Natriuretic Peptide Binding Sites in the Gills of the Pouched Lamprey Geotria Australis T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relationships Between Anadromous Lampreys and Their Host
RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA By Kevin A. Siwicke RECOMMENDED: Dr. Trent Sutton / / / c ^ ■ ^/Jy^O^^- Dr. Shannon Atkinson Chair, Graduate Program in Fisheries Division APPROVED: Dr.^Michael Castellini Sciences Date WW* RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Kevin A. Siwicke, B.S. Fairbanks, Alaska August 2014 v Abstract Arctic Lamprey Lethenteron camtschaticum and Pacific Lamprey Entosphenus tridentatus are ecologically and culturally important anadromous, parasitic species experiencing recent population declines in the North Pacific Ocean. However, a paucity of basic information on lampreys feeding in the ocean precludes an incorporation of the adult trophic phase into our understanding of lamprey population dynamics. The goal of this research was to provide insight into the marine life-history stage of Arctic and Pacific lampreys through lamprey-host interactions in the eastern Bering Sea. An analysis of two fishery-independent surveys conducted between 2002 and 2012 in the eastern Bering Sea revealed that Arctic Lampreys were captured in epipelagic waters of the inner and middle continental shelf and were associated with Pacific Herring Clupea pallasii and juvenile salmonids Oncorhynchus spp. In contrast, Pacific Lampreys were captured in benthic waters along the continental slope associated with bottom-oriented groundfish. Consistent with this analysis of fish assemblages, morphology of recently inflicted lamprey wounds observed on Pacific Cod Gadus macrocephalus was similar to morphology of Pacific Lamprey oral discs, but not that of Arctic Lamprey oral discs. -
Piharau / Kanakana (Pouched Lamprey) Geotria Australis
VERY HIGH VULNERABILITY Assessing the vulnerability of taonga freshwater species to climate change – species summary: Piharau / Kanakana (Pouched lamprey) Geotria australis VERY HIGH SENSITIVITY EXPOSURE VERY HIGH Species summary: Piharau / Kanakana (Pouched lamprey) VULNERABILITY ISTRIUTION UNNE PENOOY Sensitivity attributes Sensitivity attributes Sensitivity attributes related to taonga related to taonga related to timing of Complexity in reproduction species’ locations species’ productivity events in taonga species’ lifecycle Lamprey have several reproductive characteristics that likely increase their vulnerability to climate change. Lamprey likely use the same spawning sites in fresh water within and SENSITIVITY Dispersal Prey specificity between years. However, considering their spawning sites are only known from a handful EXPOSURE of sites throughout the country, their fidelity for a specific spawning area is not well Adult mobility Demographics Spawning duration known. Adult lamprey are attracted to pheromones released by juveniles and it is believed that this helps adults locate suitable spawning and rearing habitats. Temperature sensitivity Early life history, survival Lamprey reproduce in pairs unlike other fish species that spawn in large mixed groups of and recruitment males and females. Male lamprey care for the eggs and help with hatching of the larvae. This is one of few examples of paternal care for New Zealand’s freshwater fish species. Lamprey/kanakana use Interspecific interactions Reproduction complexity Dependence on Lamprey are found marine, estuarine and environmental triggers Lamprey only reproduce once in their lifetime and they die about three months after throughout the reproduction. freshwater habitats to Habitat specificity Exposure to other Southern Hemisphere’s complete their life cycle. pressures temperate waters. In Lamprey migrate from Aotearoa–New Zealand the sea into freshwaters Sensitivity attributes VERY HIGH HIGH MODERATE LOW they are relatively to spawn. -
Redacted for Privacy Carl E
AN ABSTRACT OF THE THESIS OF TING TIEN KAN for the degree DOCTOR OF PHILOSOPHY (Name of student) (Degree) in Fisheries presented on /1,13 /97C- (Major Department) (nate) Title:SYSTEMATICS, VARIATION, DISTRIBUTION, AND BIOLOGY OF LAMPREYS OF THE GENUS LAMPETRA IN OREGON Abstract approved: Redacted for privacy Carl E. Bond Based on the number of velar tentacles and the form of longi- tudinal lingual laminae found in Lampetra (Entosphenus) t. tridentata and its closely related forms, the taxon Entosphenu.s should not be considered as a genus as commonly adopted, but, along with the taxa Lethenteron and Lamp, should be regarded as a subgenus of the genus Lampetra.The genus Lampetra is distinct for various rea- sons, including particularly