Space- and Time-Crystallization Effects in Multicomponent Superfluids

Total Page:16

File Type:pdf, Size:1020Kb

Space- and Time-Crystallization Effects in Multicomponent Superfluids PHYSICAL REVIEW B 101, 020505(R) (2020) Rapid Communications Space- and time-crystallization effects in multicomponent superfluids Nikolay Prokof’ev Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA and National Research Center “Kurchatov Institute,” 123182 Moscow, Russia Boris Svistunov Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA; National Research Center “Kurchatov Institute,” 123182 Moscow, Russia; and Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China (Received 4 September 2019; revised manuscript received 20 December 2019; published 14 January 2020) We observe that space- and time-crystallization effects in multicomponent superfluids—while having the same physical origin and mathematical description as in the single-component case—are conceptually much more straightforward. Specifically, the values of the temporal and spatial periods are absolute rather than relative, and the broken translation symmetry in space and/or time can be revealed with experiments involving only one equilibrium sample. We discuss two realistic setups—one with cold atoms and another one with bilayer superconductors—for the observation of space and time crystallization in two-component counterflow superfluids. DOI: 10.1103/PhysRevB.101.020505 The superfluid long-range order—either genuine or, in superimposing two matter waves with opposite wave vectors lower dimensions, topological/algebraic—is associated with [3] nicely visualize the fact that superflows break translation the emergence of a well-defined (modulo 2π), defect-free symmetry and thus qualify to be called space crystals. Su- field of a coarse-grained phase, (r, t ); see, e.g., Ref. [1]. In percurrent states in three-dimensional superfluids do not form what follows, we discuss the genuine long-range order only. naturally by cooling the system across the transition temper- The generalization to the case of algebraic order is readily ature [4]. Nevertheless, supercurrent states can be prepared achieved along the lines described in Ref. [2]. Also, we use the by cooling the system in a rotating vessel which is stopped classical-field (matter-wave) language, which, on one hand, once the system is in the superfluid phase. In this sense, the captures the essence of superfluid phenomena and, on the period of the space crystal in the phase field depends on the other hand, is straightforwardly generalized to the case of experimental conditions used to prepare the sample, but other- quantum bosonic fields [1]. wise we are dealing with a stable thermodynamic equilibrium Long-range order in the coarse-grained matter field ψ = described by the Gibbs distribution with an emergent quan- exp[i(r, t )] means that we are dealing with the broken tized topological constant of motion (phase winding number) global U (1) symmetry state. The very nature of this state [1]. Academically speaking, such a persistent current state is implies the existence of a space crystal when the phase is a metastable. However, its relaxation time due to rare quantum- linear function of distance (and ψ is periodic in space with tunneling or thermal-activation events is exponentially large the period 2π/k), in the inverse k, and easily exceeds the time of the universe unless the period of the space crystal is microscopically small. ψ , = ψ , ik·r. (r t ) (0 t )e (1) While the existence of plane-wave states (1) is a generic This is a state with finite superflow velocity proportional to property of any statistical model with broken U (1) symmetry, the period depends on the reference frame. The Galilean the wave vector k. In the literature on superfluidity, the term “space crystal” is almost never (if at all) used in the context transformation of the field when going to the reference of the state Eq. (1), because the matter density n(r, t ) = frame moving with the velocity v0 with respect to the origi- |ψ(r, t )|2 remains homogeneous in space. (It should not be nal one, confused with a supersolid—the superfluid state with sponta- v0 · r (r, t ) → (r, t ) − , (2) neously broken translation symmetry in the particle density.) γ However, it is now conventional to call various states of matter “solids” and/or “crystals” if there is some observable implies that the state wave vector changes to revealing broken translation invariance, and this observable k → k − v0/γ . (3) need not be the particle density. One familiar example is the valence-bond crystal state of lattice bosons at half-integer Here, γ is the system-specific parameter relating the wave filling factor. In superfluids, the phase field plays the role vector of the matter wave to the flow velocity. In the quantum of such an observable. The interference fringes produced by case, γ = h¯/m, whereh ¯ is the Planck’s constant (in