5G QoS: Impact of Security Functions on Latency Sebastian Gallenmuller¨ ∗, Johannes Naab∗, Iris Adamy, Georg Carle∗ ∗Technical University of Munich, yNokia Bell Labs ∗fgallenmu, naab,
[email protected],
[email protected] Abstract—Network slicing is considered a key enabler to low latency and high predictability on the other side can go 5th Generation (5G) communication networks. Mobile network together. The goals of our investigation are threefold: (i) cre- operators may deploy network slices—complete logical networks ating a low-latency packet processing architecture for security customized for specific services expecting a certain Quality of Service (QoS). New business models like Network Slice-as-a- functions with minimal packet loss, (ii) conducting extensive Service offerings to customers from vertical industries require ne- measurements applying hardware-supported timestamping to gotiated Service Level Agreements (SLA), and network providers precisely determine worst-case latencies, and (iii) introducing need automated enforcement mechanisms to assure QoS during a model to predict the capacity of our low-latency system for instantiation and operation of slices. In this paper, we focus on overload prevention. Our proposed system architecture relies ultra-reliable low-latency communication (URLLC). We propose a software architecture for security functions based on off- on well-known applications and libraries such as Linux, the the-shelf hardware and open-source software and demonstrate, Data Plane Development Kit (DPDK), and Snort. Besides the through a series of measurements, that the strict requirements of specific measurements for the Snort IPS, we investigate the URLLC services can be achieved. As a real-world example, we performance of the underlying operating system (OS) and perform our experiments using the intrusion prevention system libraries in use, namely Linux and DPDK, which emphasizes (IPS) Snort to demonstrate the impact of security functions on latency.