University of Cincinnati

Total Page:16

File Type:pdf, Size:1020Kb

University of Cincinnati U UNIVERSITY OF CINCINNATI Date: I, , hereby submit this original work as part of the requirements for the degree of: in It is entitled: Student Signature: This work and its defense approved by: Committee Chair: Approval of the electronic document: I have reviewed the Thesis/Dissertation in its final electronic format and certify that it is an accurate copy of the document reviewed and approved by the committee. Committee Chair signature: The role of serotonin in brain development and 3,4- methylenedioxymethamphetamine-induced cognitive deficits A Dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Graduate program in Molecular and Developmental Biology of the College of Medicine May 2009 by Tori Lynn Schaefer B.S., College of Mount St. Joseph 2004 Committee Chair: Michael T. Williams, Ph.D. Charles V. Vorhees, Ph.D. Kenneth Campbell, Ph.D. Gary A. Gudelsky, Ph.D. Steve Danzer, Ph.D. ABSTRACT Serotonin (5-hydroxytryptamine, 5-HT) is thought to be important during brain development and is one of the first neurotransmitters to appear. It appears to act as a neurotrophic factor supporting the growth and maturation of both serotonergic and non- serotonergic cells during the pre and early postnatal periods prior to its role as a neurotransmitter. Disruption of 5-HT functioning during human development is thought to be associated with autism and schizophrenia. Early developmental exposure to stress or drugs of abuse disrupt 5-HT development and produces altered cognitive ability. To better understand the relationship between the developing serotonergic system and long- term cognitive function we employed the use of a genetic model in which 5-HT levels are depleted ~80% throughout life and the use of a model of 3,4- methylenedioxymethamphetamine (MDMA) exposure in which administration from postnatal day (P)11-20 is used; a period analogous to the second half of human gestation. Pet-1 is a transcription factor that is restricted in the brain to 5-HT neurons and has been shown to be important for their development and function. A loss of Pet-1 results in an 80% reduction of the number of 5-HT neurons as well as 5-HT tissue content. Pet-1 knockouts were tested as adults in both the Cincinnati and Morris water mazes that assess path integration and spatial learning, respectively. A reduction in cognitive ability was not observed in Pet-1 knockout mice, although they displayed decreased locomotor activity, increased marble burying, and increased startle reactivity. To better assess the role 5-HT plays during development for circuits involved in memory formation, we used a model of MDMA exposure that has previously been reported to produce protracted path integration and spatial learning deficits that last late into adulthood. In adults, MDMA i produces an initial release of 5-HT followed by dramatic depletions, and these depletions can last for weeks. It was previously shown that neonatal MDMA administration on P11, the first day of the exposure period known to result in memory impairment (P11-20), also produced significant depletions in 5-HT. We further characterized the degree of 5-HT depletion that was experienced by rats exposed to P11 MDMA exposure and compared this to 5-HT reductions induced by other substituted amphetamines as well as determining the length and degree of depletion following P11-20 MDMA exposure. Substantial 5-HT depletions existed during all ten days of MDMA exposure, however, these depletions were not observed on P30. Citalopram (CIT), a highly selective SSRI, was used in combination with P11-20 MDMA exposure to attenuate the 5-HT depletions. Thereafter, cognitive ability was assessed in MDMA-treated animals with attenuated 5- HT depletions. The combination of CIT and MDMA did not improve learning ability; however CIT treatment alone produced deficits in path integration learning. These data suggest that 5-HT alterations during vulnerable critical periods can affect later cognitive ability, and they suggest that depletions in 5-HT alone may not account for cognitive dysfunction in neonatal rats treated with MDMA. Examination of specific 5-HT receptors is likely the next step to understand the mechanism involved in 5-HT disruption during development and later cognitive ability. ii ACKNOWLEDGEMENTS I would like to thank my thesis advisor, Dr. Michael Williams, for his patience, support, and guidance throughout my graduate career. I am grateful to have the opportunity to work with Michael and am thankful to have him as an advisor. I would also like to thank Dr. Charles Vorhees for his additional guidance throughout my graduate career. It has been an incredible experience to work with these excellent scientists who I can comfortably call friends as well as colleagues. I would also be remiss if not thanking current and former my lab mates: Matt Skelton, Devon Graham, Curt Grace, Amanda Braun, and Mary Moran; I have been truly blessed to work with such wonderful and intelligent people. I