Surprising New States of Matter Called Time Crystals Show the Same Symmetry Properties in Time That Ordinary Crystals Do in Space by Frank Wilczek

Total Page:16

File Type:pdf, Size:1020Kb

Surprising New States of Matter Called Time Crystals Show the Same Symmetry Properties in Time That Ordinary Crystals Do in Space by Frank Wilczek PHYSICS CRYSTAL S IN TIME Surprising new states of matter called time crystals show the same symmetry properties in time that ordinary crystals do in space By Frank Wilczek Illustration by Mark Ross Studio 28 Scientific American, November 2019 © 2019 Scientific American November 2019, ScientificAmerican.com 29 © 2019 Scientific American Frank Wilczek is a theoretical physicist at the Massachusetts Institute of Technology. He won the 2004 Nobel Prize in Physics for his work on the theory of the strong force, and in 2012 he proposed the concept of time crystals. CRYSTAL S are nature’s most orderly suBstances. InsIde them, atoms and molecules are arranged in regular, repeating structures, giving rise to solids that are stable and rigid—and often beautiful to behold. People have found crystals fascinating and attractive since before the dawn of modern science, often prizing them as jewels. In the 19th century scientists’ quest to classify forms of crystals and understand their effect on light catalyzed important progress in mathematics and physics. Then, in the 20th century, study of the fundamental quantum mechanics of elec- trons in crystals led directly to modern semiconductor electronics and eventually to smart- phones and the Internet. The next step in our understanding of crystals is oc- These examples show that the mathematical concept IN BRIEF curring now, thanks to a principle that arose from Al- of symmetry captures an essential aspect of its com- bert Einstein’s relativity theory: space and time are in- mon meaning while adding the virtue of precision. Crystals are orderly timately connected and ultimately on the same footing. states of matter in which the arrange- Thus, it is natural to wonder whether any objects dis- Rotational Symmetry ments of atoms take play properties in time that are analogous to the prop- on repeating pat- erties of ordinary crystals in space. In exploring that terns. In the language question, we discovered “time crystals.” This new con- of physics, they are cept, along with the growing class of novel materials said to have “sponta- that fit within it, has led to exciting insights about neously broken physics, as well as the potential for novel applications, spatial symmetry.” including clocks more accurate than any that exist now. Time crystals, a newer concept, Perfect symmetry Partial symmetry are states of matter SYMMETRY whose patterns Before I fully explaIn this new idea, I must clarify repeat at set intervals what, exactly, a crystal is. The most fruitful answer for A second virtue of this concept of symmetry is that of time rather than scientific purposes brings in two profound concepts: it can be generalized. We can adapt the idea so that it space. They are sys- symmetry and spontaneous symmetry breaking. applies not just to shapes but more widely to physical tems in which time In common usage, “symmetry” very broadly indi- laws. We say a law has symmetry if we can change the symmetry is sponta- neously broken. cates balance, harmony or even justice. In physics and context in which the law is applied without changing The notion of time mathematics, the meaning is more precise. We say the law itself. For example, the basic axiom of special crystals was first pro- that an object is symmetric or has symmetry if there relativity is that the same physical laws apply when posed in 2012, and are transformations that could change it but do not. we view the world from different platforms that move in 2017 scientists dis- That definition might seem strange and abstract at at constant velocities relative to one another. Thus, covered the first new first, so let us focus on a simple example: Consider a relativity demands that physical laws display a kind of materials that fully fit circle. When we rotate a circle around its center, through symmetry—namely, symmetry under the platform- this category. These any angle, it remains visually the same, even though changing transformations that physicists call “boosts.” and others that fol- lowed offer promise every point on it may have moved—it has perfect rota- A different class of transformations is important for the creation of tional symmetry. A square has some symmetry but less for crystals, including time crystals. They are the very clocks more accurate than a circle because you must rotate a square through simple yet profoundly important transformations than ever before. a full 90 degrees before it regains its initial appearance. known as “translations.” Whereas relativity says the 30 Scientific American, November 2019 Illustrations by Jen Christiansen © 2019 Scientific American same laws apply for observers on moving platforms, Physicists say that in a crystal the translation sym- spatial translation symmetry says the same laws apply metry