the character that no cusps are present in the area distal to the lateral circumorals. Six nominal species, belonging to the subgenera Entosphenus and Lampetra, have been known to occur in four of the seven major drainage systems of Oregon. The anadromous L. (E. ) t.tridentata, is widespread in the Columbia River and Coastal drainage systems, occurring in most streams with access to the ocean regardless of distance to the ocean, as long as suitable spawning grounds and ammocoete habitats are present. Morphometrics and dentitional features vary little over its geographical range.The number of trunk myomeres and the adult body size vary appreciably so that two categories of regional forms, coastal and inland, may be recognized.The coastal forms are gener- ally smaller and have fewer trunk myomeres compared -
Early Evolution of Multifocal Optics for Well-Focused Colour Vision in Vertebrates
1559 The Journal of Experimental Biology 211, 1559-1564 Published by The Company of Biologists 2008 doi:10.1242/jeb.016048 Early evolution of multifocal optics for well-focused colour vision in vertebrates O. S. E. Gustafsson1,*, S. P. Collin2 and R. H. H. Kröger1 1Department of Cell and Organism Biology, Lund University, Helgonavägen 3, 223 62 Lund, Sweden and 2Marine Neurobiology Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia *Author for correspondence (e-mail: [email protected]) Accepted 10 March 2008 SUMMARY Jawless fishes (Agnatha; lampreys and hagfishes) most closely resemble the earliest stage in vertebrate evolution and lamprey- like animals already existed in the Lower Cambrian [about 540 million years ago (MYA)]. Agnathans are thought to have separated from the main vertebrate lineage at least 500 MYA. Hagfishes have primitive eyes, but the eyes of adult lampreys are well- developed. The southern hemisphere lamprey, Geotria australis, possesses five types of opsin genes, three of which are clearly orthologous to the opsin genes of jawed vertebrates. This suggests that the last common ancestor of all vertebrate lineages possessed a complex colour vision system. In the eyes of many bony fishes and tetrapods, well-focused colour images are created by multifocal crystalline lenses that compensate for longitudinal chromatic aberration. To trace the evolutionary origins of multifocal lenses, we studied the optical properties of the lenses in four species of lamprey (Geotria australis, Mordacia praecox, Lampetra fluviatilis and Petromyzon marinus), with representatives from all three of the extant lamprey families. Multifocal lenses are present in all lampreys studied. -
RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS and THEIR HOST FISHES in the EASTERN BERING SEA by Kevin A. Siwicke RECOMMENDED: Dr. T
Relationships between anadromous lampreys and their host fishes in the eastern Bering Sea Item Type Thesis Authors Siwicke, Kevin A. Download date 05/10/2021 18:37:58 Link to Item http://hdl.handle.net/11122/4657 RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA By Kevin A. Siwicke RECOMMENDED: Dr. Trent Sutton / / / c ^ ■ ^/Jy^O^^- Dr. Shannon Atkinson Chair, Graduate Program in Fisheries Division APPROVED: Dr.^Michael Castellini Sciences Date WW* RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Kevin A. Siwicke, B.S. Fairbanks, Alaska August 2014 v Abstract Arctic Lamprey Lethenteron camtschaticum and Pacific Lamprey Entosphenus tridentatus are ecologically and culturally important anadromous, parasitic species experiencing recent population declines in the North Pacific Ocean. However, a paucity of basic information on lampreys feeding in the ocean precludes an incorporation of the adult trophic phase into our understanding of lamprey population dynamics. The goal of this research was to provide insight into the marine life-history stage of Arctic and Pacific lampreys through lamprey-host interactions in the eastern Bering Sea. An analysis of two fishery-independent surveys conducted between 2002 and 2012 in the eastern Bering Sea revealed that Arctic Lampreys were captured in epipelagic waters of the inner and middle continental shelf and were associated with Pacific Herring Clupea pallasii and juvenile salmonids Oncorhynchus spp. In contrast, Pacific Lampreys were captured in benthic waters along the continental slope associated with bottom-oriented groundfish. -
Silver Lamprey (Ichthyomyzon Unicuspis) Is an Eel-Shaped Fish That Possesses a Sucking Disc Mouth