would also like to thank my dissertation committee members, Drs. Michael Williams, Chip Vorhees, Gary Gudelsky, Steve Danzer, and Kenny Campbell for their support, guidance and interest in my research. I am honored to be a graduate of the Molecular and Developmental Biology Graduate Program. I would like to thank the staff of the Division of Developmental Biology and the Division of Neurology, both past and present. Finally, I would like to thank my family, especially my wonderful husband Jonathan. His support, patience and encouragement have made this possible. I would like to thank my mother, Kim, for supporting whatever I decided to do with my life. iv TABLE OF CONTENTS List of figures vii Chapter 1 Introduction 1 The serotonergic system 1 Serotonin depletion 5 Pet-1 7 MDMA 9 o History and prevalence 9 MDMA-induced 5-HT alterations 10 Other MDMA-induced alterations 12 o Behavior 14 o Learning and memory 14 Dissertation synopsis 19 References 20 Figures 40 Hypothesis and Specific Aims 41 Chapter 2: Mouse Pet-1 knock-out induced 5-HT disruption results in a lack of cognitive deficits and an anxiety phenotype complicated by hypoactivity and defensiveness Title page 42 Abstract 43 Introduction 44 Material and Methods 46 Results 52 Discussion 56 References 63 Figures 71 Chapter 3: A comparison of monoamine and corticosterone levels 24 hours following (+)methamphetamine, (±)3,4-methylenedioxymethamphetamine, cocaine, (+)fenfluramine, or (±)methylphenidate administration in the neonatal rat Title page 78 Abstract 89 Introduction 80 Materials and Methods 82 Results 86 Discussion 88 References 97 Figures 106 v Chapter 4: Short- and long-term effects of (+)-methamphetamine and (±)-3,4- methylenedioxymethamphetamine on monoamine and corticosterone levels in the neonatal rat following multiple days of treatment Title page 113 Abstract 114 Introduction 115 Material and Methods 118 Results 122 Discussion 127 References 132 Figures 143 Chapter 5: Alterations to learning and memory following neonatal exposure to 5-HT altering drugs: individual and combined effects of MDMA and citalopram Title page 153 Abstract 154 Introduction 156 Material and Methods 159 Results 168 Discussion 178 References 187 Figures 199 Chapter 6: Discussion Conclusions 208 Discussion 208 Critical period of 5-HT development 210 Alternative 5-HT hypothesis 212 Future studies 214 References 219 Figures 227 vi LIST OF FIGURES Chapter 1 Figure 1. Simplified schematic of serotonergic signaling 40 Chapter 2 Figure 1. Elevated zero maze 71 Figure 2. Locomotor activity 72 Figure 3. Marble burying 73 Figure 4. Light-Dark box exploration 73 Figure 5. MWM hidden platform trials 74 Figure 6. MWM shift phase initial heading error 75 Figure 7. Cincinnati water maze 76 Figure 8. Locomotor activity with MA challenge 77 Chapter 3 Table 1. Body weights 106 Figure 1. Corticosterone concentrations in plasma 107 Figure 2. Serotonergic markers in the neostriatum 108 Figure 3. Dopaminergic markers in the neostriatum 109 Figure 4. Serotonergic markers in the hippocampus 110 Figure 5. Comparison of MWM effects 111 Chapter 4 Figure 1. Body weights 143 vii Figure 2. Corticosterone concentrations in plasma 144 Figure 3. Serotonergic markers in the neostriatum after P11-15 exposure 145 Figure 4. Dopaminergic markers in the neostriatum after P11-15 146 exposure Figure 5. Serotonergic markers in the neostriatum after P11-20 exposure 147 Figure 6. Dopaminergic markers in the neostriatum after P11-20 148 exposure Figure 7. Serotonergic markers in the hippocampus after P11-15 149 exposure Figure 8. Serotonergic markers in the hippocampus after P11-20 151 exposure Figure 9. Time course of CORT and 5-HT changes 152 Chapter 5 Table 1. 5-HIAA, 5-HIAA/5-HT ratio, DA, DOPAC, DOPAC/DA ratio, 199 NGF, BDNF, and CORT on P12, 16, and 21 Table 2. Light-Dark test, Elevated zero maze, and Straight channel 201 Figure 1. Hippocampus 5-HT: P11-20 exposure 202 Figure 2. P12, P16, and P21 5-HT levels 203 Figure 3. Body weights 204 Figure 4. Locomotor activity 205 Figure 5. Cincinnati water maze 206 Figure 6. Morris water maze 207 viii Chapter 6 Table 1. Summary of hippocampal 5-HT, CORT, and CWM learning 227 Figure 1. Schematic of 5-HT neuron 228 ix CHAPTER 1: INTRODUCTION The monoamine 5-hydroxytryptamine (5-HT) was first isolated from serum and was named “serotonin” because of its vasoconstrictive effects (Rapport et al. 1948). Serotonin was later detected in the mammalian brain and had a wide distribution throughout the central nervous system. Many aspects of mammalian physiology are influenced by the effects of 5-HT, including cardiovascular regulation, respiration, gastrointestinal function, and more centrally controlled functions including circadian rhythm, appetite, aggression, sensorimotor activity, sexual behavior, mood, cognition, and learning and memory. Although many therapeutic drugs with serotonergic activity can alleviate some of the symptoms associated with psychological and cognitive dysfunction we still do not have a good understanding of the disease etiologies.