of the fundamental laws is “broken,” leading to for observers on platforms in different places. If you a lesser translation symmetry. That remaining sym- move—or “translate”—your laboratory from one place metry conveys the essence of our crystal. Indeed, if we to another, you will find that the same laws hold in the know that a crystal’s symmetry involves translations new place. Spatial translation symmetry, in other through multiples of the distance d, then we know words, asserts that the laws we discover anywhere ap - where to place its atoms relative to one another. ply everywhere. Crystalline patterns in two and three dimensions Time translation symmetry expresses a similar can be more complicated, and they come in many va- idea but for time instead of space. It says the same rieties. They can display partial rotational and partial laws we operate under now also apply for observers translational symmetry. The 14th-century artists who in the past or in the future. In other words, the laws decorated the Alhambra palace in Granada, Spain, we discover at any time apply at every time. In view of discovered many possible forms of two-dimensional its basic importance, time translation symmetry de- crystals by intuition and experimentation, and mathe- serves to have a less forbidding name, with fewer than maticians in the 19th century classified the possible seven syllables. Here I will call it tau, denoted by the forms of three-dimensional crystals. Greek symbol τ. Without space and time translation symmetry, ex- Comple Crystalline Pattern xamples periments carried out in different places and at differ- ent times would not be reproducible. In their everyday work, scientists take those symmetries for granted. In- deed, science as we know it would be impossible with- out them. But it is important to emphasize that we can test space and time translation symmetry empirically. Specifically, we can observe behavior in distant astro- nomical objects. Such objects are situated, obviously, in different places, and thanks to the finite speed of light we can observe in the present how they behaved in the past. Astronomers have determined, in great detail and with high accuracy, that the same laws do in fact apply. SYMMETRY BREAKING for all theIr aesthetIc symmetry, it is actually the way Two dimensions (from the Alhambra palace) Three dimensions (diamond crystal structure) crystals lack symmetry that is, for physicists, their de- fining characteristic. In the summer of 2011 I was preparing to teach this Consider a drastically idealized crystal. It will be elegant chapter of mathematics as part of a course on one-dimensional, and its atomic nuclei will be located the uses of symmetry in physics. I always try to take a at regular intervals along a line, separated by the dis- fresh look at material I will be teaching and, if possi- tance d. (Their coordinates therefore will be nd, where ble, add something new. It occurred to me then that n is a whole number.) If we translate this crystal to the one could extend the classification of possible crystal- right by a tiny distance, it will not look like the same line patterns in three-dimensional space to crystalline object. Only after we translate through the specific patterns in four-dimensional spacetime. distance d will we see the same crystal. Thus, our ide- When I mentioned this mathematical line of inves- alized crystal has a reduced degree of spatial transla- tigation to Alfred Shapere, my former student turned tion symmetry, similarly to how a square has a re- valued colleague, who is now at the University of Ken- duced degree of rotation symmetry. tucky, he urged me to consider two very basic physical questions. They launched me on a surprising scientif- Translational Symmetry ic adventure: What real-world systems could crystals in space- time describe? Might these patterns lead us to identify distinctive Atomic nucleus states of matter? d The answer to the first question is fairly straight- forward. Whereas ordinary crystals are orderly ar- rangements of objects in space, spacetime crystals are orderly arrangements of events in spacetime. As we did for ordinary crystals, we can get our bearings by considering the one-dimensional case, in November 2019, ScientificAmerican.com 31 © 2019 Scientific American which spacetime crystals simplify to purely time crys- breaks spatial translation symmetry “spontaneously.” tals. We are looking, then, for systems whose overall An important feature of crystallization is a sharp state repeats itself at regular intervals. Such systems change in the system’s behavior or, in technical lan- are almost embarrassingly familiar. For example, guage, a sharp phase transition. Above a certain criti- Earth repeats its orientation in space at daily inter- cal temperature (which depends on the system’s vals, and the Earth-sun system repeats its configura- chemical composition and the ambient pressure), we tion at yearly intervals. Inventors and scientists have, have a liquid; below it we have a crystal—objects with over many decades, developed systems that repeat quite different properties.
