Transgenic Multivitamin Bioforti Fi Ed Corn: Science, Regulation, And

Total Page:16

File Type:pdf, Size:1020Kb

Transgenic Multivitamin Bioforti Fi Ed Corn: Science, Regulation, And Chapter 26 Transgenic Multivitamin Bioforti fi ed Corn: Science, Regulation, and Politics Gemma Farré , Shaista Naqvi , Uxue Zorrilla-López , Georgina Sanahuja , Judit Berman , Gerhard Sandmann , Gaspar Ros , Rubén López-Nicolás , Richard M. Twyman , Paul Christou , Teresa Capell , and Changfu Zhu Key Points • Combinatorial nuclear transformation was developed as a technique to dissect and modulate the carotenoid biosynthesis pathway in corn. • The same strategy was then used to generate corn plants simultaneously engineered to produce higher levels of provitamin A, vitamin B9, and vitamin C ( b -carotene, folate, and ascorbate). • The best-performing lines contained 169-fold more b -carotene, 6.1-fold more ascorbate, and double the amount of folate as found in wild-type endosperm of the same variety. G. Farré, Ph.D. • U. Zorrilla-López • G. Sanahuja • J. Berman • T. Capell, Ph.D. • C. Zhu, Ph.D. Department of Plant Production and Forestry Science, ETSEA , University of Lleida-Agrotecnio Center , Av. Alcalde Rovira Roure, 191 , 25198 Lleida , Spain e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] S. Naqvi, Ph.D. MRC Protein Phosphorylation Unit , College of Life Sciences, Sir James Black Complex, University of Dundee , Dundee , UK Department of Plant Production and Forestry Science, ETSEA, University of Lleida- Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain e-mail: [email protected] G. Sandmann, Ph.D. Bisynthesis Group, Molecular Biosciences , Johann Wolfgang Goethe Universität , 60054 Frankfurt , Germany e-mail: [email protected] G. Ros, Ph.D. • R. López-Nicolás, Ph.D. Department of Food Science and Nutrition, Faculty of Veterinary Sciences , Regional Campus of International Excellence “Campus Mare Nostrum” , University of Murcia , Spain e-mail: [email protected]; [email protected] R. M. Twyman, Ph.D. TRM Ltd. , P.O. Box 93, York, YO43 3WE , UK e-mail: [email protected] P. Christou, Ph.D. (*) Department of Plant Production and Forestry Science, ETSEA , University of Lleida-Agrotecnio Center , Av. Alcalde Rovira Roure, 191 , 25198 Lleida , Spain Institució Catalana de Recerca I Estudis Avançats , 08010 Barcelona , Spain e-mail: [email protected] V.R. Preedy et al. (eds.), Handbook of Food Fortifi cation and Health: From Concepts to Public 335 Health Applications Volume 1, Nutrition and Health, DOI 10.1007/978-1-4614-7076-2_26, © Springer Science+Business Media New York 2013 336 G. Farré et al. • Genetic engineering provides a rapid way to generate nutritionally enhanced traits in local breeding varieties and this has a great potential to improve human health in developing countries. • However, several nontechnical constraints need to be addressed for the bene fi ts of nutritionally enhanced crops such as multivitamin corn to reach poor people in the developing world. • The use of genetically engineered plants could not only help to prevent micronutrient de fi ciency, it could also reduce the need for vitamin supplements and therefore avoid many cases of hypervitaminosis. Keywords Plant biotechnology • Genetic engineering • Transgenic crop • Vitamin • Reference daily intake • Subsistence agriculture • Developing country • Vitamin de fi ciency • Multivitamin corn • Hypervitaminosis Abbreviations Adcs Aminodeoxychorismate synthase CRTB Bacterial phytoene synthase CRTI Bacterial phytoene desaturase/isomerase CRTY Bacterial lycopene cyclase Dhar Dehydroascorbate reductase DHPS 7,8-Dihydropteroate synthase EU European Union folE E . coli GTP cyclohydrolase FPGS Folypolyglutamate synthetase GalLDH l -Galactono-1,4-lactone dehydrogenase gch1 GTP cyclohydrolase 1 GGP GDP- l -galactose phosphorylase GGPP Geranylgeranyl diphosphate Glbch Gent iana lutea b -carotene hydroxylase Gllycb Gentiana lutea lycopene b -cyclase GLOase l -Gulono1,4-lactone oxidase GME GDP- d -mannose-3 ¢ ,5 ¢ -epimerase HGA Homogentisic acid HMDHP Hydroxymethyldihydropterin H P P r -Hydroxyphenylpyruvic acid HPPD r -Hydroxyphenylpyruvic acid dioxygenase HPPK 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase HPT1 Homogentisate phytyltransferase MDHA Monodehydroascorbate MPBQ 2-Methyl-6-phytylbenzoquino MPBQ MT MPBQ methyltransferase Or Orange P A B A p -Aminobenzoate PacrtI Pantoea ananatis phytoene desaturase ParacrtW Paracoccus b -carotene ketolase PSY1 Phytoene synthase RAE Retinol activity equivalent RDI Reference daily