Recommended publications
  • Epidermal Growth Factor Promotes a Neural Phenotype in Thymic
    Epidermal Growth Factor Promotes a Neural Phenotype in Thymic Epithelial Cells and Enhances Neuropoietic Cytoldne Expression Isabella Screpanti,* Susanna Scarpa,* Daniela Meco,* Diana BeUavia,~ Liborio Stuppia, § Luigi Frati, *u Andrea Modesti,* and Alberto Gulino I *Department of Experimental Medicine and Pathology, University La Sapienza, 00161 Rome;qnstitute of Human Pathology and Social Medicine, University of Chieti, 66100 Chieti; §Institute of N.P. Human Cytomorphology, National Research Council, 66100 Chieti; and UMediterranean Institute of Neuroscience, Pozzilli and IDepartment of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy Abstract. Neural crest-derived cells populate the thy- growth factor enhances cells that express the genes en- Downloaded from http://rupress.org/jcb/article-pdf/130/1/183/1264385/183.pdf by guest on 29 September 2021 mus, and their coexistence with epithelial cells is re- coding the preprotachykinin A-generated neuropep- quired for proper organ development and T cell educa- tides and the bipotential neuropoietic and lymphopoi- tion function. We show here that epidermal growth etic cytokines ciliary neurotrophic factor and factor (EGF), a major epithelial cell growth-enhancing interleukin-6. These cytokines also enhance the neu- agent, has a morphogenetic action to promote the ex- ronal phenotype of thymic epithelial cells. Therefore, pression of a neuronal phenotype (e.g., neurofilament EGF appears to be a composite autocrine/paracrine expression) in cultured thymic epithelial cells that are neuromodulator in thymic stroma. This suggests that characterized by a cytokeratin-positive epithelial cell EGF may regulate thymus-dependent immune func- background. The proliferation of such neurodifferenti- tions by promoting neuronal gene expression in neural ated cells is also enhanced by EGF.
    [Show full text]
  • Stem Cells and Neurological Disease the Transplant Site
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.5.557 on 1 May 2003. Downloaded from EDITORIAL 553 Stem cells shown to survive and ameliorate behav- ................................................................................... ioural deficits in an animal mode of Par- kinson’s disease,3 although in this study 20% of rats still developed teratomas at Stem cells and neurological disease the transplant site. In contrast, Kim et al, using a different approach that relies on R A Barker, M Jain,RJEArmstrong, M A Caldwell transfection with Nurr1 (a transcription ................................................................................... factor involved in the differentiation of dopaminergic cells), have demonstrated The therapeutic implications and application of stem cells for functional efficacy without tumour formation.4 the nervous system Human embryonic stem cells have now been isolated5 and grown in culture with enrichment for neuronal lineages, here has recently been a great deal of (c) ability to migrate and disseminate possible through exposure to a combina- interest in stem cells and the nerv- following implantation within the adult tion of growth factors and mitogens.6 Tous system, in terms of their poten- CNS; These cells, when placed in the develop- tial for deciphering developmental issues (d) possible tropism for areas of path- ing rat brain, can migrate widely and as well as their therapeutic potential. In ology; differentiate in a site specific fashion this editorial we will critically appraise without the formation of teratomas.7 the different types of stem cells, their (e) ease of manipulation using viral and non-viral gene transfer methods; However, the safety of these cells needs therapeutic implications, and the appli- further investigation before they can be (f) ability to better integrate into normal cations to which they have been put, considered for clinical use.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,540 B1 Milbrandt Et Al