Recommended publications
  • Application of the Josephson Effect to Voltage Metrology
    Application of the Josephson Effect to Voltage Metrology SAMUEL P. BENZ, SENIOR MEMBER, IEEE, AND CLARK A. HAMILTON, FELLOW, IEEE Invited Paper The unique ability of a Josephson junction to control the flow of worldwide set of units that is uniform and coherent. The am- magnetic flux quanta leads to a perfect relationship between fre- pere is the only electrical unit belonging to the seven base quency and voltage. Over the last 30 years, metrology laboratories units of the SI. The ampere is defined as “that constant cur- have used this effect to greatly improve the accuracy of dc voltage standards. More recent research is focused on combining the ideas rent which, if maintained in two parallel straight conduc- of digital signal processing with quantum voltage pulses to achieve tors of infinite length, of negligible circular cross section, similar gains in ac voltage metrology. The integrated circuits that and placed 1 meter apart in vacuum, would produce between implement these ideas are the only complex superconducting elec- these conductors a force equal to 2 10 newtons per meter tronic devices that have found wide commercial application. of length.” Keywords—Digital–analog conversion, Josephson arrays, quan- The volt, which is not a base unit, is defined through tization, standards. coherency of electrical power (current times voltage) and mechanical power (force times distance divided by time): I. INTRODUCTION “The volt is that electromotive force between two points on a conductor carrying a constant current of 1 ampere when In 1962, B. Josephson, a graduate student at Cambridge the power dissipated between the two points is 1 watt.” University, Cambridge, U.K., derived equations for the cur- Realization of the SI volt, therefore, depends on experiments rent and voltage across a junction consisting of two super- that relate the ampere and the volt to the mechanical units of conductors separated by a thin insulating barrier [1].
    [Show full text]
  • Christopher Monroe Joint Quantum Institute University of Maryland and NIST
    PEP Seminar Series Wednesday, September 10th, 2:30 PM, Babbio 210 Christopher Monroe Joint Quantum Institute University of Maryland and NIST Trapped atomic ions are among the most promising candidates for a future quantum information processor, with each ion storing a single quantum bit (qubit) of information. All of the fundamental quantum operations have been demonstrated on this system, and the central challenge now is how to scale the system to larger numbers of qubits. The conventional approach to forming entangled states of multiple trapped ion qubits is through the local Coulomb interaction accompanied by appropriate state-dependent optical forces. Recently, trapped ion qubits have been entangled through a photonic coupling, allowing qubit memories to be entangled over remote distances. This coupling may allow the generation of truly large-scale entangled quantum states, and also impact the development of quantum repeater circuits for the communication of quantum information over geographic distances. I will discuss several options and issues for such atomic quantum networks, along with state-of-the-art experimental progress. Chris Monroe obtained his PhD at the University of Colorado at Boulder in 1992 under Carl Weiman. He worked as a Postdoctoral Researcher at the National Institute of Standard and Technology at Boulder with David Wineland. He was a Professor at the University of Michigan at the Department of Physics (2003- 2007) and at the Department of Electrical Engineering and Computer Science (2006-2007). He was the Director of FOCUS Center (an NSF Physics Frontier Center) at Michigan (2006-2007). He is a fellow of APS, the Institute of Physics (UK), and also at Joint Quantum Institute at the University of Maryland.
