Identification of Shared Phosphopeptide Tumor Targets in Colorectal Cancer for Novel Off-The-Shelf Vaccine Development Paisley T

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Shared Phosphopeptide Tumor Targets in Colorectal Cancer for Novel Off-The-Shelf Vaccine Development Paisley T Identification of Shared Phosphopeptide Tumor Targets in Colorectal Cancer for Novel Off-the-shelf Vaccine Development Paisley T. Myers1, Erin D. Jeffery1, Benjamin Morin1, Christine Brittsan1, Bishnu Joshi1, Antoine Tanne1, Karen Smith1, Albert Hurwitz1, Kara L. Cummings2, Amanda M. Lulu2, Daniel Levey1, Linh Mach1, Mark Findeis1, Victor H. Engelhard2, Jeffrey Shabanowitz3, Donald F. Hunt3, Arthur A. Hurwitz4, Robert Stein1, Alex Duncan1, Dennis Underwood1 1. Agenus Inc., Lexington, MA 02421, USA, 2. Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22901, USA, 3. Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA, 4. AgenTus Therapeutics, Inc., Lexington, MA, 02421, USA INTRODUCTION PHOSPHOLIGANDOME ANALYSIS OF CRC PATIENT TISSUES Immunoaffinity Lysis Purification Phosphopeptide Length Phosphorylated Site Phosphorylated Residue The high mortality rate of colorectal cancer (CRC) reflects STAGE Tip Sample Resected CRC Tissue Cleanup pTyr (27 Patients) 300 400 limitations of current treatment modalities aimed at targeting the 1% 350 250 pThr disease. Immunotherapy is a promising alternative to traditional 9% Normal 300 200 chemotherapy, yet its benefit has been limited to patients with high 250 mutational burden. 150 200 # PTTs 0.5 g tissue or 500 million # PTTs Tumor 150 cell equivalents 100 Phosphopeptide Tumor Targets (PTTs) represent a novel class 100 pSer 90% 50 of neoantigens which arise from dysregulated cellular signaling, 50 0 0 are presented by HLA class I molecules, and are recognized as 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 IMAC Phosphopeptide HPLC-ESI-MS/MS Analysis and Number of Residues Position antigenic by circulating cytotoxic T cells. Furthermore, the shared Biological Characterization of T Cell Tissue Comparison Manual Validation Enrichment nature of PTTs among CRC patients illustrates their role as Responses Normal Tumor excellent targets for the development of novel immunotherapeutics. • HLA-presented phosphopeptides are typically 9- to 11-mers with a phosphorylated serine In this study, we analyze the phospholigandome profiles of residue in positions 4-6 of the peptide sequence IFNγ CD107a 27 CRC patient tissues and identify over 500 unique PTTs. TNFα IL-2 10-200 phosphopeptides/sample • Phosphorylation can enhance binding to HLA molecules: Peptides phosphorylated on a <1-100 copies/cell Through stringent selection criteria, we select 30 highly- serine residue in position 4 bind 10x stronger to HLA-A*0201 than their unmodified prevalent, HLA-restricted targets for inclusion in a CRC PTT- • Robust enrichment methodology coupled to highly-sensitive mass spectrometric counterpart based vaccine. instrumentation • A phosphate group on positions 4-6 is oriented upwards and solvent exposed, available for • Workflow allows for routine identification of low-level phosphopeptides from CRC patient interaction with a TCR tumor tissues PHOSPHOPEPTIDE TUMOR TARGETS Arc Segment = CRC Chord = individual Chord Width = phosphopeptide Phosphopeptide Tumor Targets are a novel class of neoantigens for Allelic Distribution Patient PTT Variation • PTTs are assigned to patient sample phosphopeptide abundance in specific sample immunotherapeutic development 160 # PTTs │ # CRC Tissues 70 Patient HLA haplotypes 60 Sample Frequency: Frequency: Frequency: 50 through predictive White – 45.6% White – 18.1% White – 21.5% 141│11 Black – 22.3% 1) Cancer-specific dysregulation of 40 HLA-A*02 Black – 15.8% HLA-B*07 HLA-C*07 3) Aberrant 140 30 algorithms and binding Hispanic – 37.1% Black – 18.1% kinase/phosphatase activity leads to PTTS# Hispanic – 13.2% Hispanic – 24.2% phosphopeptides are 20 assays Asian – 18.1% aberrant phosphorylation of self proteins 10 Asian – 33.3% presented at the cell surface 0 ATP 120 ADP HLA-A*02 HLA-B*07 HLA-C*07 • 42/49 alleles Phosphorylation (Kinase) represented present 2) Aberrantly 100 phosphorylated proteins PTTs enter HLA class I 80 78│2 processing pathway 72│12 • PTT presentation varies # PTTs Protein P Protein among alleles and 60 patients 46│4 40 36│14 • HLA-B*07 is Dephosphorylation 31│1 28│5 consistently a strong 25│2 25│1 (Phosphatase) 24│8 23│2 20│1 • Chord diagrams illustrate the connectivity of the phospholigandome among patients 19│7 P 20 │1 presenter of PTTs 16│2 16│8 14│2 13 13│3 11│6 10│2 10│2 9│1 9│1 7│2 7│1 6│1 6│5 5│6 4│1 4│1 4│1 3│1 3│1 3│3 3│2 2│4 2│7 2│2 2│1 2│1 • Many CRC-associated PTTs are common to allele-matched patients within the indication 1│1 1│1 • Present due to dysregulated cell signaling pathways associated with 0 malignant transformation HLA-A HLA-B HLA-C • The shared nature of PTTs allows for development of an off-the-shelf immunotherapeutic for CRC with pan-indication potential • Shared among individuals within and across indications • Recognized by the immune system as antigenic and elicit memory immune responses in healthy individuals PHOSPHOSYNVAX-CRC: PRODUCT DEVELOPMENT Phosphopeptide Identification Target Selection Therapeutic Benefit 6 HLA-A, 14 HLA-B, 10 HLA-C PTTs selected for PSV-CRC AGENUS’ VACCINE PLATFORM Indication CRC Age (Years) Median 66 27 CRC patient Patient Tissues 27 Range 45-87 Haplotype A*02 B*07 C*07 tumors analyzed HLA % CRC Patients HLA % CRC Patients # Patients % Patients # Patients % Patients PTT PTT Type (Allele-Matched) Type (Allele-Matched) % US Agenus’ versatile synthetic vaccine platform delivers robust immune responses Gender Male 12 44% Tissue Type Primary 25 93% 43% 13% 36% Female 9 33% Metastatic 2 7% Population Unknown 6 22% A*02 PTT 1 50-80% B*07 PTT 16 50-80% Recombinant # PTTs in Synthetic peptides A*02 PTT 2 50-80% B*07 PTT 17 50-80% 6 14 10 heat shock protein 70 > 500 MSI Status MSI-H 6 22% Grade High 4 15% PSV-CRC containing T cell MSI-L 1 4% Low 17 63% A*02 PTT 3 14-30% B*07 PTT 18 30-50% (Hsc70) phosphopeptides MSS 10 37% Unknown 6 22% epitopes A*02 PTT 4 14-30% B*07 PTT 19 50-80% % Patients with identified Unknown 10 37% ~85% ~100% ~100% A*02 PTT 5 14-30% B*07 PTT 20 30-50% ≥1 PTT A*02 PTT 6 14-30% C*07 PTT 21 >80% Avg # Peptides / B*07 PTT 7 >80% C*07 PTT 22 >80% Patient with ≥1 2.7 9.2 6.3 ✓ Reflect frequently occurring HLA types (A*02, B*07, C*07) PTT Powerful backbone Novel targets allow for B*07 PTT 8 >80% C*07 PTT 23 50-80% Hsc70-peptide Selection criteria- B*07 PTT 9 >80% C*07 PTT 24 >80% enables optimal peptide personalized and off- based filtering ✓ Prevalence in allele-matched patients complexes B*07 PTT 10 >80% C*07 PTT 25 50-80% delivery the-shelf therapies B*07 PTT 11 50-80% C*07 PTT 26 >80% ✓ Relevance of source protein to malignant transformation B*07 PTT 12 50-80% C*07 PTT 27 >80% QS-21 Stimulon® B*07 PTT 13 50-80% C*07 PTT 28 50-80% • ~70% of US/EU patients are eligible for vaccine based on HLA haplotype 30 specific ✓ Presence in other indications of interest B*07 PTT 14 50-80% C*07 PTT 29 50-80% molecular targets B*07 PTT 15 50-80% C*07 PTT 30 30-50% • 100% of eligible CRC patients’ tumors express ≥ 1 PTT Synthetic Vaccine for PSV-CRC ✓ Expression in tumor vs. normal tissues • >70% of tested PTTs are memory targets % CRC Patients AutoSynVax™: on-demand, defined by 0% 100% • CRC tumors express on average 7-10 PTTs ✓ Memory T cell responses in healthy individuals • 80% of PTTs are presented by ≥50% of allele- tumor NGS, targets patient-specific matched CRC patients Proprietary adjuvant induces neoantigens