    USOO628454OB1 (12) United States Patent (10) Patent No.: US 6,284,540 B1 Milbrandt et al. (45) Date of Patent: Sep. 4, 2001 (54) ARTEMIN, A NOVEL NEUROTROPHIC Ross et al., “Gene Therapy in the United States: A Five Year FACTOR Status Report.” Human Gene Therapy, vol. 7:1781-1790, Sep.1996.* (75) Inventors: Jeffrey D. Milbrandt; Robert H. Scheffler et al., “Marrow-mindedness: a perspective on Baloh, both of St. Louis, MO (US) neuropoiesis.” TINS, vol. 22 (8): 348-357, 1999.* Sanberg et al., “Cellular therapeutic approaches for neuro 73) AssigSCC Washingtonashington UniUniversity, ity, St. Louis, MO degenerative disorders.” Proceedings of the 1998 Miami (US) Bio/Technology winter Symposium, Nucleic Acids Sympo sium series No. 38 : 139-142, Feb. 1998.* * Y NotOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi Bowie et al., “Deciphering the message in protein patent is extended or adjusted under 35 Sequences: Tolerance to amino acid Substitution.” Science, U.S.C. 154(b) by 0 days. vol. 247: 1306-1310, Mar. 1990.* Ngo et al., “Computational complexity, protein Structure (21) Appl. No.: 09/220,528 prediction, and the Levinthal Paradox.” The Protein Folding (22) Filed: Dec. 24, 1998 Problem and Tertiary Structure Prediction:491–495, 1994.* Frommel et al., “En estimate on the effect of point mutation Related U.S. Application Data and natural Selection on the rate of amino acid replacement in proteins.” Mol. Evol., vol. 21: 233-257, 1985.* (60) Division of application No. 09/218,698, filed on Dec. 22, 1998, and a continuation-in-part of application No. 09/163, Baloh et al., GFRC3 is an orphan member of the GDNF/ 283, filed on Sep.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,838,292 B1 Roisen Et Al
    US007838292B1 (12) United States Patent (10) Patent No.: US 7,838,292 B1 Roisen et al. (45) Date of Patent: Nov. 23, 2010 (54) METHODS FOR OBTAINING ADULT HUMAN 6,165,783 A 12/2000 Weiss et al. OLFACTORY PROGENITOR CELLS 6, 197,585 B1 3/2001 Stringer 6,200,806 B1 3/2001 Thomson .................... 435,366 (75) Inventors: Fred J. Roisen, Prospect, KY (US); 6,238,922 B1 5, 2001 Uchida Kathleen M. Klueber, Louisville, KY 6,251,669 B1 6/2001 Luskin (US); Chengliang Lu, Louisville, KY 6,265,175 B1 7/2001 Gage et al. (US) 6,284,539 B1 9, 2001 Bowen et al. 6,294,346 B1 9, 2001 Weiss et al. (73) Assignee: University of Louisville Research 6,368,854 B2 4/2002 Weiss et al. 6,399,369 B1 6/2002 Weiss et al. Foundation, Inc., Louisville, KY (US) 6,465.248 B1 10/2002 Commissiong (*) Notice: Subject to any disclaimer, the term of this 6,468,794 B1 10/2002 Uchida et al. patent is extended or adjusted under 35 6,486,122 B1 1 1/2002 Twardzik et al. 6,497.872 B1 12/2002 Weiss et al. U.S.C. 154(b) by 890 days. 6,498,018 B1 12/2002 Carpenter 6,528,306 B1 3/2003 Snyder et al. (21) Appl. No.: 10/112,658 6,541,255 B1 4/2003 Snyder et al. 6,638,501 B1 10/2003 Bjornson et al. (22) Filed: Mar. 29, 2002 6,638,763 B1 10/2003 Steindler et al. 6,677,307 B2 1/2004 Twardzik et al.