COSEWIC Assessment and Status Report on the Silver Lamprey Ichthyomyzon unicuspis Great Lakes - Upper St. Lawrence populations Saskatchewan - Nelson Rivers populations in Canada Great Lakes - Upper St. Lawrence populations - SPECIAL CONCERN Saskatchewan - Nelson Rivers populations - DATA DEFICIENT 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Silver Lamprey, Great Lakes - Upper St. Lawrence populations and Saskatchewan - Nelson Rivers populations Ichthyomyzon unicuspis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 55 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2009. COSEWIC assessment and status report on the Silver Lamprey Ichthyomyzon unicuspis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 42 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC acknowledges Fraser B. Neave, Gale A. Bravener, and Nicholas E. Mandrak for writing the provisional status report on Silver Lamprey, Ichthyomyzon unicuspis, prepared under contract with Environment Canada. The contractors’ involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Dr. Eric Taylor, COSEWIC Freshwater Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la lamproie argentée, populations des Grands Lacs et du haut Saint-Laurent et populations des rivières Saskatchewan et Nelson (Ichthyomyzon unicuspis) au Canada. -
Mechanisms of Life History Evolution the Genetics and Physiology of Life History Traits and Trade-Offs
OUP CORRECTED PROOF – FINAL, 04/23/2011, SPi Mechanisms of Life History Evolution The Genetics and Physiology of Life History Traits and Trade-Offs !"#$!" %& Thomas Flatt Group Leader at the Institute of Population Genetics at the Vetmeduni Vienna, Austria Andreas Heyland Assistant Professor at the Department of Integrative Biology at the University of Guelph, Canada 1 OUP CORRECTED PROOF – FINAL, 04/23/2011, SPi 3 Great Clarendon Street, Oxford ox2 6dp Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York Oxford University Press 2011 The moral rights of the authors have been asserted Database right Oxford University Press (maker) First published 2011 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under -
Insights Into Cyclostome Phylogenomics: Pre-2R Or Post-2R?
Insights into Cyclostome Phylogenomics: Pre-2R or Post-2R? Shigehiro Kuraku* Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Mol- ecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep divergence between hagfishes and lampreys (more than 400 million years). In parallel, recent molecular phylogenetic studies have shed light on the complex evolution of the cyclostome genome. This consists of whole genome duplications, shared at least partly with gnathostomes (jawed vertebrates), and cyclostome lineage-specific secondary modifications of the genome, such as gene gains and losses. Therefore, the analysis of cyclostome genomes requires caution in dis- tinguishing between orthology and paralogy in gene molecular phylogeny at the gene family scale, as well as between apomorphic and plesiomorphic genomic traits in larger-scale analyses. In this review, we propose possible ways of improving the resolvability of these evolutionary events, and discuss probable scenarios for cyclostome genome evolution, with special emphasis on the hypothesis that two-round (2R) genome duplication events occurred before the divergence between -
WORKSHOP to EVALUATE SEA LAMPREY POPULATIONS "WESLP": Background Papers and Proceedings of the August 1985 Workshop
WORKSHOP TO EVALUATE SEA LAMPREY POPULATIONS "WESLP": Background Papers and Proceedings of the August 1985 Workshop edited by B. G. H. Johnson1 Citation (General): Johnson, B. G. H. (ed.). 1987. Evaluation of sea lamprey populations in the Great Lakes: Background papers and Proceedings of the August 1985 Workshop. Great Lakes Fishery Commission, Special Publication 87-2 Citation (Example for individual paper): Weise, J. G. and P.C. Rugen. 1987. Evaluation methods and population studies of larval phase sea lamprey. In B. G. H. Johnson (ed.). Evaluation of sea lamprey populations in the Great Lakes: Background papers and Proceedings of the August 1985 Workshop. Great Lakes Fishery Commission, Special Publication 87-2. 1 Address: 75 Wren Place, Kitchener, Ontario N2A lL8 WORKSHOP TO EVALUATE SEA LAMPREY POPULATIONS "WESLP": Background Papers and Proceedings of the August 1985 Workshop TABLE OF CONTENTS Page No. FOREWORD i SECTION A EVALUATION METHODS AND POPULATION STUDIES OF LARVAL PHASE SEA LAMPREY (Jerry G. Weise and Paul C. Rugen) iii - Executive Summary V - Introduction 1 - Purpose and Goals 1 - History of Techniques 2 - Current Techniques 7 - Evaluation of Sampling Techniques 9 - Summary of Larval Sea Lamprey Population Studies 14 - Life History of the Larval Sea Lamprey (Petromyzon marinus) 20 - Summary of Responses to Questionnaire 39 - Group Recommendations 41 - Proposal No. A-l - Use of the Removal Method to Estimate Populations of Sea Lamprey Larvae and-Transformers 43 - Proposal No. A-2 - Efficiency of Control Agent Evaluations of Sea Lamprey Ammocoete Populations 59 - Proposal No. A-3 - To Estimate Transformer Production from Larval Sea Lamprey Populations in Streams Tributary to a Lake Basin, Lake Superior Used as an Example 61 - Proposal No. -
