Epidermal Growth Factor Promotes a Neural Phenotype in Thymic

Total Page:16

File Type:pdf, Size:1020Kb

Epidermal Growth Factor Promotes a Neural Phenotype in Thymic Epidermal Growth Factor Promotes a Neural Phenotype in Thymic Epithelial Cells and Enhances Neuropoietic Cytoldne Expression Isabella Screpanti,* Susanna Scarpa,* Daniela Meco,* Diana BeUavia,~ Liborio Stuppia, § Luigi Frati, *u Andrea Modesti,* and Alberto Gulino I *Department of Experimental Medicine and Pathology, University La Sapienza, 00161 Rome;qnstitute of Human Pathology and Social Medicine, University of Chieti, 66100 Chieti; §Institute of N.P. Human Cytomorphology, National Research Council, 66100 Chieti; and UMediterranean Institute of Neuroscience, Pozzilli and IDepartment of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy Abstract. Neural crest-derived cells populate the thy- growth factor enhances cells that express the genes en- Downloaded from http://rupress.org/jcb/article-pdf/130/1/183/1264385/183.pdf by guest on 29 September 2021 mus, and their coexistence with epithelial cells is re- coding the preprotachykinin A-generated neuropep- quired for proper organ development and T cell educa- tides and the bipotential neuropoietic and lymphopoi- tion function. We show here that epidermal growth etic cytokines ciliary neurotrophic factor and factor (EGF), a major epithelial cell growth-enhancing interleukin-6. These cytokines also enhance the neu- agent, has a morphogenetic action to promote the ex- ronal phenotype of thymic epithelial cells. Therefore, pression of a neuronal phenotype (e.g., neurofilament EGF appears to be a composite autocrine/paracrine expression) in cultured thymic epithelial cells that are neuromodulator in thymic stroma. This suggests that characterized by a cytokeratin-positive epithelial cell EGF may regulate thymus-dependent immune func- background. The proliferation of such neurodifferenti- tions by promoting neuronal gene expression in neural ated cells is also enhanced by EGF. Furthermore, the crest-derived cells. ULTIPLE cell interactions control developmental unclear, although the presence of neural crest-derived cells cell fate and morphogenesis. The morphoge- in thymic medulla and the expression of a number of neu- M netic process of the thymus is an example in ronal markers and neuropeptides in both thymic epithe- which the variety of phenotypes resulting from T lymphoid lium in vivo (14, 18, 20, 42) and thymic stromal cell cultures cell developmental pathways and the acquisition of either (50) have been described. Cytokeratin-harboring thymic the ability to react to external antigens or the tolerance nurse epithelial cells also express most of these neuron and against self-antigens arise through the action of instructive neuroendocrine markers and neuropeptides (19). and/or selective differentiation signals generated by the The coexistence of epithelial and neural cells within the thymic stroma in close association with precursor and dif- thymic stroma raises the question as to the nature of the ferentiating lymphoid cells (8, 47, 51). A striking aspect of regulatory signals that determine the development and the thymic stroma is the coexistence of cell types arising survival of the neuronal component. EGF is a likely candi- from distinct cell lineages represented mainly by the endo- date as a soluble regulatory signal. Indeed, in addition to derm of the third pharyngeal pouch, the ectoderm of the being a potent growth factor for several epithelial cell third branchial cleft and cells from the corresponding re- types (10), EGF and its receptor are expressed in the cen- gion of the neural crest (35, 36). The interaction of neuro- tral nervous system (CNS) 1 (15, 21) and the growth factor ectoderm-derived cells with other epithelial cells is neces- promotes both neuron survival and mitogenesis of neu- sary for both the organ morphogenic and the T cell ronal progenitors derived from neonatal rat retina and differentiation processes. Indeed, ablation of the cephalic adult mouse striatum (1, 41, 45, 59). Furthermore, EGF re- neural crest in chicken embryos results in thymic aplasia/ ceptor ligands (EGF and TGFet) are also expressed by hypoplasia (4, 7). The further fate and specific functions of thymic tissue in vivo and by human thymic epithelial cell neural crest-derived cells within the thymic stroma remain 1. Abbreviations used in this paper: BrdU, bromodeoxyuridine; CNTF, cil- iary neurotrophic factor; EGF, epidermal growth factor; IL-6, interleukin- Address