Quantitative Phosphoproteomic Analysis of T Cell Receptor Signaling in Diabetes Prone and Resistant Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phosphoproteomics: Recent Advances in Analytical Techniques
International Journal of Pharmaceuticals Analysis, ISSN: 0975-3079, Volume 1, Issue 2, 2009, pp-31-36 Phosphoproteomics: Recent advances in analytical techniques Gomase V.S. and Ramu Akella Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India Abstract - Post-genomic biology seeks identification and quantification of multiple proteins from complex mixtures and the research is still on. Despite recent progress in high-throughput proteomics, proteomic analysis of post-translationally modified [PTM] proteins remains particularly challenging. Several strategies for isolating phosphoproteins are explored herein. Quantification of phosphoproteins seems to be a novel solution to identify the underlying disease mechanisms, mostly cancer. Keywords - phosphorylation, enrichment, chemical modification, SILAC, mass spectrometry, HILIC Introduction Techniques Phosphoproteomics is a branch of proteomics Of late, there is an increasing interest in that focuses on deriving a comprehensive view of phosphoproteomics as reflected by a the extent & dynamics of protein phosphorylation considerable number of works describing various by way of identifying & characterizing proteins strategies, including the use of different isotopic that contain a phosphate group as a post- technologies [e.g., isotope-coded affinity tag, translational modification. The addition of stable isotope labeling by amino acids in cell phosphate is a key reversible modification culture], protein separation techniques [e.g., gel- catalyzed by protein kinases, and is known as based versus liquid chromatography-based ‘phosphorylation’. Protein kinases account for methods], and chemical modifications [e.g., β- 1.7% of the human genome and 40% of all the elimination and esterification] to identify proteins may be assumed to be phosphorylated phosphoproteins and/or phosphorylation sites in at any given time. -
Enrichment Strategies for Phosphoproteomics: State-Of-The-Art
Rev Anal Chem 31 (2012): 29–41 © 2012 by Walter de Gruyter • Berlin • Boston. DOI 10.1515/revac-2011-0025 Enrichment strategies for phosphoproteomics: state-of-the-art Barbora Salovska 1,2, *, Ales Tichy 1,2 , Martina MIP molecularly imprinted polymer Rezacova 1 , Jirina Vavrova 2 and Eva Novotna 2 MOAC metal oxide affi nity chromatography MS mass spectrometry 1 Department of Medical Biochemistry , Faculty of NTA nitriloacetic acid Medicine in Hradec Kralove, Charles University in PTMs post-translational modifi cations Prague, Hradec Kr á lov é , Czech Republic , pS phosphoserine e-mail: [email protected] pT phosphothreonine 2 Department of Radiobiology , Faculty of Military Health pY phosphotyrosine Sciences, University of Defence, Hradec Kralove , RPLC reversed phase liquid chromatography Czech Republic SAX strong anion-exchange chromatography SCX strong cation-exchange chromatography * Corresponding author Introduction Abstract Protein phosphorylation is a key regulator in many biological The human genome involves approximately 30,000 protein- processes, such as homeostasis, cellular signaling and com- coding genes; the human proteome contains several million munication, transcriptional and translational regulation, and different protein effectors. This is due to alternative splic- apoptosis. The defects in this tightly controlled reversible post- ing of genes and post-translational modifi cations (PTMs). translational modifi cation have been described to contribute Several hundred PTMs are currently known, among them to genesis and -
Activation of Naıve CD4 T Cells by Anti-CD3 Reveals an Important Role for Fyn in Lck-Mediated Signaling
Activation of naı¨ve CD4 T cells by anti-CD3 reveals an important role for Fyn in Lck-mediated signaling Katsuji Sugie*, Myung-Shin Jeon†, and Howard M. Grey*‡ Divisions of *Vaccine Discovery and †Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121 Contributed by Howard M. Grey, August 23, 2004 Although there was no impairment in IL-2 secretion and prolifer- Fyn-deficient T cells by antigen-pulsed APCs led to a robust ation of Fyn-deficient naı¨veCD4 cells after stimulation with anti- proliferative and IL-2 response, whereas anti-CD3-mediated gen and antigen-presenting cells, stimulation of these cells with stimulation revealed a profound signaling defect in Fyn-deficient anti-CD3 and anti-CD28 revealed profound defects. Crosslinking of T cells. This defect could be corrected by the cocrosslinking of purified wild-type naı¨veCD4 cells with anti-CD3 activated Lck and CD3 with CD4. Furthermore, the signaling defect of Fyn- initiated the signaling cascade downstream of Lck, including phos- deficient T cells stimulated with anti-CD3 was restricted to naı¨ve phorylation of ZAP-70, LAT, and PLC-␥1; calcium flux; and dephos- T cells and was not observed when Fyn-deficient effector T cells phorylation and nuclear translocation of the nuclear factor of were analyzed. Biochemical experiments on anti-CD3 stimulated activated T cells (NFAT)p. All of these signaling events were cells strongly suggest that the presence of Fyn was necessary for diminished severely in Fyn-deficient naı¨ve cells activated by CD3 an effective recruitment and͞or activation of Lck in the region crosslinking. -
