analysis…………………………………………………………………………………85 14. Microarray analysis……………………………………………………………………86 15. Perfusion analysis using BQ123……………………………………………………..86 16. Procurement of animals………………………………………………………………87 17. DNA isolation, genotyping and maintenance of animals…………………………..88 18. Statistical analysis……………………………………………………………………..88 Chapter 3: Expression of endothelin converting enzyme (ECE-1), endothelin-1 (ET- 1), endothelin A receptor (ETAR) and endothelin B receptor (ETBR) in pancreatic cancer and its microenvironment………………………………………………………….90 1. Synopsis………………………………………………………………………………..91 2. Background and Rationale……………………………………………………………92 3. Results………………………………………………………………………………….95 A. Endothelin-1 and its receptors are expressed in human pancreatic cancer cells…………………………………………………………………………………95 viii B. ET axis components are overexpressed in pancreatic cancer (PC) tissues..95 C. Elevated expression of ETBR on tumor blood vessels is correlated with patient survival……………………………………………………………………..97 D. Expression of ET axis in mouse progression model of PC…………………...98 E. Expression of ET axis in tumor microenvironment of human PC and mice KPC tissues………………………………………………………………………100 F. ET-1 and receptors correlate with tumor grade and stage in human TCGA database…………………………………………………………………………..101 4. Discussion…………………………………………………………………………….102 Chapter 4: Targeting Endothelin axis in pancreatic cancer using selective
Recommended publications
  • Endothelin System and Therapeutic Application of Endothelin Receptor
    xperim ACCESS Freely available online & E en OPEN l ta a l ic P in h l a C r m f o a c l a o n l o r g u y o J Journal of ISSN: 2161-1459 Clinical & Experimental Pharmacology Research Article Endothelin System and Therapeutic Application of Endothelin Receptor Antagonists Abebe Basazn Mekuria, Zemene Demelash Kifle*, Mohammedbrhan Abdelwuhab Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia ABSTRACT Endothelin is a 21 amino acid molecule endogenous potent vasoconstrictor peptide. Endothelin is synthesized in vascular endothelial and smooth muscle cells, as well as in neural, renal, pulmonic, and inflammatory cells. It acts through a seven transmembrane endothelin receptor A (ETA) and endothelin receptor B (ETB) receptors belongs to G protein-coupled rhodopsin-type receptor superfamily. This peptide involved in pathogenesis of cardiovascular disorder like (heart failure, arterial hypertension, myocardial infraction and atherosclerosis), renal failure, pulmonary arterial hypertension and it also involved in pathogenesis of cancer. Potentially endothelin receptor antagonist helps the treatment of the above disorder. Currently, there are a lot of trails both per-clinical and clinical on endothelin antagonist for various cardiovascular, pulmonary and cancer disorder. Some are approved by FAD for the treatment. These agents are including both selective and non-selective endothelin receptor antagonist (ETA/B). Currently, Bosentan, Ambrisentan, and Macitentan approved
    [Show full text]
  • Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung’S Disease
    RESEARCH ARTICLE Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung’s Disease Ankush Gosain1,2*, Amanda J. Barlow-Anacker1, Chris S. Erickson1, Joseph F. Pierre1, Aaron F. Heneghan1, Miles L. Epstein2, Kenneth A. Kudsk1,3 a11111 1 Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America, 2 Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America, 3 Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, United States of America * [email protected] OPEN ACCESS Citation: Gosain A, Barlow-Anacker AJ, Erickson Abstract CS, Pierre JF, Heneghan AF, Epstein ML, et al. (2015) Impaired Cellular Immunity in the Murine Hirschsprung’s disease (HSCR) is characterized by aganglionosis from failure of neural crest Neural Crest Conditional Deletion of Endothelin cell (NCC) migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung’s- Receptor-B ’ Model of Hirschsprung s Disease. PLoS associated enterocolitis (HAEC), with an incidence that is unchanged from the pre-operative ONE 10(6): e0128822. doi:10.1371/journal. pone.0128822 to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hy- Academic Editor: Anatoly V. Grishin, Childrens Hospital Los Angeles, UNITED STATES pothesize that gastrointestinal (GI) mucosal immune defects occur in HSCR that may contrib- ute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/-) resulting in mutants Received: November 12, 2014 with defective NCC migration, distal colonic aganglionosis and the development of enterocoli- Accepted: May 1, 2015 tis.