all correspondence to Dr. Isabella Screpanti, Department of Ex- 6; NF, neurofilarnent; PPT-A, preprotachykinin-A; RT-PCR, reverse perimental Medicine and Pathology, University La Sapienza, viale Regina transcription-polymerase chain reaction; SYN, synapsin-1; TC, thymic Elena 324, 00161 Rome, Italy. Tel.: 39 6 44700816. Fax: 39 6 4454820. stromal cell; TH, tyrosine hydroxylase. © The Rockefeller University Press, 0021-9525/95/07/183/10 $2.00 The Journal of Cell Biology, Volume 130, Number 1, July 1995 183-192 183 cultures, in which these factors modulate the production of Mountain View, CA). Cell debris and doublets were excluded from analy- several cytokines (including interleukin-6 [IL-6]) (25, 32). sis by appropriate gating using physical parameters. The ability of EGF to enhance IL-6 production is of par- ticular interest. IL-6 belongs to the neuropoietic cytokine Immunofluorescence and Immunoperoxidase Staining family that influences the survival, proliferation, and dif- Immunofluorescence staining was performed using cells grown on slide ferentiation of neurons (12, 24). We have previously culture chambers, in the absence or presence of 10 ng/ml of EGF (Collab- shown that IL-6 is able to enhance the neural phenotype orative Res. Inc., Bedford, MA), 0.5 ng/ml recombinant murine IL-6 of thymic stromal cells (50). The aim of this work is there- (British Biotechnology, Oxford, UK), or 10 ng/ml recombinant rat ciliary neurotrophic factor (CNTF; Genzyme, Cambridge, MA). After washing fore to study the role of EGF in regulating the neural cell with PBS, cells were immediately fixed with ice-cold absolute ethanol for population in thymic stroma and the neurotrophic mi- 5 rain and incubated with various primary polyclonal or monoclonal anti- croenvironment sustained by these cells. bodies for 1 h at room temperature, washed with PBS, and then incu- bated with Fluorescein (FITC)-conjugated goat anti-rabbit or anti-mouse (Fab') IgG (Sigma) for 45 rain at room temperature. For EGF receptor Material and Methods staining, cells were preincubated for 2 h in medium without FCS and then fixed with 2% buffered paraformaldehyde for 10 min at room tempera- ture. Primary antibodies used included polyclonal rabbit anti-EGF and Thymic Stromal Cell Cultures anti-EGF receptor (Oncogene Science, Manhasset, NY), monoclonal anti- Several murine thymic stromal cell (TC) cultures were independently es- tyrosine hydroxylase (clone 2/40/15) and anti-neurofilaments (NF) 200 kD tablished from 4-5-wk-old C57BL/6 mice as previously described (38, 50). (clone NE14) (both from Boehringer Mannheim GmbH, Mannheim, Ger- Human thymic stromal cell (HTC) cultures were also independently es- many), anti-NF 160 kD (Amersham Corp., Buckingamshire, UK), pan- tablished from thymuses of children undergoing cardiac surgery. Cells cytokeratin monoclonal antibody (clone LU5, Boehringer Mannheim were cultured in RPMI 1640 medium supplemented with 10% FCS and GmbH), rabbit polyclonal anti-synapsin I antiserum (a gift from P. De Downloaded from http://rupress.org/jcb/article-pdf/130/1/183/1264385/183.pdf by guest on 29 September 2021 0.1 mg/ml sodium pyruvate and antibiotics (Hyclonc Europe Ltd., Cram- Camilli, Yale University School of Medicine, New Haven, CT), and mono- lington, UK). All experiments reported were performed with TC cultures clonal anti-CNTF (Boehringer). from the 3rd to 40th passage. Double-immunofluorescence staining was performed by labeling cells with anti-cytokeratin monoclonal antibody followed by fluorescein-conju- Flow Cytometry and Cell Cycle Analysis gated goat anti-mouse IgG and then with anti-NF 200 kD rabbit poly- clonal antibody (Sigma) followed by rhodamine-conjugated anti-rabbit Cell cycle analysis was performed by fixing 1 x 106 control or 48 h EGF- IgG (ICN ImmunoBiologicals, Lisle, IL). Fluorescent images were ana- treated cells in 70% cold ethanol for 30 min at 4°C and adding, after two lyzed with a fluorescence microscope (DMRB; Leitz, Wetzlar, Germany) washes in cold PBS, 0.5 mg/ml RNAse (Sigma Chemicals Co., St. Louis, or a confocal laser scanning microscope (TCS 4D; Leica, Inc., Deerfield, MO), and 40 Ixg/ml of propidium iodide (Sigma). Cells were then kept in IL). In the latter case, the green (FITC) and the red (rhodamine) fluores- the dark at 4°C for 30 min and immediately analyzed by flow cytometry. cences were independently recorded and elaborated through a 3-D func- The propidium iodide fluorescence emission, due to DNA content of indi- tion (Extended Focus or Shadow Forming Projection). The 3-D-obtained vidual cells, was filtered through a 585/42-nm band pass filter and mea- images were then independently observed or electromcally superimposed sured on a linear scale using a FACScan cytometer (Becton Dickinson, to simultaneously demonstrate the double staining. Figure 1. Expression of EGF and EGF receptor in TC-1S cells and thymic tissue. (A) Fluorescence photomicro- graph of cells immunoreactive for EGF. (B) RNA isolated from mouse submaxillary glands or thymus or TC-1S cells was processed for RT- PCR using either EGF or [3-actin primers as described. Results are shown as ethidium bromide staining