what 2469-9950/2020/101(2)/020505(5) 020505-1 ©2020 American Physical Society NIKOLAY PROKOF’EV AND BORIS SVISTUNOV PHYSICAL REVIEW B 101, 020505(R) (2020) follows we set it to unity) and m is the particle mass. This the relative nature of k and μk. We observe that multicom- relativity of the period is quite unique for nonrelativistic ponent (counterflow) superfluids belong to such a class. Here, crystals. the quantity of interest, ab(r, t ), is the coarse-grained field What distinguishes superfluids from purely statistical mod- of the phase difference between the components “a” and els with broken U (1) symmetry is that broken U (1) sym- “b” (the description stays exactly the same for an arbitrary metry automatically entails breaking of the time-translation number of components, so we restrict ourselves to the two- symmetry, and links superfluidity to yet another fundamental component case for simplicity). We further limit ourselves phenomenon of time crystallization [5,6]. Indeed, the phase with counterflow superfluid states (see, e.g., Ref. [1]) where evolves in time in accordance with the universal Beliaev- the superfluid order exists exclusively in the field ab(r, t ) Josephson-Anderson relation (in the reference frame of the but not in the individual phases of the components. The long- normal component) wave equilibrium statistics of the two-component counterflow superfluid is isomorphic to that of a single-component super- ˙ =−μ. (4) fluid, rendering the system particularly simple and relevant Here, μ ≡ μk is the chemical potential that depends on the for our purposes. To exclude irrelevant long-wave degrees of wave vector of the superflow. Equation (4) readily follows freedom, we also assume that the normal component is pinned from the generalized Gibbs distribution for a superfluid [1]. by either disorder, walls, or an external periodic potential. The Its remarkable simplicity and universality is rooted in the fact Beliaev-Josephson-Anderson relation for ab (its derivation that the phase is canonically conjugated to the total amount from the Gibbs distribution is directly analogous to that in the of matter, single-component case), 2 d ˙ = μ − μ , N = |ψ| d r (5) ab b a (7) [the U (1) symmetry in question is the Noether’s symmetry has the form of the Josephson relation for the standard ac responsible for the conservation of N]. With relation (4), Josephson effect between two single-component superfluids expression (1) can be upgraded to the formula (made of the same type of matter but having different chemi- · − μ cal potentials). Similarly, the protocol of detecting the rotation ψ , = ψ , ik r i kt , (r t ) (0 0)e (6) of the phase ab can be based on simply creating a “Josephson showing that, in the long-wave limit, the superfluid order link” between components “a” and “b.” In this regard, note parameter has the form of a running plane wave. Hence, the that any protocol of revealing the time crystallization effect in the field ab has to deal with interactions explicitly violating superfluid state with a superflow is a space-time crystal, or a × time crystal in the absence of the superflow. the U (1) U (1) symmetry of the original system, which implies a process converting components “a” and “b” into It is important to keep in mind that the value of μk is relative. This is formally reminiscent of (and even partially each other. The conceptual difference between this “internal” connected to) the relative nature of the wave vector k:By Josephson effect and its conventional counterpart is that now the frequency of the phase rotation—and thus the period of changing the reference frame we change k and μk. Further- more, the chemical potential is defined only up to a global oscillations of the ac Josephson current—is independent of constant prescribed by the convention about the ground-state the choice for counting energy in a single equilibrium sample. energy per particle. In the nonrelativistic physics, the rest In the presence of disorder or external periodic potential, energy of a free particle is typically set to zero. The merely the system has a natural reference frame. The absence of conventional character of this choice results in a certain Galilean invariance in this case does not yet mean that the constraint on the protocols of measuring μ and the time- period of the space crystal (1) is not relative. One can, in prin- crystallization effect in superfluids, but does not exclude the ciple, design an experiment when this period is observed from effect itself. a moving frame, in which case Eqs. (2) and (3) still apply. However, in a counterflow superfluid with two components In their paper on the no-go theorem for equilibrium time γ crystals [7], Watanabe and Oshikawa argued that it is the having equal parameters , Galilean transformation (2)leaves above-discussed relativity of the chemical potential that rec- the phase field intact, onciles their theorem with Eq.