    [Show full text]
  • Cellular Responses to Erbb-2 Overexpression in Human Mammary Luminal Epithelial Cells: Comparison of Mrna and Protein Expression
    British Journal of Cancer (2004) 90, 173 – 181 & 2004 Cancer Research UK All rights reserved 0007 – 0920/04 $25.00 www.bjcancer.com Cellular responses to ErbB-2 overexpression in human mammary luminal epithelial cells: comparison of mRNA and protein expression SL White1, S Gharbi1, MF Bertani1, H-L Chan1, MD Waterfield1 and JF Timms*,1 1 Ludwig Institute for Cancer Research, Wing 1.1, Cruciform Building, Gower Street, London WCIE 6BT, UK Microarray analysis offers a powerful tool for studying the mechanisms of cellular transformation, although the correlation between mRNA and protein expression is largely unknown. In this study, a microarray analysis was performed to compare transcription in response to overexpression of the ErbB-2 receptor tyrosine kinase in a model mammary luminal epithelial cell system, and in response to the ErbB-specific growth factor heregulin b1. We sought to validate mRNA changes by monitoring changes at the protein level using a parallel proteomics strategy, and report a surprisingly high correlation between transcription and translation for the subset of genes studied. We further characterised the identified targets and relate differential expression to changes in the biological properties of ErbB-2-overexpressing cells. We found differential regulation of several key cell cycle modulators, including cyclin D2, and downregulation of a large number of interferon-inducible genes, consistent with increased proliferation of the ErbB-2- overexpressing cells. Furthermore, differential expression of genes involved in extracellular matrix modelling and cellular adhesion was linked to altered adhesion of these cells. Finally, we provide evidence for enhanced autocrine activation of MAPK signalling and the AP-1 transcription complex.
    [Show full text]
  • MASTER THESIS Reprogramming Human Gastrointestinal Stem Cells
    MASTER THESIS Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering at the University of Applied Sciences Technikum Wien - Degree Program Tissue Engineering and Regenerative Medicine Reprogramming human gastrointestinal stem cells into insulin-secreting cells: developing a cell therapy for diabetes By: Christoph Pertl, BSc Student Number: 01306559 Supervisor 1: Qiao Joe Zhou, Ph.D. Supervisor 2: Dr. rer. nat. Elisabeth Simboeck Vienna, 15/12/2019 Declaration of Authenticity “As author and creator of this work to hand, I confirm with my signature knowledge of the relevant copyright regulations governed by higher education acts (for example see §§ 21, 42f and 57 UrhG (Austrian copyright law) as amended as well as § 14 of the Statute on Studies Act Provisions / Examination Regulations of the UAS Technikum Wien). In particular I declare that I have made use of third-party content correctly, regardless what form it may have, and I am aware of any consequences I may face on the part of the degree program director if there should be evidence of missing autonomy and independence or evidence of any intent to fraudulently achieve a pass mark for this work (see § 14 para. 1 Statute on Studies Act Provisions / Examination Regulations of the UAS Technikum Wien). I further declare that up to this date I have not published the work to hand nor have I presented it to another examination board in the same or similar form. I affirm that the version submitted matches the version in the upload tool.” Place, Date Signature 2 Kurzfassung Eine erfolgreiche Behandlung von Typ 1 Diabetes benötigt das Regenerieren verlorener insulinproduzierender Zellen und das Umgehen der Autoimmunreaktion.
