DEGS1 As a Novel Gene for a Leukodystrophy with Therapeutic Hope

Total Page:16

File Type:pdf, Size:1020Kb

DEGS1 As a Novel Gene for a Leukodystrophy with Therapeutic Hope Identification of the sphingolipid desaturase DEGS1 as a novel gene for a leukodystrophy with therapeutic hope Devesh Chandra Pant TESI DOCTORAL UPF / 2018 DIRECTOR DE LA TESI Dr. Aurora Pujol Onofre and Dr. Stéphane Fourcade DEPARTAMENTO DE CIENCIAS EXPERIMENTALES Y DE LA SALUD UNIVERSIDAD POMPEU FABRA [Pàgina en blanc] ii Dedicated to my parents… iii [Pàgina en blanc] Acknowledgement I wish to express my sincere gratitude to my supervisors, Professor Aurora Pujol and Dr. Stéphane Fourcade for their support, critical thinking and guidance throughout my PhD. I am deeply indebted to the patients and their families for their participation in the study. I would also like to thank the current and past members of Neurometabolic disease group, IDIBELL, the members of Developmental Biology group, UPF and ZeClinics, PRBB for their help, advice, valuable suggestions during my PhD. I also thank all our collaborators for their essential contribution to my research. I would also like to acknowledge the grants that supported this work. A special thanks to my precious family members, for encouraging my curiosity and instilling determination and perseverance in me. Thank you for giving me confidence and believing in me. I am forever grateful to all of you, and I could not have completed this PhD without you. I also thank all my friends who provided moral support and motivation during my stay in Barcelona. I thank you all… v “All that we are is the result of what we have thought. The mind is everything. What we think we become.” (Gautama Buddha, 563-483 B.C.) vii [Pàgina en blanc] viii Abstract In spite of recent advances in understanding the genetic bases of leukodystrophies, a large number of clinical cases remain unexplained, suggesting that many leukodystrophy- associated genes have yet to be identified. Here we report 18 patients from 12 families with biallelic deleterious variants in the DEGS1 gene identified via WES. DEGS1 encodes an enzyme which catalyzes the conversion of dihydroceramide to ceramide. Common features among the patients include severe cerebellum atrophy, thinning of the corpus callosum and hypomyelination suggesting a critical role of DEGS1 in the central nervous system. Using patient’s fibroblasts, we evidenced abnormal biochemical profiles. Knockdown of degs1 in zebrafish recapitulated the biochemical imbalance, showed impaired locomotor abilities and weak myelination. Moreover, a widely used drug for neurological disorders, fingolimod, able to normalized the toxic effects associated due to impaired DEGS1. These results pave the way to clinical translation, illustrating the transformative impact of genomics in patient care. ix ] Resum El hecho de que un gran número de casos clínicos de leucodistrofias sigan sin explicar sugiere que muchos de los genes asociados a esta enfermedad estarían aún por identificar. Secuenciando el exoma completo de 18 pacientes de 12 familias hemos encontrado variantes deletéreas bialélicas en el gen DEGS1, un gen que codifica para una enzima que cataliza la conversión de dihidroceramida a ceramida. Las características comunes entre estos pacientes incluyen atrofia grave del cerebelo, delgadez del cuerpo calloso e hipomielinización, sugiriendo un papel crítico de la proteína DEGS1 en el SNC. Sus fibroblastos envidencian un perfil bioquímico anormal. Hemos comprobado que un modelo de knockdown del gen degs1 en pez cebra muestra capacidades locomotoras alteradas, desequilibrio bioquímico y una mielinización débil. Hemos conseguido normalizar sus efectos tóxicos con fingolimod, un fármaco ampliamente usado para trastornos neurológicos. Son resultados que ilustran el impacto transformador de la genómica en la atención al paciente, abriendo un nuevo camino en la clínica traslacional. Preface Leukodystrophies are heritable myelin disorders affecting white matter of the central nervous system (CNS). All leukodystrophies result in destruction (demyelination) or failed development (dysmyelination) of myelin leads to a large clinical spectrum from rapidly fatal early infantile to slow late adult forms. There are about 80 genes responsible for leukodystrophies so far suggesting that novel forms still need to be characterized. Genetic research is evolving rapidly, with technologies like Next Generation Sequencing (NGS) generating vast amounts of genetic data. Part I of the thesis focusses on the genetic diagnosis of patients with leukodystrophy. Genome-wide association studies (GWAS) have been instrumental to link genes and pathways to the etiology of leukodystrophy. The identification of the novel disease gene, DEGS1, associated with early-onset hypomyelinating leukodystrophy was more than routine and required a collaborative effort of neurologists and medical geneticists from Spain, France, Canada and the United States we collected 18 patients from 12 families with a DEGS1 variant. Standardized phenotypic data were collected by review of the clinical histories and follow-up investigations. Affected individuals were examined by experienced neurologists at their primary care centers, and all available clinical and magnetic resonance image (MRI) data were collected and jointly reviewed. DEGS1 was previously not known to be associated with neurological disorders. However, understanding the effects of the variants identified remains a major problem in diseases. Bringing this research “from bench to bedside” requires intensive effort in translational research studies. In Part II, by taking advantage of human patient fibroblasts, we performed functional validation of a candidate gene DEGS1. To confirm the genetic analyses, we found abnormal biochemical measurements in patients fibroblasts which were explained by the altered lipidomics