Recommended publications
  • Time Quasilattices in Dissipative Dynamical Systems Abstract Contents
    SciPost Phys. 5, 001 (2018) Time quasilattices in dissipative dynamical systems Felix Flicker1,2 1 Rudolph Peierls Centre for Theoretical Physics, University of Oxford, Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK 2 Department of Physics, University of California, Berkeley, California 94720 USA fl[email protected] Abstract We establish the existence of ‘time quasilattices’ as stable trajectories in dissipative dy- namical systems. These tilings of the time axis, with two unit cells of different durations, can be generated as cuts through a periodic lattice spanned by two orthogonal directions of time. We show that there are precisely two admissible time quasilattices, which we term the infinite Pell and Clapeyron words, reached by a generalization of the period- doubling cascade. Finite Pell and Clapeyron words of increasing length provide system- atic periodic approximations to time quasilattices which can be verified experimentally. The results apply to all systems featuring the universal sequence of periodic windows. We provide examples of discrete-time maps, and periodically-driven continuous-time dy- namical systems. We identify quantum many-body systems in which time quasilattices develop rigidity via the interaction of many degrees of freedom, thus constituting dissi- pative discrete ‘time quasicrystals’. Copyright F. Flicker. Received 30-10-2017 This work is licensed under the Creative Commons Accepted 15-06-2018 Check for Attribution 4.0 International License. Published 03-07-2018 updates Published
    [Show full text]
  • Arxiv:2005.03138V2 [Cond-Mat.Quant-Gas] 23 May 2020 Contents
    Condensed Matter Physics in Time Crystals Lingzhen Guo1 and Pengfei Liang2;3 1Max Planck Institute for the Science of Light (MPL), Staudtstrasse 2, 91058 Erlangen, Germany 2Beijing Computational Science Research Center, 100193 Beijing, China 3Abdus Salam ICTP, Strada Costiera 11, I-34151 Trieste, Italy E-mail: [email protected] Abstract. Time crystals are physical systems whose time translation symmetry is spontaneously broken. Although the spontaneous breaking of continuous time- translation symmetry in static systems is proved impossible for the equilibrium state, the discrete time-translation symmetry in periodically driven (Floquet) systems is allowed to be spontaneously broken, resulting in the so-called Floquet or discrete time crystals. While most works so far searching for time crystals focus on the symmetry breaking process and the possible stabilising mechanisms, the many-body physics from the interplay of symmetry-broken states, which we call the condensed matter physics in time crystals, is not fully explored yet. This review aims to summarise the very preliminary results in this new research field with an analogous structure of condensed matter theory in solids. The whole theory is built on a hidden symmetry in time crystals, i.e., the phase space lattice symmetry, which allows us to develop the band theory, topology and strongly correlated models in phase space lattice. In the end, we outline the possible topics and directions for the future research. arXiv:2005.03138v2 [cond-mat.quant-gas] 23 May 2020 Contents 1 Brief introduction to time crystals3 1.1 Wilczek's time crystal . .3 1.2 No-go theorem . .3 1.3 Discrete time-translation symmetry breaking .
    [Show full text]
  • Creating Big Time Crystals with Ultracold Atoms
    New J. Phys. 22 (2020) 085004 https://doi.org/10.1088/1367-2630/aba3e6 PAPER Creating big time crystals with ultracold atoms OPEN ACCESS Krzysztof Giergiel1,TienTran2, Ali Zaheer2,ArpanaSingh2,AndreiSidorov2,Krzysztof RECEIVED 1 2 1 April 2020 Sacha and Peter Hannaford 1 Instytut Fizyki Teoretycznej, Universytet Jagiellonski, ulica Profesora Stanislawa Lojasiewicza 11, PL-30-348 Krakow, Poland REVISED 2 23 June 2020 Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia ACCEPTED FOR PUBLICATION E-mail: [email protected] and [email protected] 8 July 2020 PUBLISHED Keywords: time crystals, Bose–Einstein condensate, ultracold atoms 17 August 2020 Original content from Abstract this work may be used under the terms of the We investigate the size of discrete time crystals s (ratio of response period to driving period) that Creative Commons Attribution 4.0 licence. can be created for a Bose–Einstein condensate (BEC) bouncing resonantly on an oscillating Any further distribution mirror. We find that time crystals can be created with sizes in the range s ≈ 20–100 and that such of this work must maintain attribution to big time crystals are easier to realize experimentally than a period-doubling (s=2) time crystal the author(s) and the because they require either a larger drop height or a smaller number of bounces on the mirror. We title of the work, journal citation and DOI. also investigate the effects of having a realistic soft Gaussian potential mirror for the bouncing BEC, such as that produced by a repulsive light-sheet, which is found to make the experiment easier to implement than a hard-wall potential mirror.