Recommended publications
  • CSF Protein Contents and Their Roles in Brain Development
    Zahedan J Res Med Sci. 2015 September; 17(9):e1042. DOI: 10.17795/zjrms-1042 Review Article Published online 2015 September 26. CSF Protein Contents and Their Roles in Brain Development 1,* 1 1 Mohammad Nabiuni, Rozmehr Shokohi, and Parisa Moghaddam 1Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IR Iran *Corresponding author : Mohammad Nabiuni, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IR Iran. E-mail: [email protected] Received: ; Accepted: January 6, 2014 March 18, 2014 Abstract: In early stages of development, the laminated structure of cerebral cortex is organized by proliferative, morphogenetic, and migratory processes. In these stages, cells within the ependymal lining of neural tube are thought to secrete embryonic cerebrospinal fluid (eCSF). As the neural tube closes, the choroid plexuses (CPs) secrete proteins such as growth factors, cytokines and morphogenes into the eCSF. The apical neuroepithelium is bathed with this fluid which plays regulatory roles in cortical cell proliferation, differentiation, and maintenance. Because of the eCSF protein contents and their impacts on neurogenesis, we focused on the effect of eCSF growth factors and their changes during brain development. Bibliographic databases including PubMed, Scopus and Google Scholar were searched between years 1990 to 2013 for the keywords “Cerebrospinal fluid” and “Neurogenesis”. In the first step, 200 articles were found, after elimination of duplicates or irrelevant papers 49 papers were selected and reviewed. Keywords: Cerebrospinal fluid; Cytokine; Neurogenesis; Choroid plexus; Cell differentiation 1. Context The central nervous system (CNS) develops from the bryogenesis. The CP diferentiates from the ependymal neural tube, a hollow structure filled with embryonic ce- cells lining the ventricular walls and, in fact, is frequent- rebrospinal fluid (eCSF) and surrounded by neuroepithe- ly considered to be a specialized cuboidal epithelium lial cells.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Clonal Dispersion During Neural Tube Formation 4097 of Neuromeres
    Development 126, 4095-4106 (1999) 4095 Printed in Great Britain © The Company of Biologists Limited 1999 DEV2458 Successive patterns of clonal cell dispersion in relation to neuromeric subdivision in the mouse neuroepithelium Luc Mathis1,*, Johan Sieur1, Octavian Voiculescu2, Patrick Charnay2 and Jean-François Nicolas1,‡ 1Unité de Biologie moléculaire du Développement, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France 2Unité INSERM 368, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France *Present address: Beckman Institute (139-74), California Institute of Technology, Pasadena, CA, 91125, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 5 July; published on WWW 23 August 1999 SUMMARY We made use of the laacz procedure of single-cell labelling the AP and DV axis of the neural tube. A similar sequence to visualize clones labelled before neuromere formation, in of AP cell dispersion followed by an arrest of AP cell 12.5-day mouse embryos. This allowed us to deduce two dispersion, a preferential DV cell dispersion and then by a successive phases of cell dispersion in the formation of the coherent neuroepithelial growth, is also observed in the rhombencephalon: an initial anterior-posterior (AP) cell spinal cord and mesencephalon. This demonstrates that a dispersion, followed by an asymmetrical dorsoventral (DV) similar cascade of cell events occurs in these different cell distribution during which AP cell dispersion occurs in domains of the CNS. In the prosencephalon, differences in territories smaller than one rhombomere. We conclude that spatial constraints may explain the variability in the the general arrest of AP cell dispersion precedes the onset orientation of cell clusters.