profile characterized by high dihydroceramide (DhCer) and low ceramide (Cer) in four affected individuals. Additionally, altered mRNA levels in patient fibroblasts further confirmed this. These results indicate loss of DEGS1 activity in the patients. We also found an increase in intracellular ROS levels in patients’ fibroblasts, which was rescued upon treatment with fingolimod, ceramide synthase xi inhibitor. However, we found exogenous long-chain DhCer increases the ROS levels in control fibroblasts suggesting the toxic effects of DhCer. Moreover, we found low mitochondria membrane potential in one patient fibroblasts and impaired autophagy in two patients fibroblasts. Determination of the pathogenicity of variants identified through screening of mutation has allowed clinicians to define DEGS1 related pathogenicity. In part III, a degs1 knockdown (KD) zebrafish model for the neurological disorder associated with DEGS1 was generated. A systemic knockout of Degs1 in mice ultimately failed to thrive, dying within 8 to 10 weeks of birth and fruitfly is believed to be embryonic lethal. In order to generate the degs1 KD zebrafish, antisense morpholino was used. Morpholino-mediated knockdown in a zebrafish model demonstrates that loss of the evolutionarily highly conserved DEGS1 alters lipidomics profiles, causes movement abnormalities and reduced number of mature oligodendrocytes. They developed signs of neuropathology at 4.5 days of age making this model suitable for therapeutic studies. Preliminary data suggests this gene is highly expressed in CNS. Intensive characterization of the degs1 zebrafish model found a resemblance to the human phenotype in several facets. The defects observed in the zebrafish model were rescued upon treatment with FTY720. Thus, the overlapping phenotype of degs1 knockdown zebrafish increases the potential impact of therapeutic studies. Collectively, the findings of this doctoral thesis show the utility of implementing genomic diagnosis in the clinic, with respect to providing simple and effective treatments in a timely manner to improve outcomes for patients with rare inborn errors of metabolism. xii [Pàgina en blanc] Table of Contents Abbreviations .............................................................................................................. xvii 1 INTRODUCTION ....................................................................................................... 3 1.2 Leukodystrophies.................................................................................................. 3 1.1.1 Overview ......................................................................................................... 3 1.1.2 MRI Pattern Recognition and Leukodystrophies ............................................ 5 1.1.3 Genetics and Leukodystrophies ....................................................................... 6 1.2 Technologies for Gene Identification .................................................................. 7 1.2.1 Next Generation Sequencing ........................................................................... 7 1.2.2 Whole Exome Sequencing............................................................................... 9 1.2.3 Whole Genome sequencing ........................................................................... 12 1.2.4 Human Gene Variant Databases and Interpretation ...................................... 13 1.3 Sphingolipids ....................................................................................................... 18 1.3.1 Introduction ................................................................................................... 18 1.3.2 Metabolism .................................................................................................... 21 1.4 Bioactive Sphingolipids .....................................................................................
Recommended publications
  • 2017 ANNUAL REPORT | Translating SCIENCE • Transforming LIVES OUR COMMITMENT Make Every Day Count at PTC, Patients Are at the Center of Everything We Do
    20 YEARS OF COMMITMENT 2017 ANNUAL REPORT | Translating SCIENCE • Transforming LIVES OUR COMMITMENT Make every day count At PTC, patients are at the center of everything we do. We have the opportunity to support patients and families living with rare disorders through their journey. We know that every day matters and we are committed to making a difference. OUR SCIENCE Our scientists are finding new ways to regulate biology to control disease We have several scientific research platforms focused on modulating protein expression within the cell that we believe have the potential to address many rare genetic disorders. OUR PEOPLE Care for each other, our community, and for the needs of our patients At PTC, we are looking at drug discovery and development in a whole new light, bringing new technologies and approaches to developing medicines for patients living with rare disorders and cancer. We strive every day to be better than we were the day before. At PTC Therapeutics, it is our mission to provide access to best-in-class treatments for patients who have an unmet need. We are a science-led, global biopharmaceutical company focused on the discovery, development and commercialization of clinically-differentiated medicines that provide benefits to patients with rare disorders. Founded 20 years ago, PTC Therapeutics has successfully launched two rare disorder products and has a global commercial footprint. This success is the foundation that drives investment in a robust pipeline of transformative medicines and our mission to provide access to best-in-class treatments for patients who have an unmet medical need. As we celebrate our 20th year of bringing innovative therapies to patients affected by rare disorders, we reflect on our unwavering commitment to our patients, our science and our employees.