    [Show full text]
  • The Association Between Social Participation and Cognitive Function in Community-Dwelling Older Populations : Japan Gerontologic
    The association between social participation and cognitive function in community-dwelling older populations : Japan Title Gerontological Evaluation Study at Taisetsu community Hokkaido Sakamoto, Ai; Ukawa, Shigekazu; Okada, Emiko; Sasaki, Sachiko; Zhao, Wenjing; Kishi, Tomoko; Kondo, Katsunori; Author(s) Tamakoshi, Akiko International journal of geriatric psychiatry, 32(10), 1131-1140 Citation https://doi.org/10.1002/gps.4576 Issue Date 2017-10 Doc URL http://hdl.handle.net/2115/71576 This is the peer reviewed version of the following article: Sakamoto, A., Ukawa, S., Okada, E., Sasaki, S., Zhao, W., Kishi, T., Kondo, K., and Tamakoshi, A. (2017) The association between social participation and cognitive function in community‐dwelling older populations: Japan Gerontological Evaluation Study at Taisetsu community Hokkaido. Int Rights J Geriatr Psychiatry, 32: 1131‒1140, which has been published in final form at https://doi.org/10.1002/gps.4576. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self- Archived Versions. Type article (author version) File Information IntJGeriatrPsychiatr32_1131.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Title: The association between social participation and cognitive function in community-dwelling elderly populations: Japan Gerontological Evaluation Study at Taisetsu Community Hokkaido Running head: social participation and cognitive function Key words: aged, cognition disorders, multilevel analysis, Japan, social capital, social participation Key points: This cross-sectional study examined the association between the number of area- and individual-level social participation items and cognitive function in the community-dwelling elderly population of three towns in Japan. Participating in many kinds of social activities preserved cognitive function in the elderly population even after adjusting for area-level social participation variables.
    [Show full text]
  • Neuroprotection by Estradiol
    Progress in Neurobiology 63 (2001) 29±60 www.elsevier.com/locate/pneurobio Neuroprotection by estradiol Luis Miguel Garcia-Segura a,InÄ igo Azcoitia b, Lydia L. DonCarlos c,* aInstituto Cajal, C.S.I.C., E-28002, Madrid, Spain bBiologia Celular, Facultad de Biologia, Universidad Complutense, E-28040 Madrid, Spain cDepartment of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA Received 3 March 2000 Abstract This review highlights recent evidence from clinical and basic science studies supporting a role for estrogen in neuroprotection. Accumulated clinical evidence suggests that estrogen exposure decreases the risk and delays the onset and progression of Alzheimer's disease and schizophrenia, and may also enhance recovery from traumatic neurological injury such as stroke. Recent basic science studies show that not only does exogenous estradiol decrease the response to various forms of insult, but the brain itself upregulates both estrogen synthesis and estrogen receptor expression at sites of injury. Thus, our view of the role of estrogen in neural function must be broadened to include not only its function in neuroendocrine regulation and reproductive behaviors, but also to include a direct protective role in response to degenerative disease or injury. Estrogen may play this protective role through several routes. Key among these are estrogen dependent alterations in cell survival, axonal sprouting, regenerative responses, enhanced synaptic transmission and enhanced neurogenesis. Some of the mechanisms underlying these eects are independent of the classically de®ned nuclear estrogen receptors and involve unidenti®ed membrane receptors, direct modulation of neurotransmitter receptor function, or the known anti-oxidant activities of estrogen.