    [Show full text]
  • Monte Carlo Simulation Study of 1D Josephson Junction Arrays
    Monte Carlo Simulation Study of 1D Josephson Junction Arrays OLIVER NIKOLIC Master Thesis Stockholm, Sweden 2016 Typeset in LATEX TRITA-FYS 2016:78 ISSN 0280-316X ISRN KTH/FYS/-16:78-SE Scientific thesis for the degree of Master of Engineering in the subject of theoretical physics. © Oliver Nikolic, December 2016 Printed in Sweden by Universitetsservice US AB iii Abstract The focus in this thesis is on small scale 1D Josephson junction arrays in the quantum regime where the charging energy is comparable to the Joseph- son energy. Starting from the general Bose-Hubbard model for interacting Cooper pairs on a 1D lattice the problem is mapped through a path integral transformation to a classical statistical mechanical (1+1)D model of diver- gence free space-time currents which is suitable for numerical simulations. This model is studied using periodic boundary conditions, in the absence of external current sources and in a statistical canonical ensemble. It is explained how Monte Carlo simulations of this model can be constructed based on the worm algorithm with efficiency comparable to the best cluster algorithms. A description of how the effective energy Ek, voltage Vk and inverse capacitance −1 Ck associated with an externally imposed charge displacement k can be ex- tracted from simulations is presented. Furthermore, the effect of inducing charge by connecting an external voltage source to one island in the chain via the ground capacitance is investigated. Simulation results display periodic −1 response functions Ek, Vk and Ck as the charge displacement is varied. The shape of these functions are largely influenced by the system parameters and evolves from sinusoidal with exponentially small amplitude deep inside the superconducting regime towards more intriguing shapes closer to the insulat- ing regime where interactions among quantum phase slips are present.
    [Show full text]
  • Christopher Monroe: Biosketch
    Christopher Monroe: Biosketch Christopher Monroe was born and raised outside of Detroit, MI, and graduated from MIT in 1987. He received his PhD in Physics at the University of Colorado, Boulder, studying with Carl Wieman and Eric Cornell. His work paved the way toward the achievement of Bose-Einstein condensation in 1995 and the Nobel Prize in Physics for Wieman and Cornell in 2001. From 1992-2000 he was a postdoc then staff physicist at the National Institute of Standards and Technology (NIST) in the group of David Wineland, leading the team that demonstrated the first quantum logic gate in any physical system. Based on this work, Wineland was awarded the Nobel Prize in Physics in 2012. In 2000, Monroe became Professor of Physics and Electrical Engineering at the University of Michigan, where he pioneered the use of single photons as a quantum conduit between isolated atoms and demonstrated the first atom trap integrated on a semiconductor chip. From 2006-2007 was the Director of the National Science Foundation Ultrafast Optics Center at the University of Michigan. In 2007 he became the Bice Zorn Professor of Physics at the University of Maryland (UMD) and a Fellow of the Joint Quantum Institute between UMD, NIST, and NSA. He is also a Fellow of the Center for Quantum Information and Computer Science at UMD, NIST, and NSA. His Maryland team was the first to teleport quantum information between matter separated by a large distance; they pioneered the use of ultrafast optical techniques for controlling atomic qubits and for quantum simulations of magnetism; and most recently demonstrated the first programmable and reconfigurable quantum computer.
    [Show full text]
  • Transition from Phase Slips to the Josephson Effect in a Superfluid 4He Weak Link
    1 Transition from phase slips to the Josephson effect in a superfluid 4He weak link E. Hoskinson1, Y. Sato1, I. Hahn2 and R. E. Packard1 1Department of Physics, University of California, Berkeley, CA, 94720, USA. 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA The rich dynamics of flow between two weakly coupled macroscopic quantum reservoirs has led to a range of important technologies. Practical development has so far been limited to superconducting systems, for which the basic building block is the so-called superconducting Josephson weak link1. With the recent observation of quantum oscillations2 in superfluid 4He near 2K, we can now envision analogous practical superfluid helium devices. The characteristic function which determines the dynamics of such systems is the current-phase relation I s (ϕ) , which gives the relationship between the superfluid current I s flowing through a weak link and the quantum phase difference ϕ across it. Here we report the measurement of the current-phase relation of a superfluid 4He weak link formed by an array of nano- apertures separating two reservoirs of superfluid 4He. As we vary the coupling strength between the two reservoirs, we observe a transition from a strongly coupled regime in which I s (ϕ) is linear and flow is limited by 2π phase slips, to a weak coupling regime where I s (ϕ) becomes the sinusoidal signature of a Josephson weak link. The dynamics of flow between two weakly coupled macroscopic quantum reservoirs can be highly counterintuitive. In both superconductors and superfluids, 2 currents will oscillate through a constriction (weak link) between two reservoirs in response to a static driving force which, in a classical system, would simply yield flow in one direction.