strong antibody and cell- PhosphoSynVax™: pre-manufactured, • 100% of PTTs are present in other cancers mediated immune responses targets shared phosphorylated epitopes AutoSynVax (ASV™) PhosphoSynVax (PSV™) CLINICAL OPPORTUNITY CONCLUSIONS Phosphopeptide 2 0 0 0 WT Peptide ) ) ) PBS 3 PBS 3 3 Peptides + QS21 m Hsc70-peptides + QS21 • Neoantigen vaccine comprised of 30 cancer-specific phosphopeptide tumor The development of a novel PTT-based vaccine for CRC may improve m 1 5 0 0 Peptides ( Hsc70-peptides e targets prioritized based on: m Product efficacy outcomes compared to standard-of-care treatments. u 1 0 0 0 Hsc70-peptides + QS21 l o v r ➢ Prevalence among patients within CRC o Phospholigandome analysis of a diverse subset of CRC patient tumors 5 0 0 y+ spots/11M splctes spots/11M y+ m - u Tumor Volume (mm Volume Tumor Tumor Volume (mm Volume Tumor ➢ Relevance of source protein to malignant transformation T IFN allowed for selection of novel targets for immunotherapeutic development. 0 0 5 1 0 1 5 2 0 2 5 3 0 ➢ Recognition by memory T cells from healthy individuals – validation of The inclusion of highly-prevalent, multiple allele-associated epitopes from D a y s p o s t t u m o r i n j e c t i o n Days Post Tumor Injection Days Post Tumor Injection safety diverse source proteins expands the eligible patient population and • Agenus proprietary vaccine format – clinical safety and immunogenicity • Experiments conducted in animal models illustrate that all three components increases the likelihood of stimulating an effective anti-tumor immune demonstrated in a viral indication are critical for anti-tumor effect response. Furthermore, the shared frequency observed in the PTT repertoire allows • Agenus proprietary vaccine format demonstrates clinical safety and • PSV is designed to train the patient’s immune system to recognize and kill Opportunity immunogenicity in a viral indication tumor cells, promoting lasting anti-tumor immunity and improved survival for advancement towards the development of an off-the-shelf cancer vaccine with broad therapeutic potential.
Recommended publications
  • Activation of Naıve CD4 T Cells by Anti-CD3 Reveals an Important Role for Fyn in Lck-Mediated Signaling
    Activation of naı¨ve CD4 T cells by anti-CD3 reveals an important role for Fyn in Lck-mediated signaling Katsuji Sugie*, Myung-Shin Jeon†, and Howard M. Grey*‡ Divisions of *Vaccine Discovery and †Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121 Contributed by Howard M. Grey, August 23, 2004 Although there was no impairment in IL-2 secretion and prolifer- Fyn-deficient T cells by antigen-pulsed APCs led to a robust ation of Fyn-deficient naı¨veCD4 cells after stimulation with anti- proliferative and IL-2 response, whereas anti-CD3-mediated gen and antigen-presenting cells, stimulation of these cells with stimulation revealed a profound signaling defect in Fyn-deficient anti-CD3 and anti-CD28 revealed profound defects. Crosslinking of T cells. This defect could be corrected by the cocrosslinking of purified wild-type naı¨veCD4 cells with anti-CD3 activated Lck and CD3 with CD4. Furthermore, the signaling defect of Fyn- initiated the signaling cascade downstream of Lck, including phos- deficient T cells stimulated with anti-CD3 was restricted to naı¨ve phorylation of ZAP-70, LAT, and PLC-␥1; calcium flux; and dephos- T cells and was not observed when Fyn-deficient effector T cells phorylation and nuclear translocation of the nuclear factor of were analyzed. Biochemical experiments on anti-CD3 stimulated activated T cells (NFAT)p. All of these signaling events were cells strongly suggest that the presence of Fyn was necessary for diminished severely in Fyn-deficient naı¨ve cells activated by CD3 an effective recruitment and͞or activation of Lck in the region crosslinking.