intake RNAi RNA interference 26 Transgenic Multivitamin Biofortifi ed Corn: Science, Regulation, and Politics 337 TC Tocopherol cyclase TyrA Prephenate dehydrogenase Zmpsy1 Zea mays phytoene synthase 1 g -TMT g -Tocopherol methyltransferase Introduction Micronutrient de fi ciency is a major global challenge because at any one time up to 50 % of the world’s population may suffer from diseases caused by a chronic insuf fi cient supply of vitamins and minerals, and this largely re fl ects the lack of access to a diverse diet [ 1 ] . In developed countries, micronutrient de fi ciency is addressed by encouraging the consumption of fresh fruits and vegetables, along with supplementation and forti fi cation programs to enhance the nutritional value of staple foods [ 2 ] . In con- trast, the populations of developing countries typically subsist on a monotonous diet of milled cereal grains such as rice or corn, which are poor sources of vitamins and minerals. Strategies that have been proposed to overcome micronutrient de fi ciencies in developing countries include supplementation, forti fi cation, and the implementation of conventional breeding and genetic engineering programs to generate nutrient-rich varieties of staple crops. Unfortunately, the fi rst two strategies have been largely unsuccessful because of the insuf fi cient funding, poor governance, and dysfunctional distribution net- work in developing country settings [ 3 ] . Bioforti fi cation programs based on conventional breeding have enjoyed only marginal success because of the limited available genetic diversity and the time required to develop crops with enhanced nutritional properties as well as desirable agronomic characteristics. It is also impossible to conceive of a conventional breeding strategy that would ever produce “nutrition- ally complete” cereals [ 2 ] . More promising results have been obtained by engineering the metabolic pathways leading to provitamin A, vitamin B9, and vitamin C ( b -carotene, folate, and ascorbate) in the same transgenic corn line multivitamin corn [ 4 ] . Genetic engineering therefore has immense potential to improve the nutritional properties of staple crops and contribute to better health, although a number of technical, economical, regulatory, and sociopolitical constraints remain to be addressed. Bioforti fi cation by Genetic Engineering Vitamin A (Retinol) Humans can store retinol obtained as retinyl esters from meat and dairy products but can also synthesize the reduced form (retinal) directly from b -carotene, one of more than 700 fat-soluble pigments known as carotenoids that accumulate in the fl owers, fruits, and storage organs of plants and confer red, orange, and yellow coloring [5 ] . Cereal grains do not accumulate b -carotene, so vitamin A de fi ciency is therefore prevalent in developing country populations that subsist on cereal-based diets. Several strategies have been used alone and in combination to increase the levels of b -carotene in cereals, such as increasing fl ux through the carotenogenic pathway by making more precursors available, modifying the activity of carotenogenic enzymes, blocking pathway branch points, and creating sinks to store b -carotene and relieve feedback inhibition. The fi rst committed step in carotenoid biosynthesis is the conversion of geranylgeranyl diphos- phate (GGPP) into phytoene by phytoene synthase (PSY), and this is recognized as a major pathway bottleneck. Therefore, increasing the activity of this enzyme by expressing a plant PSY transgene or the bacterial equivalent CRTB has increased total carotenoid levels in tomato, canola, and corn by up to 50-fold, predominantly in the form of a - and b -carotene [ 6– 8 ] . Phytoene is desaturated and isomer- ized in several steps to form lycopene, but one bacterial enzyme (CRTI) can accomplish all these reactions. Lycopene is then cyclized at each end by lycopene b -cyclase (LYCB, bacterial equivalent 338 G. Farré et al. CRTY) to form b -carotene or at one end by lycopene e-cyclase (LYCE) and at the other by LYCB to form a -carotene. Several attempts have been made to increase the b -carotene content of plants by overexpressing LYCB or suppressing the activity of LYCE, thus shifting fl ux into the b -branch. For example, in canola lines expressing CRTB, CRTI, and CRTY, there was not only a higher total carotenoid content than wild-type seeds (1,229 m g/g fresh weight), but the b - to a -carotene ratio increased from 2:1 to 3:1 showing that the additional LYCB activity skewed the competition for the common precursor lycopene and increased fl ux speci fi cally towards b -carotene [ 9 ] . Some cereal grains do not produce carotenoids at all and it is therefore necessary to introduce new functionality. One of the most interesting examples is rice endosperm, where the expression of PSY leads to the accumulation of phytoene but no other carotenoids, thus the entire carotenoid pathway has to be imported to produce “Golden Rice” containing b -carotene [10 ] . Similar methodology can be used to extend partial pathways and generate additional