Computational Biology, Protein Chemistry and Mass Spectrometry
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 4764–4770 Minireview Phosphoproteomics toolbox: Computational biology, protein chemistry and mass spectrometry Majbrit Hjerrild*, Steen Gammeltoft Department of Clinical Biochemistry, Glostrup Hospital, Nordre Ringvej, DK-2600 Glostrup, Denmark Received 1 June 2006; revised 21 July 2006; accepted 25 July 2006 Available online 4 August 2006 Edited by Francesc Posas tion, or interaction with other proteins. Regulation of the Abstract Protein phosphorylation is important for regulation of most biological functions and up to 50% of all proteins are cell cycle, membrane transport and permeability, cell adhesion, thought to be modified by protein kinases. Increased knowledge neurotransmission, and metabolism are examples of biological about potential phosphorylation of a protein may increase our functions that are modulated through protein phosphorylation understanding of the molecular processes in which it takes part. [1]. The human genome contains 518 different protein kinases Despite the importance of protein phosphorylation, identification and identification of their biological targets is an active re- of phosphoproteins and localization of phosphorylation sites is search area [2]. Even though the number of identified phospho- still a major challenge in proteomics. However, high-throughput proteins is rapidly increasing especially due to development of methods for identification of phosphoproteins are being devel- high-throughput methods for the identification of phospho- oped, in particular within the fields of bioinformatics and mass proteins, in particular within the fields of bioinformatics and spectrometry. In this review, we present a toolbox of current mass spectrometry, it is believed that only a small fraction of technology applied in phosphoproteomics including compu- tational prediction, chemical approaches and mass spectro- physiological phosphorylation sites has been assigned. -
233668.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/233668; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Comparative Qualitative Phosphoproteomics Analysis Identifies Shared Phosphorylation Motifs and Associated Biological Processes in Flowering Plants Shireen Al-Momani1, Da Qi1, Zhe Ren2, Andrew R Jones1,* 1Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK 2BGI-Shenzhen, Shenzhen 518083, China *= corresponding author, [email protected] Running title: Shared Phosphorylation Motifs in Flowering Plants Abbreviations GO Gene Ontology pProtein phosphorylated protein pS phospho-serine pT phospho-threonine pY phospho-tyrosine Summary Phosphorylation is regarded as one of the most prevalent post-translational modifications and plays a key role in regulating cellular processes. In this work we carried out a comparative bioinformatics analysis of phosphoproteomics data, to profile two model species representing the largest subclasses in flowering plants the dicot Arabidopsis thaliana and the monocot Oryza sativa, to understand the extent to which phosphorylation signaling and function is conserved across evolutionary divergent plants. Using pre-existing mass spectrometry phosphoproteomics datasets and bioinformatic tools and resources, we identified 6,537 phosphopeptides from 3,189 phosphoproteins in Arabidopsis and 2,307 phosphopeptides from 1,613 phosphoproteins in rice. The relative abundance ratio of serine, threonine, and tyrosine phosphorylation sites in rice and Arabidopsis were highly similar: 88.3: 11.4: 0.4 and 86.7: 12.8: 0.5, respectively. -
Generation and Characterization of New Monoclonal Antibodies Targeting the PHF1 and AT8 Epitopes on Human Tau Kevin H
Strang et al. Acta Neuropathologica Communications (2017) 5:58 DOI 10.1186/s40478-017-0458-0 RESEARCH Open Access Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau Kevin H. Strang1,2, Marshall S. Goodwin1,2, Cara Riffe1,2, Brenda D. Moore1,2, Paramita Chakrabarty1,2,3, Yona Levites1,2,3, Todd E. Golde1,2,3 and Benoit I. Giasson1,2,3,4* Abstract Tauopathies are a group of neurodegenerative disorders, including Alzheimer’s disease, defined by the presence of brain pathological inclusions comprised of abnormally aggregated and highly phosphorylated tau protein. The abundance of brain tau aggregates correlates with disease severity and select phospho-tau epitopes increase at early stages of disease. We generated and characterized a series of novel monoclonal antibodies directed to tau phosphorylated at several of these phospho-epitopes, including Ser396/Ser404, Ser404 and Thr205. We also generated phosphorylation independent antibodies against amino acid residues 193–211. We show that most of these antibodies are highly specific for tau and strongly recognize pathological inclusions in human brains and in a transgenic mouse model of tauopathy. They also reveal epitope-specific differences in the biochemical properties of Alzheimer’s disease sarkosyl-insoluble tau. These new reagents will be useful for investigating the progression of tau pathology and further as tools to target the cellular transmission of tau pathology. Keywords: Alzheimer’s disease, Antibodies, Phosphorylation, Tau, Transgenic mice Introduction The abundance of tau inclusions in the brain correlates well Tau refers to the microtubule-associated protein [10, 47] with disease severity [2]. -