    [Show full text]
  • FY 2020 Results Conference Call and Webcast for Investors and Analysts
    FY 2020 results Conference call and webcast for investors and analysts 11 February 2021 Forward-looking statements In order, among other things, to utilise the 'safe harbour' provisions of the US Private Securities Litigation Reform Act of 1995, AstraZeneca (hereafter ‘the Group’) provides the following cautionary statement: this document contains certain forward-looking statements with respect to the operations, performance and financial condition of the Group, including, among other things, statements about expected revenues, margins, earnings per share or other financial or other measures. Although the Group believes its expectations are based on reasonable assumptions, any forward-looking statements, by their very nature, involve risks and uncertainties and may be influenced by factors that could cause actual outcomes and results to be materially different from those predicted. The forward-looking statements reflect knowledge and information available at the date of preparation of this document and the Group undertakes no obligation to update these forward-looking statements. The Group identifies the forward-looking statements by using the words 'anticipates', 'believes', 'expects', 'intends' and similar expressions in such statements. Important factors that could cause actual results to differ materially from those contained in forward-looking statements, certain of which are beyond the Group’s control, include, among other things: the risk of failure or delay in delivery of pipeline or launch of new medicines; the risk of failure
    [Show full text]
  • Zibotentan, an Endothelin a Receptor Antagonist, Prevents Amyloid-Я
    Journal of Alzheimer’s Disease 73 (2020) 1185–1199 1185 DOI 10.3233/JAD-190630 IOS Press Zibotentan, an Endothelin A Receptor Antagonist, Prevents Amyloid-␤-Induced Hypertension and Maintains Cerebral Perfusion Jennifer C. Palmera,1, Hannah M. Taylera,1, Laurence Dyera, Patrick G. Kehoea, Julian F.R. Patonb and Seth Lovea,∗ aTranslational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK bDepartment of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand Accepted 25 November 2019 Abstract. Cerebral blood flow is reduced in Alzheimer’s disease (AD), which is associated with mid-life hypertension. In people with increased cerebral vascular resistance due to vertebral artery or posterior communicating artery hypoplasia, there is evidence that hypertension develops as a protective mechanism to maintain cerebral perfusion. In AD, amyloid-␤ (A␤) accumulation may similarly raise cerebral vascular resistance by upregulation of the cerebral endothelin system. The level of endothelin-1 in brain tissue correlates positively with A␤ load and negatively with markers of cerebral hypoperfusion such as increased vascular endothelial growth factor. We previously showed that cerebroventricular infusion of A␤40 exacerbated pre- existing hypertension in Dahl rats. We have investigated the effects of 28-day cerebral infusion of A␤40 on blood pressure and heart rate and their variability; carotid flow; endothelin-1; and markers of cerebral oxygenation, in the (normotensive) Wistar rat, and the modulatory influence of the endothelin A receptor antagonist Zibotentan (ZD4054). Cerebral infusion of A␤ caused progressive rise in blood pressure (p < 0.0001) (paired t-test: increase of 3 (0.1–5.6) mmHg (p = 0.040)), with evidence of reduced baroreflex responsiveness, and accumulation of A␤ and elevated endothelin-1 in the vicinity of the infusion.