    [Show full text]
  • Generation and Characterization of New Monoclonal Antibodies Targeting the PHF1 and AT8 Epitopes on Human Tau Kevin H
    Strang et al. Acta Neuropathologica Communications (2017) 5:58 DOI 10.1186/s40478-017-0458-0 RESEARCH Open Access Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau Kevin H. Strang1,2, Marshall S. Goodwin1,2, Cara Riffe1,2, Brenda D. Moore1,2, Paramita Chakrabarty1,2,3, Yona Levites1,2,3, Todd E. Golde1,2,3 and Benoit I. Giasson1,2,3,4* Abstract Tauopathies are a group of neurodegenerative disorders, including Alzheimer’s disease, defined by the presence of brain pathological inclusions comprised of abnormally aggregated and highly phosphorylated tau protein. The abundance of brain tau aggregates correlates with disease severity and select phospho-tau epitopes increase at early stages of disease. We generated and characterized a series of novel monoclonal antibodies directed to tau phosphorylated at several of these phospho-epitopes, including Ser396/Ser404, Ser404 and Thr205. We also generated phosphorylation independent antibodies against amino acid residues 193–211. We show that most of these antibodies are highly specific for tau and strongly recognize pathological inclusions in human brains and in a transgenic mouse model of tauopathy. They also reveal epitope-specific differences in the biochemical properties of Alzheimer’s disease sarkosyl-insoluble tau. These new reagents will be useful for investigating the progression of tau pathology and further as tools to target the cellular transmission of tau pathology. Keywords: Alzheimer’s disease, Antibodies, Phosphorylation, Tau, Transgenic mice Introduction The abundance of tau inclusions in the brain correlates well Tau refers to the microtubule-associated protein [10, 47] with disease severity [2].
    [Show full text]
  • Immune Presentation and Recognition of Class I MHC Phosphopeptide Antigens
    Immune presentation and recognition of class I MHC phosphopeptide antigens by Daniel Henry Stones A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Supervisor: Professor Benjamin E. Willcox University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Alterations to metabolic pathways, in particular post-translational modification, are a recognised hallmark of diseases such as autoimmunity, inflammation and cancer, and potentially provide a source of altered self antigens that can stimulate immune responses. Most notably, phosphorylated peptides have emerged as a group of tumour associated antigens which can be presented by MHC molecules and recognised by T-cells, and therefore represent promising candidates for future cancer immunotherapy strategies. However, how antigen phosphorylation impacts upon antigen presentation and recognition remains unclear. During this study I demonstrated that the phosphate moiety of phosphopeptides bearing the canonical P4 phosphorylation
    [Show full text]
  • Mass Spectrometry–Based Identification of MHC-Bound
    PROTOCOL https://doi.org/10.1038/s41596-019-0133-y Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics Anthony W. Purcell 1*, Sri H. Ramarathinam 1 and Nicola Ternette2* Peptide antigens bound to molecules encoded by the major histocompatibility complex (MHC) and presented on the cell surface form the targets of T lymphocytes. This critical arm of the adaptive immune system facilitates the eradication of pathogen-infected and cancerous cells, as well as the production of antibodies. Methods to identify these peptide antigens are critical to the development of new vaccines, for which the goal is the generation of effective adaptive immune responses and long-lasting immune memory. Here, we describe a robust protocol for the identification of MHC-bound peptides from cell lines and tissues, using nano-ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (nUPLC–MS/MS) and recent improvements in methods for isolation and characterization of these peptides. The protocol starts with the immunoaffinity capture of naturally processed MHC-peptide complexes. The peptides dissociate from the class I human leukocyte antigens (HLAs) upon acid denaturation. This peptide cargo is then extracted and separated into fractions by HPLC, and the peptides in these fractions are identified using nUPLC–MS/MS. With this protocol, several thousand peptides can be identified from a wide variety of cell types, including cancerous and infected cells and those from tissues, with a turnaround time of 2–3d. 1234567890():,; 1234567890():,; Introduction The recognition of foreign antigens by T lymphocytes is the cornerstone of adaptive immunity. Specifically, intracellular antigens are degraded in the cytosol and antigenic precursor peptides are transported to the endoplasmic reticulum, where they are further trimmed to short peptides (8–11 amino acids (aa)) that can assemble with class I HLAs.