Lampreys of the World
ISSN 1020-8682 FAO Species Catalogue for Fishery Purposes No. 5 LAMPREYS OF THE WORLD AN ANNOTATED AND ILLUSTRATED CATALOGUE OF LAMPREY SPECIES KNOWN TO DATE FAO Species Catalogue for Fishery Purposes No. 5 FIR/Cat. 5 LAMPREYS OF THE WORLD AN ANNOTATED AND ILLUSTRATED CATALOGUE OF LAMPREY SPECIES KNOWN TO DATE by Claude B. Renaud Canadian Museum of Nature Ottawa, Canada FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 ii FAO Species Catalogue for Fishery Purposes No. 5 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-106928-8 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. -
Sea Lamprey (Petromyzon Marinus) Habitat and Population Models in Michigan River Networks: Understanding Geomorphic Context and Boundaries
Sea lamprey (Petromyzon marinus) habitat and population models in Michigan river networks: Understanding geomorphic context and boundaries by Thomas Matthew Neeson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Natural Resources and Environment) in The University of Michigan 2010 Doctoral Committee: Associate Research Scientist Sara A. Adlerstein, Co-Chair Professor Michael J. Wiley, Co-Chair Professor Steven J. Wright Associate Research Scientist Rick L. Riolo Adjunct Associate Research Scientist Edward S. Rutherford Acknowledgements I first wish to thank my advisors and co-chairs Drs. Michael Wiley and Sara Adlerstein. They have been mentors, guides, critics and patient editors of my work. My committee members Drs. Rick Riolo, Edward Rutherford, and Steven Wright have always offered helpful feedback and a broader perspective on my research. Rick Riolo deserves special thanks for guidance on all things computer modeling. I have been surrounded by a diverse and talented group of fellow graduate students. I particularly wish to thank students who were faithful participants in the Adlerstein/Wiley lab group meetings, the Hooper Seminar series, and the Complex Systems Advanced Academic Workshop series. I presented various pieces of preliminary research at each of these venues, and the commentary from other students was invaluable. I learned equally much from listening to students present their own research. Beth Sparks-Jackson and Lori Ivan reviewed drafts of Chapters 2 and 3. Emily Silverman of the USFWS provided important guidance during early stages of this research. Jeff Slade of the USFWS provided access to and helpful interpretation of both the habitat and larval fish survey data. -
Lamprey Guides What Are Lampreys and Where Are They Found? Lampreys Are Primitive ‘Eel-Like’Fish, Which Unlike True Bony Fish Have No Jaw Or Paired Fins
Water and Rivers Commission WN14 January 2000 Lamprey guides What are lampreys and where are they found? Lampreys are primitive ‘eel-like’fish, which unlike true bony fish have no jaw or paired fins. Instead of a jaw lampreys have a suctorial disk lined with tiny teeth surrounding a mouth. Lampreys feed by sucking onto fish and sucking or rasping away blood and flesh. Fossil lampreys date back to about 280 million years ago, which is 50 million years before the appearance of dinosaurs. Today there are about 30 lamprey species ranging in size from 200 — 1000 mm, most of which spend all or at least part of their life in fresh waters (McFarland et al. 1979, Kershaw 1983). The lower south west of Western Australia, between Margaret River and Denmark is home to the pouched lamprey (Geotria australis). The adult pouched lamprey is Unusual sighting of a lamprey, out and about during L.Pen about 650 mm long, and marine adults are brilliant cobalt the day in the Lefroy Brook near Pemberton. blue in colour with bright greenish lateral stripes. On lampreys, spend several years filter feeding from burrows entering fresh water, adults become drab brown, with males in soft sediments before metamorphosing into their adult developing a large sac or pouch, which hangs down just form and moving to the ocean in winter. behind the mouth. The function of the pouch is unknown. Young larval lampreys range in length from 30-80 mm, have no eyes and are dull brown or black in colour, while The lamprey migration and overcoming recently metamorphosed young adults, known as obstructions ‘downstream migrants’are miniature versions of their In moving upstream lampreys must negotiate rapids and parents (Potter et al.