    [Show full text]
  • Josephson Tunneling at the Atomic Scale: the Josephson EEct As a Local Probe
    Josephson Tunneling at the Atomic Scale: The Josephson Eect as a Local Probe THIS IS A TEMPORARY TITLE PAGE It will be replaced for the nal print by a version provided by the service academique. Thèse n. 6750 2015 présentée le 22 juillet 2015 à la Faculté des Sciences des Bases Laboratoire á l'Echelle Nanométrique Programme Doctoral en Physique École Polytechnique Fédérale de Lausanne pour l'obtention du grade de Docteur des Sciences par Berthold Jäck acceptée sur proposition du jury: Prof. Andreas Pautz, président du jury Prof. Klaus Kern, directeur de thèse Prof. Davor Pavuna, rapporteur Prof. Hermann Suderow, rapporteur Dr. Fabien Portier, rapporteur Lausanne, EPFL, 2015 Non est ad astra mollis e terris via — Lucius Annaeus Seneca Acknowledgements It took me about three and a half years, with many ups and downs, to complete this thesis. At this point, I want to say thank you to all the people that supported me on my way by any means. First of all, I am grateful to Prof. Klaus Kern for giving me the opportunity to perform my doctoral studies under his supervision at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany. For the entire time of my studies, I enjoyed a significant scientific freedom, such that I had the great possibility to pursue and realize my own ideas. In particular, I want to acknowledge his personal support, which allowed me to attend conferences, workshops and schools, have interesting scientific discussions as well as a wonderful time in the whole of Europe and across the USA.
    [Show full text]
  • Steven Olmschenk Cv 2019
    STEVEN OLMSCHENK Denison University Email: [email protected] Department of Physics & Astronomy Office Phone: 740.587.8661 100 West College Street Website: denison.edu/iqo Granville, Ohio 43023 Education o University of Michigan, Ann Arbor, MI Ph.D. in Physics, Advisor: Professor Christopher Monroe (August 2009) Thesis: “Quantum Teleportation Between Distant Matter Qubits” M.S.E. in Electrical Engineering (August 2007) M.Sc. in Physics (December 2005) o University of Chicago, Chicago, IL B.A. in Physics with Specialization in Astrophysics, Advisor: Professor Mark Oreglia (June 2004) Thesis: “Searching for Bottom Squarks” B.S. in Mathematics (June 2004) Experience o Associate professor, Denison University August 2018 – Present {Assistant professor, August 2012 – August 2018} Courses taught include: General Physics II (Physics 122); Principles of Physics I: Quarks to Cosmos (Physics 125); Modern Physics (Physics 200); Electronics (Physics 211); and Introduction to Quantum Mechanics (Physics 330). Research focused on experimental atomic physics, quantum optics, and quantum information with trapped atomic ions. o Postdoctoral researcher: Ultracold atomic physics with optical lattices, Supervisors: Doctor James (Trey) V. Porto and Doctor William D. Phillips, National Institute of Standards and Technology July 2009 – July 2012 Ultracold atoms confined in an optical lattice to study strongly correlated many-body states and for applications in quantum information science. o Graduate research assistant: Trapped ion quantum computing, Advisor: Professor Christopher Monroe, University of Michigan/Maryland September 2004 – July 2009 Advancements in quantum information science accomplished through experimental study of individual atomic ions and photons. o Earlier research: High Energy Physics (B.A. thesis); Solar Physics (NSF REU); Radio Astronomy.