    [Show full text]
  • The GATA2 Transcription Factor Negatively Regulates the Proliferation of Neuronal Progenitors
    RESEARCH ARTICLE 2155 Development 133, 2155-2165 (2006) doi:10.1242/dev.02377 The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors Abeer El Wakil*, Cédric Francius*,†, Annie Wolff, Jocelyne Pleau-Varet† and Jeannette Nardelli†,§ Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.
    [Show full text]
  • Stem Cells and Neurological Disease the Transplant Site
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.5.553 on 1 May 2003. Downloaded from EDITORIAL 553 Stem cells shown to survive and ameliorate behav- ................................................................................... ioural deficits in an animal mode of Par- kinson’s disease,3 although in this study 20% of rats still developed teratomas at Stem cells and neurological disease the transplant site. In contrast, Kim et al, using a different approach that relies on R A Barker, M Jain,RJEArmstrong, M A Caldwell transfection with Nurr1 (a transcription ................................................................................... factor involved in the differentiation of dopaminergic cells), have demonstrated The therapeutic implications and application of stem cells for functional efficacy without tumour formation.4 the nervous system Human embryonic stem cells have now been isolated5 and grown in culture with enrichment for neuronal lineages, here has recently been a great deal of (c) ability to migrate and disseminate possible through exposure to a combina- interest in stem cells and the nerv- following implantation within the adult tion of growth factors and mitogens.6 Tous system, in terms of their poten- CNS; These cells, when placed in the develop- tial for deciphering developmental issues (d) possible tropism for areas of path- ing rat brain, can migrate widely and as well as their therapeutic potential. In ology; differentiate in a site specific fashion this editorial we will critically appraise without the formation of teratomas.7 the different types of stem cells, their (e) ease of manipulation using viral and non-viral gene transfer methods; However, the safety of these cells needs therapeutic implications, and the appli- further investigation before they can be (f) ability to better integrate into normal cations to which they have been put, considered for clinical use.
    [Show full text]
  • Timing and Pattern of Cell Fate Restrictions in the Neural Crest Lineage
    Development 124, 4351-4359 (1997) 4351 Printed in Great Britain © The Company of Biologists Limited 1997 DEV1236 Timing and pattern of cell fate restrictions in the neural crest lineage Paul D. Henion* and James A. Weston Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA *Present address: Neurobiotechnology Center and Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, 105 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA *Author for correspondence (e-mail: [email protected]) SUMMARY The trunk neural crest of vertebrate embryos is a transient sublineages were also present in the outgrowth population collection of precursor cells present along the dorsal aspect almost immediately, but melanogenic precursors dispersed of the neural tube. These cells migrate on two distinct from the neural tube only after many neurogenic precur- pathways and give rise to specific derivatives in precise sors had already done so. A discrete fate-restricted embryonic locations. One group of crest cells migrates neuronal precursor population was distinguished before early on a ventral pathway and generates neurons and glial entirely separate fate-restricted melanocyte and glial cells. A later-dispersing group migrates laterally and gives precursor populations were present, and well before initial rise to melanocytes in the skin. These observations raise the neuronal differentiation. Taken together, our results possibility that the appearance of distinct derivatives in demonstrate that lineage-restricted subpopulations consti- different embryonic locations is a consequence of lineage tute a major portion of the initial neural crest population restrictions specified before or soon after the onset of and that neural crest diversification occurs well before neural crest cell migration.
    [Show full text]
  • Homocysteine Intensifies Embryonic LIM3 Expression in Migratory Neural Crest Cells: a Quantitative Confocal Microscope Study
    University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2014 Homocysteine intensifies embryonic LIM3 expression in migratory neural crest cells: A quantitative confocal microscope study Jordan Naumann University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2014 Jordan Naumann Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Biology Commons Recommended Citation Naumann, Jordan, "Homocysteine intensifies embryonic LIM3 expression in migratory neural crest cells: A quantitative confocal microscope study" (2014). Dissertations and Theses @ UNI. 89. https://scholarworks.uni.edu/etd/89 This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Copyright by JORDAN NAUMANN 2014 All Rights Reserved HOMOCYSTEINE INTENSIFIES EMBRYONIC LIM3 EXPRESSION IN MIGRATORY NEURAL CREST CELLS – A QUANTITATIVE CONFOCAL MICROSCOPE STUDY An Abstract of a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Jordan Naumann University of Northern Iowa May 2014 ABSTRACT Elevated levels of homocysteine in maternal blood and amniotic fluid are associated with cardiovascular, renal, skeletal, and endocrine diseases and also with embryonic malformations related to neural crest cells. Neural crest cells are necessary for the formation of tissues and organs throughout the body of vertebrate animals. The migration of neural crest cells is essential for proper development of the target tissues. When migration is disrupted, abnormalities may occur.