    [Show full text]
  • Application of the Josephson Effect to Voltage Metrology
    Application of the Josephson Effect to Voltage Metrology SAMUEL P. BENZ, SENIOR MEMBER, IEEE, AND CLARK A. HAMILTON, FELLOW, IEEE Invited Paper The unique ability of a Josephson junction to control the flow of worldwide set of units that is uniform and coherent. The am- magnetic flux quanta leads to a perfect relationship between fre- pere is the only electrical unit belonging to the seven base quency and voltage. Over the last 30 years, metrology laboratories units of the SI. The ampere is defined as “that constant cur- have used this effect to greatly improve the accuracy of dc voltage standards. More recent research is focused on combining the ideas rent which, if maintained in two parallel straight conduc- of digital signal processing with quantum voltage pulses to achieve tors of infinite length, of negligible circular cross section, similar gains in ac voltage metrology. The integrated circuits that and placed 1 meter apart in vacuum, would produce between implement these ideas are the only complex superconducting elec- these conductors a force equal to 2 10 newtons per meter tronic devices that have found wide commercial application. of length.” Keywords—Digital–analog conversion, Josephson arrays, quan- The volt, which is not a base unit, is defined through tization, standards. coherency of electrical power (current times voltage) and mechanical power (force times distance divided by time): I. INTRODUCTION “The volt is that electromotive force between two points on a conductor carrying a constant current of 1 ampere when In 1962, B. Josephson, a graduate student at Cambridge the power dissipated between the two points is 1 watt.” University, Cambridge, U.K., derived equations for the cur- Realization of the SI volt, therefore, depends on experiments rent and voltage across a junction consisting of two super- that relate the ampere and the volt to the mechanical units of conductors separated by a thin insulating barrier [1].
    [Show full text]
  • Monte Carlo Simulation Study of 1D Josephson Junction Arrays
    Monte Carlo Simulation Study of 1D Josephson Junction Arrays OLIVER NIKOLIC Master Thesis Stockholm, Sweden 2016 Typeset in LATEX TRITA-FYS 2016:78 ISSN 0280-316X ISRN KTH/FYS/-16:78-SE Scientific thesis for the degree of Master of Engineering in the subject of theoretical physics. © Oliver Nikolic, December 2016 Printed in Sweden by Universitetsservice US AB iii Abstract The focus in this thesis is on small scale 1D Josephson junction arrays in the quantum regime where the charging energy is comparable to the Joseph- son energy. Starting from the general Bose-Hubbard model for interacting Cooper pairs on a 1D lattice the problem is mapped through a path integral transformation to a classical statistical mechanical (1+1)D model of diver- gence free space-time currents which is suitable for numerical simulations. This model is studied using periodic boundary conditions, in the absence of external current sources and in a statistical canonical ensemble. It is explained how Monte Carlo simulations of this model can be constructed based on the worm algorithm with efficiency comparable to the best cluster algorithms. A description of how the effective energy Ek, voltage Vk and inverse capacitance −1 Ck associated with an externally imposed charge displacement k can be ex- tracted from simulations is presented. Furthermore, the effect of inducing charge by connecting an external voltage source to one island in the chain via the ground capacitance is investigated. Simulation results display periodic −1 response functions Ek, Vk and Ck as the charge displacement is varied. The shape of these functions are largely influenced by the system parameters and evolves from sinusoidal with exponentially small amplitude deep inside the superconducting regime towards more intriguing shapes closer to the insulat- ing regime where interactions among quantum phase slips are present.
    [Show full text]
  • Arxiv:2007.08348V3
    Dynamical transitions and critical behavior between discrete time crystal phases 1 1,2, Xiaoqin Yang and Zi Cai ∗ 1Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China In equilibrium physics, spontaneous symmetry breaking and elementary excitation are two con- cepts closely related with each other: the symmetry and its spontaneous breaking not only control the dynamics and spectrum of elementary excitations, but also determine their underlying struc- tures. In this paper, based on an exactly solvable model, we propose a phase ramping protocol to study an excitation-like behavior of a non-equilibrium quantum matter: a discrete time crystal phase with spontaneous temporal translational symmetry breaking. It is shown that slow ramp- ing could induce a dynamical transition between two Z2 symmetry breaking time crystal phases in time domain, which can be considered as a temporal analogue of the soliton excitation spacially sandwiched by two degenerate charge density wave states in polyacetylene. By tuning the ramping rate, we observe a critical value at which point the transition duration diverges, resembling the critical slowing down phenomenon in nonequilibrium statistic physics. We also discuss the effect of stochastic sequences of such phase ramping processes and its implication to the stability of the discrete time crystal phase against noisy perturbations. Usually, the ground state energy of an equilibrium sys- question is how to generalize such an idea into the non- tem does not have much to do with its observable behav- equilibirum quantum matters with intriguing SSB absent ior.