    [Show full text]
  • Endothelin-2 Signaling in the Neural Retina Promotes the Endothelial Tip Cell State and Inhibits Angiogenesis
    Endothelin-2 signaling in the neural retina promotes PNAS PLUS the endothelial tip cell state and inhibits angiogenesis Amir Rattnera,1, Huimin Yua, John Williamsa,b, Philip M. Smallwooda,b, and Jeremy Nathansa,b,c,d,1 Departments of aMolecular Biology and Genetics, cNeuroscience, and dOphthalmology and bHoward Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Jeremy Nathans, August 20, 2013 (sent for review February 19, 2013) Endothelin signaling is required for neural crest migration and time lapse imaging studies of vascular development in zebrafish homeostatic regulation of blood pressure. Here, we report that and mammalian EC dynamics in explant culture show that the tip constitutive overexpression of Endothelin-2 (Edn2) in the mouse cell and stalk cell states are highly plastic, with frequent retina perturbs vascular development by inhibiting endothelial cell exchanges between the two cell states (8, 9). migration across the retinal surface and subsequent endothelial Several other signaling pathways are also essential for retinal cell invasion into the retina. Developing endothelial cells exist in vascular development. Norrin, a Muller-glia–derived ligand, and one of two states: tip cells at the growing front and stalk cells in its EC receptor Frizzled4 (Fz4), coreceptor Lrp5, and receptor the vascular plexus behind the front. This division of endothelial chaperone Tspan12 activate canonical Wnt signaling in de- cell states is one of the central organizing principles of angiogen- veloping ECs (10). In humans and mice, defects in any of these esis. In the developing retina, Edn2 overexpression leads to components lead to retinal hypovascularization.
    [Show full text]
  • Puromycin Selective Antibiotic for the Pac Gene Catalog # Ant-Pr-1, Ant-Pr-5 for Research Use Only Version # 13A25-MM
    Puromycin Selective antibiotic for the pac gene Catalog # ant-pr-1, ant-pr-5 For research use only Version # 13A25-MM PRodUCt INFoRmAtIoN ReSIStANCe to PURomYCIN Content: The pac gene encoding a Puromycin N-acetyl-tranferase (PAC) has been isolated Puromycin hydrochloride is supplied as 1ml tubes of a 10 mg/ml solution in from a Streptomyces producing strain 1,2 . It is located in a region of the pur HEPES buffer (100% active product), filtered to sterility for customer cluster linked to the other genes d etermining the puromycin biosynthetic convenience, and cell culture tested. pathway. - ant-pr-1: 10 x 1 ml at 10 mg/ml (100 mg) The expression of pac gene confers puromycin resistance to transfected - ant-pr-5: 50 x 1 ml at 10 mg/ml (500 mg) mammalians cells 3 expressing it. In some particular conditions puromycin could also be used for selection of E. coli strains transformed with plasmids Storage and stability: carrying the pac gene. Puromycin is shipped at room temperature. Upon receipt it should be stored at 4°C or -20°C. Puromycin is stable for two years at -20°C, two years at 4°C, and 3 months at CoNdItIoNS oF SeLeCtIoN room temperature. Avoid repeated freeze-thaw cycles. Puromycin is poorly active on E. coli but is particularly useful in experiments conducted with mammalian cells. It can be used as an alternative to Quality control Neomycin system for transfection experiments. Purity controlled by HPLC: >95% Activity controlled by bioassays on bacteria and mammalian cell lines. mammalian cells The working concentrations of puromycin for mammalian cell lines range SPeCIAL hANdLING from 1 to 10 µg/ml.