    [Show full text]
  • Stem Cells and Neurological Disease the Transplant Site
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.5.557 on 1 May 2003. Downloaded from EDITORIAL 553 Stem cells shown to survive and ameliorate behav- ................................................................................... ioural deficits in an animal mode of Par- kinson’s disease,3 although in this study 20% of rats still developed teratomas at Stem cells and neurological disease the transplant site. In contrast, Kim et al, using a different approach that relies on R A Barker, M Jain,RJEArmstrong, M A Caldwell transfection with Nurr1 (a transcription ................................................................................... factor involved in the differentiation of dopaminergic cells), have demonstrated The therapeutic implications and application of stem cells for functional efficacy without tumour formation.4 the nervous system Human embryonic stem cells have now been isolated5 and grown in culture with enrichment for neuronal lineages, here has recently been a great deal of (c) ability to migrate and disseminate possible through exposure to a combina- interest in stem cells and the nerv- following implantation within the adult tion of growth factors and mitogens.6 Tous system, in terms of their poten- CNS; These cells, when placed in the develop- tial for deciphering developmental issues (d) possible tropism for areas of path- ing rat brain, can migrate widely and as well as their therapeutic potential. In ology; differentiate in a site specific fashion this editorial we will critically appraise without the formation of teratomas.7 the different types of stem cells, their (e) ease of manipulation using viral and non-viral gene transfer methods; However, the safety of these cells needs therapeutic implications, and the appli- further investigation before they can be (f) ability to better integrate into normal cations to which they have been put, considered for clinical use.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,540 B1 Milbrandt Et Al
    USOO628454OB1 (12) United States Patent (10) Patent No.: US 6,284,540 B1 Milbrandt et al. (45) Date of Patent: Sep. 4, 2001 (54) ARTEMIN, A NOVEL NEUROTROPHIC Ross et al., “Gene Therapy in the United States: A Five Year FACTOR Status Report.” Human Gene Therapy, vol. 7:1781-1790, Sep.1996.* (75) Inventors: Jeffrey D. Milbrandt; Robert H. Scheffler et al., “Marrow-mindedness: a perspective on Baloh, both of St. Louis, MO (US) neuropoiesis.” TINS, vol. 22 (8): 348-357, 1999.* Sanberg et al., “Cellular therapeutic approaches for neuro 73) AssigSCC Washingtonashington UniUniversity, ity, St. Louis, MO degenerative disorders.” Proceedings of the 1998 Miami (US) Bio/Technology winter Symposium, Nucleic Acids Sympo sium series No. 38 : 139-142, Feb. 1998.* * Y NotOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi Bowie et al., “Deciphering the message in protein patent is extended or adjusted under 35 Sequences: Tolerance to amino acid Substitution.” Science, U.S.C. 154(b) by 0 days. vol. 247: 1306-1310, Mar. 1990.* Ngo et al., “Computational complexity, protein Structure (21) Appl. No.: 09/220,528 prediction, and the Levinthal Paradox.” The Protein Folding (22) Filed: Dec. 24, 1998 Problem and Tertiary Structure Prediction:491–495, 1994.* Frommel et al., “En estimate on the effect of point mutation Related U.S. Application Data and natural Selection on the rate of amino acid replacement in proteins.” Mol. Evol., vol. 21: 233-257, 1985.* (60) Division of application No. 09/218,698, filed on Dec. 22, 1998, and a continuation-in-part of application No. 09/163, Baloh et al., GFRC3 is an orphan member of the GDNF/ 283, filed on Sep.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,838,292 B1 Roisen Et Al
    US007838292B1 (12) United States Patent (10) Patent No.: US 7,838,292 B1 Roisen et al. (45) Date of Patent: Nov. 23, 2010 (54) METHODS FOR OBTAINING ADULT HUMAN 6,165,783 A 12/2000 Weiss et al. OLFACTORY PROGENITOR CELLS 6, 197,585 B1 3/2001 Stringer 6,200,806 B1 3/2001 Thomson .................... 435,366 (75) Inventors: Fred J. Roisen, Prospect, KY (US); 6,238,922 B1 5, 2001 Uchida Kathleen M. Klueber, Louisville, KY 6,251,669 B1 6/2001 Luskin (US); Chengliang Lu, Louisville, KY 6,265,175 B1 7/2001 Gage et al. (US) 6,284,539 B1 9, 2001 Bowen et al. 6,294,346 B1 9, 2001 Weiss et al. (73) Assignee: University of Louisville Research 6,368,854 B2 4/2002 Weiss et al. 6,399,369 B1 6/2002 Weiss et al. Foundation, Inc., Louisville, KY (US) 6,465.248 B1 10/2002 Commissiong (*) Notice: Subject to any disclaimer, the term of this 6,468,794 B1 10/2002 Uchida et al. patent is extended or adjusted under 35 6,486,122 B1 1 1/2002 Twardzik et al. 6,497.872 B1 12/2002 Weiss et al. U.S.C. 154(b) by 890 days. 6,498,018 B1 12/2002 Carpenter 6,528,306 B1 3/2003 Snyder et al. (21) Appl. No.: 10/112,658 6,541,255 B1 4/2003 Snyder et al. 6,638,501 B1 10/2003 Bjornson et al. (22) Filed: Mar. 29, 2002 6,638,763 B1 10/2003 Steindler et al. 6,677,307 B2 1/2004 Twardzik et al.