    [Show full text]
  • Time-Domain Grating with a Periodically Driven Qutrit
    PHYSICAL REVIEW APPLIED 11, 014053 (2019) Time-Domain Grating with a Periodically Driven Qutrit Yingying Han,1,2,3,§ Xiao-Qing Luo,2,3,§ Tie-Fu Li,4,2,* Wenxian Zhang,1,† Shuai-Peng Wang,2 J.S. Tsai,5,6 Franco Nori,5,7 and J.Q. You3,2,‡ 1 School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China 2 Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China 3 Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China 4 Institute of Microelectronics, Department of Microelectronics and Nanoelectronics, and Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing 100084, China 5 Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan 6 Department of Physic, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan 7 Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA (Received 23 October 2018; revised manuscript received 3 December 2018; published 28 January 2019) Physical systems in the time domain may exhibit analogous phenomena in real space, such as time crystals, time-domain Fresnel lenses, and modulational interference in a qubit. Here, we report the experi- mental realization of time-domain grating using a superconducting qutrit in periodically modulated probe and control fields via two schemes: simultaneous modulation and complementary modulation. Both exper- imental and numerical results exhibit modulated Autler-Townes (AT) and modulation-induced diffraction (MID) effects.
    [Show full text]
  • Transition from Phase Slips to the Josephson Effect in a Superfluid 4He Weak Link
    1 Transition from phase slips to the Josephson effect in a superfluid 4He weak link E. Hoskinson1, Y. Sato1, I. Hahn2 and R. E. Packard1 1Department of Physics, University of California, Berkeley, CA, 94720, USA. 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA The rich dynamics of flow between two weakly coupled macroscopic quantum reservoirs has led to a range of important technologies. Practical development has so far been limited to superconducting systems, for which the basic building block is the so-called superconducting Josephson weak link1. With the recent observation of quantum oscillations2 in superfluid 4He near 2K, we can now envision analogous practical superfluid helium devices. The characteristic function which determines the dynamics of such systems is the current-phase relation I s (ϕ) , which gives the relationship between the superfluid current I s flowing through a weak link and the quantum phase difference ϕ across it. Here we report the measurement of the current-phase relation of a superfluid 4He weak link formed by an array of nano- apertures separating two reservoirs of superfluid 4He. As we vary the coupling strength between the two reservoirs, we observe a transition from a strongly coupled regime in which I s (ϕ) is linear and flow is limited by 2π phase slips, to a weak coupling regime where I s (ϕ) becomes the sinusoidal signature of a Josephson weak link. The dynamics of flow between two weakly coupled macroscopic quantum reservoirs can be highly counterintuitive. In both superconductors and superfluids, 2 currents will oscillate through a constriction (weak link) between two reservoirs in response to a static driving force which, in a classical system, would simply yield flow in one direction.
    [Show full text]
  • Josephson Tunneling at the Atomic Scale: the Josephson EEct As a Local Probe
    Josephson Tunneling at the Atomic Scale: The Josephson Eect as a Local Probe THIS IS A TEMPORARY TITLE PAGE It will be replaced for the nal print by a version provided by the service academique. Thèse n. 6750 2015 présentée le 22 juillet 2015 à la Faculté des Sciences des Bases Laboratoire á l'Echelle Nanométrique Programme Doctoral en Physique École Polytechnique Fédérale de Lausanne pour l'obtention du grade de Docteur des Sciences par Berthold Jäck acceptée sur proposition du jury: Prof. Andreas Pautz, président du jury Prof. Klaus Kern, directeur de thèse Prof. Davor Pavuna, rapporteur Prof. Hermann Suderow, rapporteur Dr. Fabien Portier, rapporteur Lausanne, EPFL, 2015 Non est ad astra mollis e terris via — Lucius Annaeus Seneca Acknowledgements It took me about three and a half years, with many ups and downs, to complete this thesis. At this point, I want to say thank you to all the people that supported me on my way by any means. First of all, I am grateful to Prof. Klaus Kern for giving me the opportunity to perform my doctoral studies under his supervision at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany. For the entire time of my studies, I enjoyed a significant scientific freedom, such that I had the great possibility to pursue and realize my own ideas. In particular, I want to acknowledge his personal support, which allowed me to attend conferences, workshops and schools, have interesting scientific discussions as well as a wonderful time in the whole of Europe and across the USA.