    [Show full text]
  • Rescue of Autophagy and Lysosome Defects in Salivary Glands of MRL/ Lpr Mice by a Therapeutic Phosphopeptide
    Journal of Autoimmunity xxx (2018) 1e14 Contents lists available at ScienceDirect Journal of Autoimmunity journal homepage: www.elsevier.com/locate/jautimm Rescue of autophagy and lysosome defects in salivary glands of MRL/ lpr mice by a therapeutic phosphopeptide * Baihui Li a, b, 1, Fengjuan Wang a, b, 1, Nicolas Schall a, b, Sylviane Muller a, b, c, a CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France b Laboratory of Excellence Medalis, France c University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France article info abstract Article history: Sjogren's€ syndrome is a multifactorial systemic autoimmune disorder characterized by lymphocytic in- Received 20 December 2017 filtrates in exocrine organs. Patients present with sicca symptoms, such as extensive dry eyes and dry Received in revised form mouth, and parotid enlargement. Other serious complications include profound fatigue, chronic pain, 13 February 2018 major organ involvement, neuropathies and lymphomas. Current treatments only focus on relieving Accepted 17 February 2018 symptoms and do not target the origin of the disease, which is largely unknown. The question we Available online xxx addressed here was whether some defects exist in autophagy processes in Sjogren's€ syndrome and if they can be corrected or minimized using an appropriate mechanism-driven treatment targeting this Keywords: € Autophagy central survival pathway. Using a recognized murine model of secondary Sjogren's syndrome, we fi Lysosomal dysfunction identi ed molecular alterations of autophagy occurring in the salivary glands of MRL/lpr mice, and MRL/lpr mice discovered that opposite (up- or down-regulated) autophagy events can arise in distinct organs of the P140 peptide same mouse strain, here in lymphoid organs and salivary glands.
    [Show full text]
  • Critical Review of Existing MHC I Immunopeptidome Isolation Methods
    molecules Review Critical Review of Existing MHC I Immunopeptidome Isolation Methods Alexandr Kuznetsov 1, Alice Voronina 1 , Vadim Govorun 1,2 and Georgij Arapidi 2,3,4,* 1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; [email protected] (A.K.); [email protected] (A.V.); [email protected] (V.G.) 2 Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia 3 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia 4 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-926-471-1420 Academic Editor: Luca D. D’Andrea Received: 5 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples—plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors—appeared in the scientific journals in the last decade.
    [Show full text]
  • Manipulating Autophagic Processes in Autoimmune Diseases: a Special Focus on Modulating Chaperone-Mediated Autophagy, an Emerging Therapeutic Target
    REVIEW published: 19 May 2015 doi: 10.3389/fimmu.2015.00252 Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target Fengjuan Wang 1 and Sylviane Muller 1,2* 1 Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France, 2 University of Strasbourg Institute for Advanced Study, Strasbourg, France Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating Edited by: autophagy processes appears most promising for therapy of such autoimmune diseases. Stephanie Hugues, Université de Genève, Suisse Autophagy can be said non-selective or selective; it is classified into three main forms, Reviewed by: namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), Xinjian Chen, the former process being by far the most intensively investigated. The role of CMA remains University of Utah, USA Willem Van Eden, largely underappreciated in autoimmune diseases, even though CMA has been claimed Utrecht University, Netherlands to play pivotal functions into major histocompatibility complex class II-mediated antigen *Correspondence: processing and presentation. Therefore, hereby, we