Recommended publications
  • Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum Tricornutum
    Mar. Drugs 2015, 13, 5334-5357; doi:10.3390/md13085334 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum Takashi Kadono 1, Nozomu Kira 2, Kengo Suzuki 3, Osamu Iwata 3, Takeshi Ohama 4, Shigeru Okada 5, Tomohiro Nishimura 1, Mai Akakabe 6, Masashi Tsuda 7,8 and Masao Adachi 1,* 1 Laboratory of Aquatic Environmental Science, Faculty of Agriculture, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan; E-Mails: [email protected] (T.K.); [email protected] (T.N.) 2 The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; E-Mail: [email protected] 3 Euglena Co., Ltd., 4th Floor, Yokohama Leading Venture Plaza, 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan; E-Mails: [email protected] (K.S.); [email protected] (O.I.) 4 School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; E-Mail: [email protected] 5 Department of Aquatic Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mail: [email protected] 6 Synthetic Organic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; E-Mail: [email protected] 7 Science Research Center, Kochi University, Oko-cho Kohasu, Nankoku, Kochi 783-8506, Japan; E-Mail: [email protected] 8 Center for Advanced Marine Core Research, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +81-88-864-5216.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Multiplicity of Carotene Patterns Derives from Competition Between
    www.nature.com/scientificreports OPEN Multiplicity of carotene patterns derives from competition between phytoene desaturase diversifcation and biological environments Mathieu Fournié1,2,3 & Gilles Truan1* Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many diferent carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from diferent clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of fve purifed enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modifed the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classifcation but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps. Carotenoids are organic pigments produced by plants, algae, fungi, and bacteria and can be subdivided into two families of molecules, carotenes and their oxidised counterparts, xanthophylls 1.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,969,595 B2 Brzostowicz Et Al
    USOO696.9595 B2 (12) United States Patent (10) Patent No.: US 6,969,595 B2 Brzostowicz et al. (45) Date of Patent: Nov. 29, 2005 (54) CAROTENOID PRODUCTION FROM A WO WO 02079395 A2 10/2002 SINGLE CARBON SUBSTRATE OTHER PUBLICATIONS (75) Inventors: Patricia C. Brzostowicz, West Chester, Hundle et al., Functional Assignment of Erwinia herbicola PA (US); Qiong Cheng, Wilmington, Eh010 Carotenoid Genes Expressed in Escherichia coli, DE (US); Deana DiCosimo, Rockland, Molecular and General Genetics, Springer Verlag, Berlin, DE (US); Mattheos Kofas, DE, vol. 245, 1994, pp. 406-416, XP002947 192. Wilmington, DE (US); Edward S. Pasamontes et al., Isolation and characterization of the Miller, Wilmington, DE (US); James carotenoid biosynthesis genes of Flavobacterium sp. Strain M. Odom, Kennett Square, PA (US); R1534, Gene: An International Journal on Genes and Stephen K. Picataggio, Landenberg, PA Genomes, Elsevier Science Publishers, Braking, GB, vol. (US); Pierre E. Rouviere, Wilmington, 185, No. 1, Jan. 31, 1997, pp. 35–41, XP004.093151. DE (US) Harker et al., BioSynthesis of Ketocarotenoids in transgenic cyanobacteria expressing the algal gene for (73) ASSignee: E. I. du Pont de Nemours and beta-C-4-oxygenase, crt0, FEBS Letters, Elsevier Science Company, Wilmington, DE (US) Publishers, Amsterdan, NL. Vol. 404, Mar. 1, 1997, pp. 129-134, XP002087149. Notice: Subject to any disclaimer, the term of this Fernandez-Gonzalez Blanca et al., A new type of asym patent is extended or adjusted under 35 metrically acting beta-caroteine ketolase is required for the U.S.C. 154(b) by 728 days. Synthesis of echinenone in the cyanobacterium SynechocyS tissp.