Immune Presentation and Recognition of Class I MHC Phosphopeptide Antigens
Immune presentation and recognition of class I MHC phosphopeptide antigens by Daniel Henry Stones A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Supervisor: Professor Benjamin E. Willcox University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Alterations to metabolic pathways, in particular post-translational modification, are a recognised hallmark of diseases such as autoimmunity, inflammation and cancer, and potentially provide a source of altered self antigens that can stimulate immune responses. Most notably, phosphorylated peptides have emerged as a group of tumour associated antigens which can be presented by MHC molecules and recognised by T-cells, and therefore represent promising candidates for future cancer immunotherapy strategies. However, how antigen phosphorylation impacts upon antigen presentation and recognition remains unclear. During this study I demonstrated that the phosphate moiety of phosphopeptides bearing the canonical P4 phosphorylation -
Mass Spectrometry–Based Identification of MHC-Bound
PROTOCOL https://doi.org/10.1038/s41596-019-0133-y Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics Anthony W. Purcell 1*, Sri H. Ramarathinam 1 and Nicola Ternette2* Peptide antigens bound to molecules encoded by the major histocompatibility complex (MHC) and presented on the cell surface form the targets of T lymphocytes. This critical arm of the adaptive immune system facilitates the eradication of pathogen-infected and cancerous cells, as well as the production of antibodies. Methods to identify these peptide antigens are critical to the development of new vaccines, for which the goal is the generation of effective adaptive immune responses and long-lasting immune memory. Here, we describe a robust protocol for the identification of MHC-bound peptides from cell lines and tissues, using nano-ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (nUPLC–MS/MS) and recent improvements in methods for isolation and characterization of these peptides. The protocol starts with the immunoaffinity capture of naturally processed MHC-peptide complexes. The peptides dissociate from the class I human leukocyte antigens (HLAs) upon acid denaturation. This peptide cargo is then extracted and separated into fractions by HPLC, and the peptides in these fractions are identified using nUPLC–MS/MS. With this protocol, several thousand peptides can be identified from a wide variety of cell types, including cancerous and infected cells and those from tissues, with a turnaround time of 2–3d. 1234567890():,; 1234567890():,; Introduction The recognition of foreign antigens by T lymphocytes is the cornerstone of adaptive immunity. Specifically, intracellular antigens are degraded in the cytosol and antigenic precursor peptides are transported to the endoplasmic reticulum, where they are further trimmed to short peptides (8–11 amino acids (aa)) that can assemble with class I HLAs. -
Rescue of Autophagy and Lysosome Defects in Salivary Glands of MRL/ Lpr Mice by a Therapeutic Phosphopeptide
Journal of Autoimmunity xxx (2018) 1e14 Contents lists available at ScienceDirect Journal of Autoimmunity journal homepage: www.elsevier.com/locate/jautimm Rescue of autophagy and lysosome defects in salivary glands of MRL/ lpr mice by a therapeutic phosphopeptide * Baihui Li a, b, 1, Fengjuan Wang a, b, 1, Nicolas Schall a, b, Sylviane Muller a, b, c, a CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France b Laboratory of Excellence Medalis, France c University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France article info abstract Article history: Sjogren's€ syndrome is a multifactorial systemic autoimmune disorder characterized by lymphocytic in- Received 20 December 2017 filtrates in exocrine organs. Patients present with sicca symptoms, such as extensive dry eyes and dry Received in revised form mouth, and parotid enlargement. Other serious complications include profound fatigue, chronic pain, 13 February 2018 major organ involvement, neuropathies and lymphomas. Current treatments only focus on relieving Accepted 17 February 2018 symptoms and do not target the origin of the disease, which is largely unknown. The question we Available online xxx addressed here was whether some defects exist in autophagy processes in Sjogren's€ syndrome and if they can be corrected or minimized using an appropriate mechanism-driven treatment targeting this Keywords: € Autophagy central survival pathway. Using a recognized murine model of secondary Sjogren's syndrome, we fi Lysosomal dysfunction identi ed molecular alterations of autophagy occurring in the salivary glands of MRL/lpr mice, and MRL/lpr mice discovered that opposite (up- or down-regulated) autophagy events can arise in distinct organs of the P140 peptide same mouse strain, here in lymphoid organs and salivary glands. -