    [Show full text]
  • Inhibition of Natural Killer Cell Activation Signals by Killer Cell Immunoglobulin-Like Receptors
    Eric O. Long Inhibition of natural killer cell Domingo F. Barber Deborah N. Burshtyn activation signals by killer cell Mathias Faure immunoglobulin-like receptors Mary Peterson Sumati Rajagopalan (CD158) Vale´ry Renard Mina Sandusky Christopher C. Stebbins Nicolai Wagtmann Carsten Watzl Authors’ addresses Summary: The killer cell immunoglobulin-like receptor (KIR) family in- Eric O. Long1, Domingo F. Barber1, cludes receptors that bind to HLA class I molecules on target cells and Deborah N. Burshtyn2, Mathias Faure1, Mary Peterson1, inhibit natural killer (NK)-cell cytotoxicity, and receptors such as Sumati Rajagopalan1, Vale´ry Renard3, Mina Sandusky1, KIR3DL7 with no known ligand and function. Inhibitory KIR recruit the Christopher C. Stebbins1, Nicolai Wagtmann4, tyrosine phosphatase SHP-1 to block signals transduced by any one of Carsten Watzl1, a number of activation receptors. Inhibition of overall protein tyrosine 1Laboratory of Immunogenetics, National phosphorylation by SHP-1 during binding of KIR to MHC class I on Institute of Allergy and Infectious Diseases, target cells is selective, suggesting that a limited number of substrates are National Institutes of Health, Rockville, dephosphorylated by SHP-1. We have chosen to study KIR inhibition as Maryland, USA. it occurs during binding of KIR to MHC class I on target cells, despite 2Department of Medical Microbiology and the technical limitations inherent to studies of processes regulated by Immunology, Heritage Medical Research cell contact. KIR binding to MHC class I on target cells inhibits tyrosine Centre, University of Alberta, Edmonton, phosphorylation of the activation receptor 2B4 (CD244) and disrupts Alberta, Canada. adhesion of NK cells to target cells. Inhibition of proximal events in NK 3M&E Biotech, Copenhagen, Denmark.
    [Show full text]
  • MHC-Restricted Phosphopeptide Antigens
    Open access Original research MHC- restricted phosphopeptide J Immunother Cancer: first published as 10.1136/jitc-2019-000262 on 7 May 2020. Downloaded from antigens: preclinical validation and first- in- humans clinical trial in participants with high- risk melanoma 1 1 1 Victor H Engelhard , Rebecca C Obeng , Kara L Cummings, Gina R Petroni,2 Angela L Ambakhutwala,1 Kimberly A Chianese- Bullock,3 Kelly T Smith,3 Amanda Lulu,1 Nikole Varhegyi,2 Mark E Smolkin,2 Paisley Myers,4 Keira E Mahoney,4 Jeffrey Shabanowitz,4 Nico Buettner,5 Emily H Hall,6 Kathleen Haden,3 Mark Cobbold,5 Donald F Hunt,4 Geoffrey Weiss,7 Elizabeth Gaughan,7 Craig L Slingluff, Jr3 To cite: Engelhard VH, ABSTRACT pBCAR3126-134 peptide in 2/12 patients (17%, 90% CI 3% Obeng RC, Cummings KL, et al. Background Phosphorylated peptides presented by to 44%). MHC- restricted phosphopeptide MHC molecules represent a new class of neoantigens Conclusion This study supports the safety and antigens: preclinical validation expressed on cancer cells and recognized by CD8 T- immunogenicity of vaccines containing the cancer- and first- in- humans clinical associated phosphopeptides pBCAR3 and pIRS2 trial in participants with high- cells. These peptides are promising targets for cancer 126-134 1097- , and the data support continued development of risk melanoma. Journal for immunotherapy. Previous work identified an HLA- A*0201- 1105 ImmunoTherapy of Cancer restricted phosphopeptide from insulin receptor substrate immune therapy targeting phosphopeptides. Future studies 2020;8:e000262. doi:10.1136/ 2 (pIRS2) as one such target. The purpose of this study will define ways to further enhance the magnitude and jitc-2019-000262 was to characterize a second phosphopeptide, from breast durability of phosphopeptide- specific immune responses.