    [Show full text]
  • Genetics and Molecular Biology of Carotenoid Pigment Biosynthesis.Pdf
    SERIAL REVIEW CAROTENOIDS 2 Genetics and molecular biology of carotenoid pigment biosynthesis GREGORY A. ARMSTRONG,’1 AND JOHN E. HEARSTt 5frtitute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland; and tDePai.tment of Chemistry, University of California, and Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA The two major functions of carotenoids in photosyn- carotenoid biosynthesis from a molecular genetic thetic microorganisms and plants are the absorption of standpoint.-Armstrong, G. A., Hearst, J. E. Genet- energy for use in photosynthesis and the protection of ics and molecular biology of carotenoid pigment chlorophyll from photodamage. The synthesis of vari- biosynthesis. F14SEBJ. 10, 228-237 (1996) ous carotenoids, therefore, is a crucial metabolic proc- ess underlying these functions. In this second review, Key Words: phytoene lycopene cyclization cyclic xanthophylLs the nature of these biosynthetic pathways is discussed xanlhophyll glycosides’ 3-carotene provitamin A in detail. In their elucidation, molecular biological techniques as well as conventional enzymology have CAROTENOIDS REPRESENT ONE OF THE most fascinating, played key roles. The reasons for some of the ci.s-t Tans abundant, and widely distributed classes of natural pig- isomerizations in the pathway are obscure, however, ments. Photosynthetic organisms from anoxygenic photo- and much still needs to be learned about the regula- synthetic bacteria through cyanobacteria, algae, and tion of carotenoid biosynthesis. Recent important find- higher plants, as well as numerous nonphotosynthetic ings, as summarized in this review, have laid the bacteria and fungi, produce carotenoids (1). Among groundwork for such studies. higher plants, these pigments advertise themselves in flowers, fruits, and storage roots exemplified by the yel- -James Olson, Coordinating Editor low, orange, and red pigments of daffodils, carrots and to- matoes, respectively.
    [Show full text]
  • The Phytoene Synthase Gene Family of Apple (Malus X Domestica) and Its Role in Controlling Fruit Carotenoid Content
    City University of New York (CUNY) CUNY Academic Works Publications and Research Lehman College 2015 The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content Charles Ampomah-Dwamena The New Zealand Institute for Plant & Food Research Limited Nicky Driedonks New Zealand Institute for Plant & Food Research Limited David Lewis The New Zealand Institute for Plant & Food Research Limited Maria Shumskaya CUNY Lehman College Xiuyin Chen The New Zealand Institute for Plant & Food Research Limited See next page for additional authors How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/le_pubs/130 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Authors Charles Ampomah-Dwamena, Nicky Driedonks, David Lewis, Maria Shumskaya, Xiuyin Chen, Eleanore T. Wurtzel, Richard V. Espley, and Andrew C. Allan This article is available at CUNY Academic Works: https://academicworks.cuny.edu/le_pubs/130 Ampomah-Dwamena et al. BMC Plant Biology (2015) 15:185 DOI 10.1186/s12870-015-0573-7 RESEARCH ARTICLE Open Access ThePhytoenesynthasegenefamilyofapple (Malus x domestica) and its role in controlling fruit carotenoid content Charles Ampomah-Dwamena1*, Nicky Driedonks1,2, David Lewis3,MariaShumskaya4,XiuyinChen1, Eleanore T. Wurtzel4,5,RichardV.Espley1 and Andrew C. Allan1 Abstract Background: Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals.
    [Show full text]
  • Defining the Role of Phytoene Synthase in Carotenoid Accumulation of High Provitamin a Bananas
    Defining the role of phytoene synthase in carotenoid accumulation of high provitamin A bananas By Bulukani Mlalazi Bachelor of Biotechnology Innovation (Hons.) A thesis submitted for the degree of Doctor of Philosophy at the Queensland University of Technology Centre for Tropical Crops and Biocommodities 2010 Abstract: Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 µg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 µg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas.