    [Show full text]
  • 1 the Potential Role of Cytokines and Growth Factors in the Pathogenesis
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2021 doi:10.20944/preprints202108.0237.v1 The Potential Role of Cytokines and growth factors in the pathogenesis of Alzheimer's Disease Gilbert Ogunmokun1, Saikat Dewanjee2, Pratik Chakraborty2, Chandrasekhar Valupadas3,4 Anupama Chaudhary5, Viswakalyan Kolli6, Uttpal Anand7, Jayalakshmi Vallamkondu8, Parul Goel9, Hari Prasad Reddy Paluru10, Kiran Dip Gill11, P. Hemachandra Reddy12-16 , Vincenzo De Feo17*, ,Ramesh Kandimalla18,19*, 1The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, Texas, USA 2Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India 3Professor, Internal Medicine & Medical Superintendent, MGM Hospital, Warangal, India 4In charge Medical Superintendent, KMC Superspeciality Hospital, Warangal, India 5Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Karnal, Haryana -132001, India 6Professor, Department of Biochemistry, GITAM Institute of Medical Sciences and Research, Visakhapatnam, India 7Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel 8National Institute of Technology, Warangal 506004, Telangana, India 9Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences & Research, Mullana, Ambala, India 10Sri Krsihnadevaraya University, Anantapur, Andhra Pradesh, India 11Department of Biochemistry, Posgraduate Institute
    [Show full text]
  • From Hematopoiesis to Neuropoiesis: Evidence of Overlapping Genetic Programs
    From hematopoiesis to neuropoiesis: Evidence of overlapping genetic programs Alexey V. Terskikh*†, Mathew C. Easterday‡, Linheng Li§, Leroy Hood§, Harley I. Kornblum‡, Daniel H. Geschwind¶, and Irving L. Weissman* *Stanford University School of Medicine, Department of Pathology, Beckman Center, Stanford, CA 94306; ‡Department of Molecular and Medical Pharmacology and Pediatrics, School of Medicine, University of California, Los Angeles, CA 90095; §University of Washington, Department of Molecular Biotechnology, Seattle, WA 98195; and ¶Neurogenetics Program and Department of Neurology, Reed Neurological Research Center, School of Medicine, University of California, Los Angeles, CA 90095-1769 Contributed by Irving L. Weissman, April 23, 2001 It is reasonable to propose that gene expression profiles of purified tissues, but not blood (21). These results suggest that different stem cells could give clues for the molecular mechanisms of stem stem cells, but not any other cells in the adult organism, may cell behavior. We took advantage of cDNA subtraction to identify retain a general self-renewing and differentiating capacity or a set of genes selectively expressed in mouse adult hematopoietic pluripotency (22) and thus it seems reasonable to propose that stem cells (HSC) as opposed to bone marrow (BM). Analysis of common basic molecular mechanisms, in addition to environ- HSC-enriched genes revealed several key regulatory gene candi- mental clues, could be responsible for self-renewal properties of dates, including two novel seven transmembrane (7TM) receptors. stem cells. Furthermore, by using cDNA microarray techniques we found a Here we approached the isolation of genes commonly and large set of HSC-enriched genes that are expressed in mouse preferentially expressed in stem cells by identifying the genes neurospheres (a population greatly enriched for neural progenitor that differentially expressed in adult HSC compared with its cells), but not present in terminally differentiated neural cells.
    [Show full text]
  • Review in Vitro and in Vivo Characterization of Neural Stem Cells
    Histol Histopathol (2004) 19: 1261-1275 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Review In vitro and in vivo characterization of neural stem cells E. Bazán1, F.J.M. Alonso1, C. Redondo1, M.A. López-Toledano1,4, J.M. Alfaro2, D. Reimers1, A.S. Herranz1, C.L. Paíno1, A.B. Serrano1, N. Cobacho1, E. Caso2 and M-V.T. Lobo1,2 1Departamento de Investigación, Hospital Ramón y Cajal, Madrid, 2Departamento de Biología Celular y Genética, Universidad de Alcalá, Madrid, 3Fundación de Investigación del Complejo Hospitalario Universitario de Vigo (Fundación ICHUVI), Vigo, Spain and 4Department of Pathology, Columbia-Presbyterian Medical Center, Columbia University, New York Summary. Neural stem cells are defined as clonogenic studies have shown a new form of neuroplasticity based cells with self-renewal capacity and the ability to on de novo differentiation of neurons and glia from the generate all neural lineages (multipotentiality). Cells stem cells localized in specific regions of the adult with these characteristics have been isolated from the vertebrate CNS (Temple and Alvarez-Buylla, 1999; embryonic and adult central nervous system. Under Gage, 2000). Fetal and adult neural stem cells are specific conditions, these cells can differentiate into usually defined as undifferentiated cells (lacking neurons, glia, and non-neural cell types, or proliferate in markers of mature cells) that display proliferative and long-term cultures as cell clusters termed self-renewal capacities (i.e. the capacity to maintain the “neurospheres”. These cultures represent a useful model number of stem cells in a given compartment at a steady for neurodevelopmental studies and a potential cell level, or to increase it in particular situations) and source for cell replacement therapy.