    [Show full text]
  • Synthetic Phosphopeptide Immunogens Yield Activation-Specific Antibodies to the C-Erbb-2 Receptor (Trosine Kinases/Oncogencs/Phophorylation/Breast Neopsims) RICHARD J
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 10435-10439, November 1992 Medical Sciences Synthetic phosphopeptide immunogens yield activation-specific antibodies to the c-erbB-2 receptor (trosine kinases/oncogencs/phophorylation/breast neopsims) RICHARD J. EPSTEIN*t, BRIAN J. DRUKER*t, THOMAS M. ROBERTS*1, AND CHARLES D. STILES*§ *Division of Cell and Molecular Biology, Dana-Farber Cancer Institute, and Departments of tMedicine, VPathology, and §Microbiology and Molecular Genetics, Harvard Medical School, 44 Binney Street, Boston, MA 02115 Communicated by Robert A. Weinberg, July 29, 1992 ABSTRACT We inoculated rabbits with synthetic phos- 10% (vol/vol) bovine calf serum, glutamine (60 mg/liter), phopeptides, duplicating a major autophosphorylation site of penicillin (10 units/ml), streptomycin (0.1 ,ug/ml), and 0.3 the c-rbB-2 protooncogene product. The rabbits produced AuM methotrexate. All other cell lines were obtained from the antisera that, after reverse immunaffinity purfcation, selec- American Type Culture Collection. Cell manipulation, im- tively recognize the erbB-2 protein in its enzymaticafly active munoblot protocols, polyacrylamide gel electrophoresis, and configuration. These anti-phosphopeptide antisera identify a reagents were as described (11). Cells were lysed in lysis subset of erbB-2-positive human cell lines wherein the protein buffer (LB) consisting of10 mM Na2HPO4, 10 mM NaH2PO4, is constitutively active as a tyrosine kinase. Synthetic phos- 150 mM NaCI, 1% Nonidet P.40, 10%6 (vol/vol) glycerol, 50 phopeptides incorporating informative protein phosphoryla- mM sodium fluoride, 10 mM sodium pyrophosphate, prote- tion sites may prove useful for generating antibodies that ase inhibitors [40 indicate the activation state of additional tyrosine kinases and ,uM leupeptin, aprotinin (10 ,ug/ml), and 1 perhaps other proteins phosphorylated on serine and threonine mM phenylmethylsulfonyl fluoride], and tyrosine phospha- residues.
    [Show full text]
  • Peptides Class I Molecules Presenting Phosphorylated Reduced KIR2DL1 Recognition Of
    Reduced KIR2DL1 Recognition of MHC Class I Molecules Presenting Phosphorylated Peptides This information is current as Gili Betser-Cohen, Gil Katz, Tsufit Gonen-Gross, Noam of October 2, 2021. Stern, Tal I. Arnon, Hagit Achdout, Roi Gazit and Ofer Mandelboim J Immunol 2006; 176:6762-6769; ; doi: 10.4049/jimmunol.176.11.6762 http://www.jimmunol.org/content/176/11/6762 Downloaded from References This article cites 46 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/176/11/6762.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Reduced KIR2DL1 Recognition of MHC Class I Molecules Presenting Phosphorylated Peptides1 Gili Betser-Cohen, Gil Katz, Tsufit Gonen-Gross, Noam Stern, Tal I. Arnon, Hagit Achdout, Roi Gazit, and Ofer Mandelboim2 As initially described by K.
    [Show full text]
  • Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling in Diabetes Prone and Resistant Mice
    Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling in Diabetes Prone and Resistant Mice Leo K. Iwai,† Christophe Benoist,*,† Diane Mathis,*,† and Forest M White‡ Department of Pathology, Harvard Medical School and Section on Immunology and Immunogenetics, Joslin Diabetes Center, Boston, Massachusetts, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts Received January 15, 2010 Type 1 diabetes, in human patients and NOD mice, results from an immune attack on insulin-producing beta-cells of the pancreas by autoreactive T lymphocytes. In NOD mice, genetically controlled perturbations in the signaling pathways downstream of the antigen-specific T cell receptor (TCR) may be instrumental in the altered responses of T cells, manifest as inefficient induction of apoptosis after recognition of self-antigens in the thymus or as perturbed reactivity of mature T cells in peripheral organs. To map this signaling difference(s), we have used mass spectrometry-based quantitative phosphoproteomics to compare the activation of primary CD4+ T cells of diabetes-prone NOD and -resistant B6.H2g7 mice. Immunoprecipitation and IMAC purification of tyrosine-phosphorylated peptides, combined with a stable-isotope iTRAQ labeling, enabled us to identify and quantify over 77 phosphorylation events in 54 different proteins downstream of TCR stimulation of primary CD4+ T cells. This analysis showed a generally higher level of phosphotyrosine in activated NOD cells, as well as several phosphorylation sites that appeared to be differentially regulated in these two strains (involving TXK, CD5, PAG1, and ZAP-70). These data highlight the differences in signaling between CD4+ T cell compartments of NOD and B6g7 mice and may underlie the dysregulation of T cells in NOD mice.
    [Show full text]