    [Show full text]
  • SAIB - 52Th Annual Meeting Argentine Society for Biochemistry and Molecular Biology
    52th Annual Meeting Argentine Society for Biochemistry and Molecular Biology LII Reunión Anual Sociedad Argentina de Investigación en Bioquímica y Biología Molecular Pabellón Argentina. Universidad Nacional de Córdoba November 7-10, 2016 BIOCELL 40 (Suppl.1) 2016 - SAIB - 52th Annual Meeting Argentine Society for Biochemistry and Molecular Biology LII Reunión Anual Sociedad Argentina de Investigación en Bioquímica y Biología Molecular November 7th–10th, 2016 Córdoba, República Argentina Pabellón Argentina Universidad Nacional de Cordoba Cover Page: Confocal microscopy images of Arabidopsis thaliana root are displayed in the cover. The selected roots are expressing a GFP reporter of a mitotic cyclin (CYCB1;1-GFP, green), also they are counterstained with propidium iodide (IP, red) to display the cell structure. In order to follow the progression through the cell cycle phases, the root cells were synchronized in S phase using HU, and after pictures were taken every 2 hours. This type of experiment was also used to generate RNA samples to analyze the dynamics of different gene expression during the cell cycle. Inside the circle, which shows the cell cycle phases, images of cells expressing a histone fused to the fluorescent protein VENUS and stained with IP, are displayed. Those images allow following the steps of mitosis in vivo inside the root ( PL-P56: Identification of cell cycle regulators inplants, by Goldy, C; Ercoli, MF; Vena, R; Palatnik, J, Rodriguez, Ramiro E.) Diseño de tapa: Natalia Monjes 1 BIOCELL 40 (Suppl.1) 2016 MEMBERS OF THE SAIB BOARD José Luis Bocco President CIBICI-CONICET Facultad de Ciencias Químicas Universidad Nacional de Córdoba Silvia Moreno Vicepresident IQUIBICEN-CONICET Facultad de Cs Exactas y Naturales Universidad de Buenos Aires Carlos Andreo Past President CEFOBI-CONICET Facultad de Cs Bioquímicas y Farm.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Structural and Mechanistic Insights About Plasmodium Falciparum Enzymes
    International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 ISSN 2250-3153 Comparative Analysis of Novel Targets for Antimalarial Drugs: Structural and Mechanistic Insights about Plasmodium falciparum Enzymes Dhananjay Kumar1, Deblina Dey2, Anshul Sarvate3, Kumar Gaurav Shankar4, Lakshmi Sahitya.U5 1 B.Tech(Bioinformatics) 2 B.Tech(Bioinformatics) 3 B.Tech(Bioinformatics) 4 MCA 5 M.Sc(Biotechnology) Abstract- Plasmodium falciparum, the causative agent of severe billion people, 1.2 billon people are of South East Region live in human malaria. The dominance of resistant strains has compelled malaria prone area [16]. The sufferings are due to massive loss of to the discovery and development of new and different modes-of- productive man hours. The violent cycle of malaria and poverty action. Current plasmodial drug discovery efforts remains lack continues in its most grave form in the developing nations where far-reaching set of legitimated drug targets. Prerequisite of these the poorest of poor cannot afford costly medication[1].Causative targets (or the pathways in which they function) is that they agent of human malaria is intracellular parasites of the genus prove to be crucial for parasite survival. Thioredoxin Reductase Plasmodium spread by Anopheles gambiae mosquitoes. There is a flavoprotein that catalyzes the NADPH-dependent reduction are four species of human infecting Plasmodium. Out of these of thioredoxin. It plays an important role in maintaining the P.falciparum is the most deadly [3].Eradication of malaria redox environment of the cell. A third redox active group became very difficult in the battle against this parasite due to transfers the reducing equivalent from the apolar active site to the drug resistant Plasmodium falciparum [1].
    [Show full text]
  • Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions
    plants Review Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions Nabil Killiny 1,* and Yasser Nehela 1,2 1 Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA; yasser.nehela@ufl.edu 2 Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt * Correspondence: nabilkilliny@ufl.edu; Tel.: +1-863-956-8833 Received: 2 March 2020; Accepted: 24 March 2020; Published: 31 March 2020 Abstract: Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation,
    [Show full text]
  • Genome-Scale Model of Rhodotorula Toruloides Metabolism
    bioRxiv preprint doi: https://doi.org/10.1101/528489; this version posted March 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genome-scale model of Rhodotorula toruloides metabolism Ievgeniia A Tiukova1,2, Sylvain Prigent3, Jens Nielsen1, Mats Sandgren2, Eduard J Kerkhoven1,* 1Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden 5 2Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden 3UMR 1332 BFP, INRA, Univ Bordeaux, F33883 Villenave d’Ornon, France * corresponding author: EJK ([email protected]) Grant numbers: FORMAS 213-2013-80 and 2016-00767, the Novo Nordisk Foundation NNF10CC1016517, Åforsk Foundation 16-655 10 Abstract The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto-GEM, the first genome-scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 926 genes, 4930 reactions, and 3374 metabolites, while lipid metabolism is described using the SLIMEr formalism allowing direct 15 integration of lipid class and acyl chain experimental distribution data. The simulation results confirmed that the R. toruloides model provides valid growth predictions on glucose, xylose and glycerol, while prediction of genetic engineering targets to increase production of linolenic acid, triacylglycerols and carotenoids highlighted genes that have previously been successfully used to increase production. This renders rtho-GEM valuable for future studies to improve the production of other oleochemicals of 20 industrial relevance including value-added fatty acids and carotenoids, in addition to facilitate system- wide omics-data analysis in R.
    [Show full text]