Targeted Phosphoproteomics Analysis of Immunoaffinity Enriched Tyrosine Phosphorylation in Mouse Tissue
Targeted Phosphoproteomics Analysis of Immunoaffinity Enriched Tyrosine Phosphorylation in Mouse Tissue Application Note Authors Abstract Ravi K. Krovvidi Tyrosine kinases play a prominent role in transmitting and regulating various cell Agilent Technologies India Pvt. Ltd, signaling pathways. Deregulation of this key PTM drives inappropriate proliferation Bangalore, India and cell survival. MS-based global phosphoproteomics related studies have significantly evolved in recent years, but complexity of the signaling pathways Charles L. Farnsworth, Jeffrey C. Silva and sub-stoichiometry levels of tyrosine phosphorylation sites, when compared Cell Signaling Technology, Inc., to phosphoserine and phosphothreonine residues, limit extensive mapping of Danvers, USA the phosphotyrosine (pTyr) repertoire1. Targeted phosphoprotein identification Leo Bonilla approaches offer a comprehensive solution to study selected sites involved Agilent Technologies, Inc. in specific biochemical processes. More recently, coupling of peptide-level Santa Clara, USA anti-pTyr immunoaffinity purification (IP) with LC/MS/MS has proven to be a good approach for profiling tyrosine phosphorylation2,3. This Application Note Arivusudar M. demonstrates a targeted pathway-level enrichment workflow from various mouse Institute Of Bioinformatics, tissues, and shows the strength of the Agilent data analysis software including Bangalore, India Spectrum Mill and GeneSpring for a pathway-centric based analysis of the phosphoproteome repertoire. Introduction PTMScan direct reagent immobilized Analyze eluted peptide Phosphotyrosine (pTyr) based signal to Protein-A or -G agarose fraction using LC/MS/MS transduction is an innovative molecular Protease-digested cell extract system that evolved in cellular life approximately 600 million years ago. It has become an essential part of metazoan biology, playing a critical role in various signaling and cell-to-cell Assign sequences to MS/MS 4 C18 solid phase spectra with Spectrum Mill communication pathways . -
Identification of Shared Phosphopeptide Tumor Targets in Colorectal Cancer for Novel Off-The-Shelf Vaccine Development Paisley T
Identification of Shared Phosphopeptide Tumor Targets in Colorectal Cancer for Novel Off-the-shelf Vaccine Development Paisley T. Myers1, Erin D. Jeffery1, Benjamin Morin1, Christine Brittsan1, Bishnu Joshi1, Antoine Tanne1, Karen Smith1, Albert Hurwitz1, Kara L. Cummings2, Amanda M. Lulu2, Daniel Levey1, Linh Mach1, Mark Findeis1, Victor H. Engelhard2, Jeffrey Shabanowitz3, Donald F. Hunt3, Arthur A. Hurwitz4, Robert Stein1, Alex Duncan1, Dennis Underwood1 1. Agenus Inc., Lexington, MA 02421, USA, 2. Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22901, USA, 3. Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA, 4. AgenTus Therapeutics, Inc., Lexington, MA, 02421, USA INTRODUCTION PHOSPHOLIGANDOME ANALYSIS OF CRC PATIENT TISSUES Immunoaffinity Lysis Purification Phosphopeptide Length Phosphorylated Site Phosphorylated Residue The high mortality rate of colorectal cancer (CRC) reflects STAGE Tip Sample Resected CRC Tissue Cleanup pTyr (27 Patients) 300 400 limitations of current treatment modalities aimed at targeting the 1% 350 250 pThr disease. Immunotherapy is a promising alternative to traditional 9% Normal 300 200 chemotherapy, yet its benefit has been limited to patients with high 250 mutational burden. 150 200 # PTTs 0.5 g tissue or 500 million # PTTs Tumor 150 cell equivalents 100 Phosphopeptide Tumor Targets (PTTs) represent a novel class 100 pSer 90% 50 of neoantigens which arise from dysregulated cellular signaling, 50 0 0 are presented by HLA class I molecules, and are recognized as 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 IMAC Phosphopeptide HPLC-ESI-MS/MS Analysis and Number of Residues Position antigenic by circulating cytotoxic T cells. -
Critical Review of Existing MHC I Immunopeptidome Isolation Methods
molecules Review Critical Review of Existing MHC I Immunopeptidome Isolation Methods Alexandr Kuznetsov 1, Alice Voronina 1 , Vadim Govorun 1,2 and Georgij Arapidi 2,3,4,* 1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; [email protected] (A.K.); [email protected] (A.V.); [email protected] (V.G.) 2 Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia 3 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia 4 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-926-471-1420 Academic Editor: Luca D. D’Andrea Received: 5 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples—plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors—appeared in the scientific journals in the last decade.