    [Show full text]
  • MOLECULAR CONTROL of CELL FATE in the NEURAL CREST: the Sympathoadrenal Lineage
    Annu. Rev. Neurosci. 1993. 16:129-58 Copyright © 1993 hy Annual Reviews Inc. All rights reserved MOLECULAR CONTROL OF CELL FATE IN THE NEURAL CREST: The Sympathoadrenal Lineage David J. Anderson Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125 KEY WORDS: nerve growth factor, glucocorticoids, cell lineage, peripheral nervous system, neurogenesis INTRODUCTION A central problem in developmental neurobiology is understanding the cellular and molecular mechanisms that generate the diversity of cell types found in the nervous system. Although the general problem of cell type specification can be addressed in many non-neuronal tissues, it is par­ by Acquisitions Librarian on 04/14/15. For personal use only. ticularly challenging in the nervous system, because of the enormous variety of cell types that exist, and the phenotypic plasticity they display. In recent years, several technical breakthroughs have permitted an intensive Annu. Rev. Neurosci. 1993.16:129-158. Downloaded from www.annualreviews.org analysis of cell lineage relationships in various parts of the vertebrate nervous system. These have included the development of recombinant retroviruses for genetic marking of cell fate (Sanes et al 1986; Turner & Cepko 1987) and membrane-impermanent lineage tracers for micro­ injection of single progenitor cells (Holt et al 1988; Wetts & Fraser 1988). These techniques have revealed that in many (but not all) systems, indi­ vidual neural precursor cells give rise to a variety of different cell types, thus demonstrating that they are multipotent. In the case of the neural crest, application of both techniques has indicated that many neural crest cells are multipotent, before (Bronner-Fraser & Fraser 19&8, 19&9; Frank 129 o 147-006X/93/030 1-0129$02.00 130 ANDERSON & Sanes 1991) or shortly after (Fraser & Bronner-Fraser 1991) they migrate from the neural tube.
    [Show full text]
  • Glutamatergic Neurons Differentiated from Embryonic Stem Cells: an Investigation of Differentiation and Associated Diseases
    International Journal of Molecular Sciences Review Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases Jen-Hua Chuang 1, Wen-Chin Yang 2 and Yenshou Lin 1,* 1 School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan; [email protected] 2 Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-277-496-343; Fax: +886-229-312-904 Abstract: Neurons that have been derived from various types of stem cells have recently undergone significant study due to their potential for use in various aspects of biomedicine. In particular, glutamatergic neurons differentiated from embryonic stem cells (ESCs) potentially have many applications in both basic research and regenerative medicine. This review summarized the literatures published thus far and focused on two areas related to these applications. Firstly, these neurons can be used to investigate neuronal signal transduction during differentiation and this means that the genes/proteins/markers involved in this process can be identified. In this way, the dynamic spatial and temporal changes associated with neuronal morphology can be investigated relatively easily. Such an in vitro system can also be used to study how neurons during neurogenesis integrate into normal tissue. At the same time, the integration, regulation and functions of extracellular matrix secretion, various molecular interactions, various ion channels, the neuronal microenvironment, etc., Citation: Chuang, J.-H.; Yang, W.-C.; can be easily traced. Secondly, the disease-related aspects of ESC-derived glutamatergic neurons can Lin, Y. Glutamatergic Neurons also be studied and then applied therapeutically.
    [Show full text]
  • Two Distinct Proliferation Events Are Induced in the Hippocampus by Acute Focal Injury
    TWO DISTINCT PROLIFERATION EVENTS ARE INDUCED IN THE HIPPOCAMPUS BY ACUTE FOCAL INJURY by CARL ERNST B.Sc, McGill University, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Neuroscience) THE UNIVERSITY OF BRITISH COLUMBIA June 2005 © Carl Ernst 2005 Abstract In models of global brain injury, such as stroke or epilepsy, a large increase in neurogenesis occurs in the dentate gyrus (DG) days after the damage is induced. In contrast, more focal damage in the DG produces an increase in neurogenesis within 24 hours. In order to determine if two distinct cell proliferation events can occur in the DG, focal electrolytic lesions were made and cell proliferation was examined at early (1 day) and late (5 day) time points. At the early time point, a diffuse pattern of BrdU+ cells was present ipsilateral to the lesion. When BrdU was administered at the later time point, the number of subgranular zone BrdU+ cells was significantly greater than at 24 hours. There was a four-fold increase in new neurons at the late time point while at the early time point no significant difference in neurogenesis was observed from control hemispheres. At both early and late time points, BrdU+ cells did not arise from microglia, as they rarely co-labeled with the microglia marker ED-1. These results indicate that focal injury in the dentate gyrus can activate two proliferation reactions, and that a latent period greater than 1 day is required before the injury-induced increase in new neurons is observed.
    [Show full text]