    [Show full text]
  • Magnetic Manipulation of Polymeric Nanostructures
    Magnetic Manipulation of Polymeric Nanostructures R.S.M. Rikken 1,2, H. Engelkamp 1, R.J.M. Nolte 2, J.C. Maan 1, J.C.M. van Hest 2, D.A. Wilson 2, P.C.M. Christianen 1* 1 High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands 2 Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands *corresponding author: [email protected] Polymersomes are bilayer vesicles self-assembled from amphiphilic block copolymers. They are ideal and versatile nano-objects since they have many adjustable properties such as their flexibility, permeability and functionality, which can be used as nano-containers and nanomotors for nanochemistry and drug delivery [1, 2]. We have recently developed a polymersome system using poly(ethylene glycol)-polystyrene (PEG-PS) block copolymers. PEG-PS polymersomes have the advantage that their flexibility can be controlled by the contents of organic solvents like THF and dioxane, which act as a plasticizer on the polystyrene membrane. It also allows flexible polymersomes to be fixated by adding an excess of water. For many applications, the shape of a polymersome is very important since shape and functionality are closely related. In this talk an overview will be given of our efforts to control the shape of polymersomes by application of osmotic and/or magnetic forces. It will be shown that high magnetic fields can be used in two different ways: either to probe the polymersome shape using magnetic alignment or to modify the shape by magnetic deformation. We have investigated two different methods in which an osmotic pressure is used to change the polymersome shape.
    [Show full text]
  • Surprising New States of Matter Called Time Crystals Show the Same Symmetry Properties in Time That Ordinary Crystals Do in Space by Frank Wilczek
    PHYSICS CRYSTAL S IN TIME Surprising new states of matter called time crystals show the same symmetry properties in time that ordinary crystals do in space By Frank Wilczek Illustration by Mark Ross Studio 28 Scientific American, November 2019 © 2019 Scientific American November 2019, ScientificAmerican.com 29 © 2019 Scientific American Frank Wilczek is a theoretical physicist at the Massachusetts Institute of Technology. He won the 2004 Nobel Prize in Physics for his work on the theory of the strong force, and in 2012 he proposed the concept of time crystals. CRYSTAL S are nature’s most orderly suBstances. InsIde them, atoms and molecules are arranged in regular, repeating structures, giving rise to solids that are stable and rigid—and often beautiful to behold. People have found crystals fascinating and attractive since before the dawn of modern science, often prizing them as jewels. In the 19th century scientists’ quest to classify forms of crystals and understand their effect on light catalyzed important progress in mathematics and physics. Then, in the 20th century, study of the fundamental quantum mechanics of elec- trons in crystals led directly to modern semiconductor electronics and eventually to smart- phones and the Internet. The next step in our understanding of crystals is oc- These examples show that the mathematical concept IN BRIEF curring now, thanks to a principle that arose from Al- of symmetry captures an essential aspect of its com- bert Einstein’s relativity theory: space and time are in- mon meaning while adding the virtue of precision. Crystals are orderly timately connected and ultimately on the same footing.
    [Show full text]
  • Zero-Point Fluctuations in Rotation: Perpetuum Mobile of the Fourth Kind Without Energy Transfer M
    Zero-point fluctuations in rotation: Perpetuum mobile of the fourth kind without energy transfer M. N. Chernodub To cite this version: M. N. Chernodub. Zero-point fluctuations in rotation: Perpetuum mobile of the fourth kind without energy transfer. Mathematical Structures in Quantum Systems and pplications, Jun 2012, Benasque, Spain. 10.1393/ncc/i2013-11523-5. hal-01100378 HAL Id: hal-01100378 https://hal.archives-ouvertes.fr/hal-01100378 Submitted on 9 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Zero-point fluctuations in rotation: Perpetuum mobile of the fourth kind without energy transfer∗ M. N. Chernoduby CNRS, Laboratoire de Math´ematiqueset Physique Th´eorique,Universit´eFran¸cois-Rabelais Tours, F´ed´eration Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium In this talk we discuss a simple Casimir-type device for which the rotational energy reaches its global minimum when the device rotates about a certain axis rather than remains static. This unusual property is a direct consequence of the fact that the moment of inertia of zero-point vacuum fluctuations is a negative quantity (the rotational vacuum effect).
    [Show full text]