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • ADIPOR1 Is Essential for Vision and Its RPE Expression Is Lost in the Mfrp Valentin M Sluch
    The Jackson Laboratory The Mouseion at the JAXlibrary Faculty Research 2018 Faculty Research 9-25-2018 ADIPOR1 is essential for vision and its RPE expression is lost in the Mfrp Valentin M Sluch Angela Banks Hui Li Maura A Crowley Vanessa Davis See next page for additional authors Follow this and additional works at: https://mouseion.jax.org/stfb2018 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Recommended Citation Sluch, Valentin M; Banks, Angela; Li, Hui; Crowley, Maura A; Davis, Vanessa; Xiang, Chuanxi; Yang, Junzheng; Demirs, John T; Vrouvlianis, Joanna; Leehy, Barrett; Hanks, Shawn; Hyman, Alexandra M; Aranda, Jorge; Chang, Bo; Bigelow, Chad E; and Rice, Dennis S, "ADIPOR1 is essential for vision and its RPE expression is lost in the Mfrp" (2018). Faculty Research 2018. 197. https://mouseion.jax.org/stfb2018/197 This Article is brought to you for free and open access by the Faculty Research at The ousM eion at the JAXlibrary. It has been accepted for inclusion in Faculty Research 2018 by an authorized administrator of The ousM eion at the JAXlibrary. For more information, please contact [email protected]. Authors Valentin M Sluch, Angela Banks, Hui Li, Maura A Crowley, Vanessa Davis, Chuanxi Xiang, Junzheng Yang, John T Demirs, Joanna Vrouvlianis, Barrett Leehy, Shawn Hanks, Alexandra M Hyman, Jorge Aranda, Bo Chang, Chad E Bigelow, and Dennis S Rice This article is available at The ousM eion at the JAXlibrary: https://mouseion.jax.org/stfb2018/197 www.nature.com/scientificreports OPEN ADIPOR1 is essential for vision and its RPE expression is lost in the Mfrprd6 mouse Received: 20 April 2018 Valentin M.
    [Show full text]
  • University of Groningen Genetics Dissection and Functional
    University of Groningen Genetics dissection and functional studies in Hirschsprung disease Sribudiani, Yunia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Sribudiani, Y. (2011). Genetics dissection and functional studies in Hirschsprung disease Groningen: s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-02-2018 Genetic Dissection and Functional Studies in Hirschsprung Disease Yunia Sribudiani Genetic Dissection and Functional Studies in Hirschsprung Disease Y. Sribudiani PhD Thesis – Department of Genetics University Medical Center Groningen, University of Groningen Groningen, the Netherlands This study was financially supported by University of Groningen and Research Institute GUIDE. ISBN/EAN: 978-94-6182-039-6 Cover Ilustration: Ella Elviana, www.ellasworks.blogspot.com Cover & book layout: Briyan B Hendro, www.brianos.daportfolio.com Printed by: Off Page, Amsterdam, www.offpage.nl Printing of this thesis was financially supported by: University of Groningen, GUIDE and Department of Genetics - UMCG.
    [Show full text]
  • 1 and ET-3 Inhibit Estrogen and Camp Production by Rat Granulosa Cells in Vitro
    209 Endothelin (ET)-1 and ET-3 inhibit estrogen and cAMP production by rat granulosa cells in vitro A E Calogero, N Burrello and A M Ossino Division of Andrology, Department of Internal Medicine, University of Catania, 95123 Catania, Italy (Requests for offprints should be addressed to A E Calogero at Istituto di Medicina Interna e Specialita` Internistiche, Ospedale Garibaldi, Piazza S.M. di Gesu`, 95123 Catania, Italy) Abstract Endothelin (ET)-1 and ET-3, two peptides with a potent and a maximally stimulatory (3 mIU/ml) concentration of vasoconstrictive property, produce a variety of biological FSH. ET-1 and ET-3 dose-dependently suppressed basal effects in different tissues by acting through two different and FSH (1 mIU/ml)-stimulated cAMP production. ET-3 receptors, the ET-1 selective ETA receptor and the non- and SFX-S6c were significantly more potent than ET-1 in selective ETB receptor. An increasing body of literature suppressing estrogen production, suggesting that this effect suggests that ET-1 acts as a paracrine/autocrine regulator was not mediated by the ETA receptor. Indeed, BQ-123, of ovarian function. Indeed, ETB receptors have been a selective ETA receptor antagonist, did not influence identified in rat granulosa cells and ET-1 is a potent the inhibitory effects of ET-1 and ET-3 on basal and inhibitor of progesterone production. In contrast, incon- FSH-stimulated estrogen release. To determine a possible sistent data have been reported about the role of ET-1 on involvement of prostanoids, we evaluated the effects of estrogen production and the effects of ET-3 are not maximally effective concentrations of ET-1 and ET-3 on known.
    [Show full text]