    [Show full text]
  • The Association Between Social Participation and Cognitive Function in Community-Dwelling Older Populations : Japan Gerontologic
    The association between social participation and cognitive function in community-dwelling older populations : Japan Title Gerontological Evaluation Study at Taisetsu community Hokkaido Sakamoto, Ai; Ukawa, Shigekazu; Okada, Emiko; Sasaki, Sachiko; Zhao, Wenjing; Kishi, Tomoko; Kondo, Katsunori; Author(s) Tamakoshi, Akiko International journal of geriatric psychiatry, 32(10), 1131-1140 Citation https://doi.org/10.1002/gps.4576 Issue Date 2017-10 Doc URL http://hdl.handle.net/2115/71576 This is the peer reviewed version of the following article: Sakamoto, A., Ukawa, S., Okada, E., Sasaki, S., Zhao, W., Kishi, T., Kondo, K., and Tamakoshi, A. (2017) The association between social participation and cognitive function in community‐dwelling older populations: Japan Gerontological Evaluation Study at Taisetsu community Hokkaido. Int Rights J Geriatr Psychiatry, 32: 1131‒1140, which has been published in final form at https://doi.org/10.1002/gps.4576. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self- Archived Versions. Type article (author version) File Information IntJGeriatrPsychiatr32_1131.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Title: The association between social participation and cognitive function in community-dwelling elderly populations: Japan Gerontological Evaluation Study at Taisetsu Community Hokkaido Running head: social participation and cognitive function Key words: aged, cognition disorders, multilevel analysis, Japan, social capital, social participation Key points: This cross-sectional study examined the association between the number of area- and individual-level social participation items and cognitive function in the community-dwelling elderly population of three towns in Japan. Participating in many kinds of social activities preserved cognitive function in the elderly population even after adjusting for area-level social participation variables.
    [Show full text]
  • Cadherins in Brain Compartmentalisation 563 Juxtaposing the Transmembrane Domain of Pca-Cad6-HA Was Similarly Constructed
    Development 128, 561-569 (2001) 561 Printed in Great Britain © The Company of Biologists Limited 2001 DEV1642 Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development Takayoshi Inoue1,2, Taro Tanaka3, Masatoshi Takeichi3, Osamu Chisaka3, Shun Nakamura1 and Noriko Osumi4,* 1Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan 2Japan Science and Technology Corporation, 4-1-8, Hon-machi, Kawaguchi, Saitama 332-0012, Japan 3Department of Biophysics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan 4Department of Developmental Neurobiology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan *Author for correspondence (e-mail: [email protected]) Accepted 29 November 2000; published on WWW 23 January 2001 SUMMARY In ventricular cells of the mouse telencephalon, differential trend for ectopic R-cadherin-expressing striatal cells. expression of cadherin cell adhesion molecules defines Although cadherin-6 gene knockout mice engineered in neighbouring regions; R-cadherin delineates the future this study showed no obvious phenotype in telencephalic cerebral cortex, while cadherin-6 delineates the lateral compartmentalisation, the preferential sorting of ectopic ganglionic eminence. By using cell labelling analyses in the cadherin-6-expressing cells was abolished in this mutant whole embryo culture system, we demonstrated that the background. Thus, the differential expression pattern of interface between R-cadherin and cadherin-6 expression is cadherins in the embryonic telencephalon is responsible for a boundary for cell lineage restriction at embryonic day maintaining the cortico-striatal compartment boundary.
    [Show full text]