    [Show full text]
  • The Quantum Times
    TThhee QQuuaannttuumm TTiimmeess APS Topical Group on Quantum Information, Concepts, and Computation autumn 2007 Volume 2, Number 3 Science Without Borders: Quantum Information in Iran This year the first International Iran Conference on Quantum Information (IICQI) – see http://iicqi.sharif.ir/ – was held at Kish Island in Iran 7-10 September 2007. The conference was sponsored by Sharif University of Technology and its affiliate Kish University, which was the local host of the conference, the Institute for Studies in Theoretical Physics and Mathematics (IPM), Hi-Tech Industries Center, Center for International Collaboration, Kish Free Zone Organization (KFZO) and The Center of Excellence In Complex System and Condensed Matter (CSCM). The high level of support was instrumental in supporting numerous foreign participants (one-quarter of the 98 registrants) and also in keeping the costs down for Iranian participants, and having the conference held at Kish Island meant that people from around the world could come without visas. The low cost for Iranians was important in making the Inside… conference a success. In contrast to typical conferences in most …you’ll find statements from of the world, Iranian faculty members and students do not have the candidates running for various much if any grant funding for conferences and travel and posts within our topical group. I therefore paid all or most of their own costs from their own extend my thanks and appreciation personal money, which meant that a low-cost meeting was to the candidates, who were under essential to encourage a high level of participation. On the plus a time-crunch, and Charles Bennett side, the attendees were extraordinarily committed to learning, and the rest of the Nominating discussing, and presenting work far beyond what I am used to at Committee for arranging the slate typical conferences: many participants came to talks prepared of candidates and collecting their and knowledgeable about the speaker's work, and the poster statements for the newsletter.
    [Show full text]
  • Eltsov, VB AC Josephson Effect Between Two
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Autti, S.; Heikkinen, P. J.; Mäkinen, J. T.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B. AC Josephson effect between two superfluid time crystals Published in: Nature Materials DOI: 10.1038/s41563-020-0780-y Published: 01/02/2021 Document Version Peer reviewed version Please cite the original version: Autti, S., Heikkinen, P. J., Mäkinen, J. T., Volovik, G. E., Zavjalov, V. V., & Eltsov, V. B. (2021). AC Josephson effect between two superfluid time crystals. Nature Materials, 20(2), 171-174. https://doi.org/10.1038/s41563- 020-0780-y This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Powered by TCPDF (www.tcpdf.org) AC Josephson effect between two superfluid time crystals S. Autti1;2∗, P.J. Heikkinen1;3, J.T. M¨akinen1;4;5, G.E. Volovik1;6, V.V. Zavjalov1;2, and V.B. Eltsov1y 1Low Temperature Laboratory, Department of Applied Physics, Aalto University, POB 15100, FI-00076 AALTO, Finland. yvladimir.eltsov@aalto.fi 2Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. *[email protected] 3Department of Physics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
    [Show full text]
  • Quantum Computing
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11032–11033, September 1998 From the Academy This paper is a summary of a session presented at the Ninth Annual Frontiers of Science Symposium, held November 7–9, 1997, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. Quantum computing GILLES BRASSARD*†,ISAAC CHUANG‡,SETH LLOYD§, AND CHRISTOPHER MONROE¶ *De´partement d’informatique et de recherche ope´rationnelle, Universite´ de Montre´al, C.P. 6128, succursale centre-ville, Montre´al, QC H3C 3J7 Canada; ‡IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120; §Massachusetts Institute of Technology, Department of Mechanical Engineering, MIT 3-160, Cambridge, MA 02139; and ¶National Institute of Standards and Technology, Time and Frequency Division, 325 Broadway, Boulder, CO 80303 Quantum computation is the extension of classical computa- Quantum parallelism arises because a quantum operation tion to the processing of quantum information, using quantum acting on a superposition of inputs produces a superposition of systems such as individual atoms, molecules, or photons. It has outputs. For example, consider some function f and a quantum the potential to bring about a spectacular revolution in com- logic circuit U that computes it by mapping quantum register puter science. Current-day electronic computers are not fun- ux,0& to output ux, f(x)&. Let x and y be two distinct inputs, and damentally different from purely mechanical computers: the prepare the superposition (ux,0&1uy,0&)y=2. Applying U operation of either can be described completely in terms of produces (ux, f(x)&1uy, f(y)&)y=2: the value of function f is classical physics.
    [Show full text]
  • Lecture 10: Superconducting Devices Introduction
    Phys 769: Selected Topics in Condensed Matter Physics Summer 2010 Lecture 10: Superconducting devices Lecturer: Anthony J. Leggett TA: Bill Coish Introduction So far, we described only the superconducting ground state. Before proceeding to the main topic of this lecture, we need to say a little about the simplest excited states. For this purpose it is easier to use the original representation of BCS, in which the condition of particle number conservation is relaxed and the ground state has the form of a product of states referring to the occupation of the pair of states (k ↑, −k ↓): in obvious notation, 2 2 ΨBCS = Φk, Φk = uk |00i + vk |11i , |uk| + |vk| = 1 (1) Yk where |00i is the state in which neither k ↑ nor −k ↓ is occupied, |11i is that in which both are, and uk,vk are complex coefficients (though the usual convention is to take uk real). From the identification (lecture 9, Eq. (30)) of the Fourier-transformed wave function Fk with the “anomalous average” hN − 2| a−k↓ak↑ |Ni (which in the BCS representation becomes simply ha−k↓ak↑i we find ∗ Fk = ukvk. (2) In this representation we can associate a contribution to the kinetic and potential energy with each pair state (k ↑, −k ↓) separately (but must remember not to double-count). The contribution hV ik to the potential energy (excluding as usual the Hartree and Fock terms) is simply ∗ hV ik = −2∆kFk. (3) In the case of the kinetic energy, it is most convenient to calculate it relative to the value in the normal ground state (hnki = θ(kF − k)), which is 0 for ǫk > 0 and −2|ǫk| for ǫk < 0.
    [Show full text]
  • Mystery Solved of the Sawtooth Josephson Effect in Bismuth
    Journal Club for Condensed Matter Physics JCCM March 2018 01 http://www.condmatjclub.org Mystery solved of the sawtooth Josephson effect in bismuth 1. Ballistic edge states in bismuth nanowires revealed by SQUID interferometry Authors: A. Murani, A.Yu. Kasumov, S. Sengupta, Yu.A. Kasumov, V.T. Volkov, I.I. Khodos, F. Brisset, R. Delagrange, A. Chepelianskii, R. Deblock, H. Bouchiat, and S. Gu´eron Nature Communications 8, 15941 (2017) 2. Higher-order topology in bismuth Authors: F. Schindler, Z. Wang, M.G. Vergniory, A.M. Cook, A. Murani, S. Sengupta, A.Yu. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Gu´eron,A. Yazdani, B.A. Bernevig, and T. Neupert arXiv:1802.02585 Recommended with a Commentary by Carlo Beenakker, Instituut-Lorentz, Leiden University A challenging theoretical problem from the 1960's was to calculate the supercurrent through a clean Josephson junction of length L long compared to the superconducting co- herence length ξ. The calculation is complicated because every other energy level in the junction contributes with opposite sign to the supercurrent, and the resulting alternating series has to be summed with great accuracy to finally arrive at the correct answer: A piece- wise linear dependence of the supercurrent I on the phase difference φ, distinct from the sinusoidal dependence in a short junction. The linearity can be understood by noting that the regime L > ξ calls for a local relation between the current density and the gradient φ/L of the phase. Because I must be a 2π-periodic function of φ, the linear rise I / φ/L is interrupted by a jump when φ = ±π, resulting in a sawtooth current-phase relationship.
    [Show full text]