    [Show full text]
  • Duchenne Muscular Dystrophy (DMD) Agents
    Therapeutic Class Overview Duchenne muscular dystrophy (DMD) Agents INTRODUCTION • Duchenne muscular dystrophy (DMD) is 1 of 4 conditions known as dystrophinopathies, which are inherited, X-linked myopathic disorders due to a defect in the dystrophin gene that results in the primary pathologic process of muscle fiber degradation. The hallmark symptom is progressive weakness (Darras 2018[a], Darras 2018[b], Muscular Dystrophy Association [MDA] 2019). The other 3 conditions include: Becker muscular dystrophy (BMD), which is a mild form of DMD; an intermediate presentation between BMD and DMD; and DMD-associated dilated cardiomyopathy, which has little or no clinical ○ skeletal or muscle disease (MDA 2019). • DMD symptom onset is in early childhood, usually between the ages of 2 and 3 years old. The proximal muscles are affected first, followed by the distal limb muscles. Generally, the lower external muscles will be affected before the upper. The affected child may have difficulties jumping, walking, and running (MDA 2019). • The prevalence of DMD ranges from 1 to 2 per 10,000 live male births; female-manifesting carriers are rarer, but can present with a range of symptoms that vary in their severities (Birnkrant et al 2018, Darras 2018[a], Emflaza Food and Drug Administration [FDA] Medical Review 2017). • The clinical course and lifespan of patients with DMD is relatively short. Individuals are usually confined to a wheelchair by age 13, and many die in their late teens or twenties from respiratory insufficiency or cardiomyopathy. Although survival until adulthood is more common now, very few patients survive past the 3rd decade (Darras 2018[a]).
    [Show full text]
  • Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New
    biomolecules Review Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New Andrea Barp 1,* , Amanda Ferrero 1, Silvia Casagrande 1,2 , Roberta Morini 1 and Riccardo Zuccarino 1 1 NeuroMuscular Omnicentre (NeMO) Trento, Villa Rosa Hospital, Via Spolverine 84, 38057 Pergine Valsugana, Italy; [email protected] (A.F.); [email protected] (S.C.); [email protected] (R.M.); [email protected] (R.Z.) 2 Department of Neurosciences, Drug and Child Health, University of Florence, Largo Brambilla 3, 50134 Florence, Italy * Correspondence: [email protected] Abstract: The urgent need for new therapies for some devastating neuromuscular diseases (NMDs), such as Duchenne muscular dystrophy or amyotrophic lateral sclerosis, has led to an intense search for new potential biomarkers. Biomarkers can be classified based on their clinical value into different categories: diagnostic biomarkers confirm the presence of a specific disease, prognostic biomarkers provide information about disease course, and therapeutic biomarkers are designed to predict or measure treatment response. Circulating biomarkers, as opposed to instrumental/invasive ones (e.g., muscle MRI or nerve ultrasound, muscle or nerve biopsy), are generally easier to access and less “time-consuming”. In addition to well-known creatine kinase, other promising molecules seem to be candidate biomarkers to improve the diagnosis, prognosis and prediction of therapeutic response, such as antibodies, neurofilaments, and microRNAs. However, there are some criticalities that can complicate their application: variability during the day, stability, and reliable performance metrics Citation: Barp, A.; Ferrero, A.; (e.g., accuracy, precision and reproducibility) across laboratories. In the present review, we discuss Casagrande, S.; Morini, R.; Zuccarino, the application of biochemical biomarkers (both validated and emerging) in the most common NMDs R.
    [Show full text]
  • The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy
    Review Neuromuscular Diseases Early Diagnosis and Treatment – The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy Eugenio Mercuri,1 Ros Quinlivan2 and Sylvie Tuffery-Giraud3 1. Catholic University, Rome, Italy; 2. Great Ormond Street Hospital and National Hospital for Neurology and Neurosurgery, London, UK; 3. Laboratory of Genetics of Rare Diseases (LGMR), University of Montpellier, Montpellier, France DOI: https://doi.org/10.17925/ENR.2018.13.1.31 he understanding of the natural history of Duchenne muscular dystrophy (DMD) is increasing rapidly and new treatments are emerging that have the potential to substantially improve the prognosis for patients with this disabling and life-shortening disease. For many, Thowever, there is a long delay between the appearance of symptoms and DMD diagnosis, which reduces the possibility of successful treatment. DMD results from mutations in the large dystrophin gene of which one-third are de novo mutations and two-thirds are inherited from a female carrier. Roughly 75% of mutations are large rearrangements and 25% are point mutations. Certain deletions and nonsense mutations can be treated whereas many other mutations cannot currently be treated. This emphasises the need for early genetic testing to identify the mutation, guide treatment and inform genetic counselling. Treatments for DMD include corticosteroids and more recently, ataluren has been approved in Europe, the first disease-modifying therapy for treating DMD caused by nonsense mutations. The use of ataluren in DMD is supported by positive results from phase IIb and phase III studies in which the treatment produced marked improvements in the 6-minute walk test, timed function tests such as the 10 m walk/run test and the 4-stair ascent/descent test compared with placebo.
    [Show full text]
  • For Cystic Fibrosis (Review)
    Cochrane Database of Systematic Reviews Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis (Review) Aslam AA, Higgins C, Sinha IP, Southern KW Aslam AA, Higgins C, Sinha IP, Southern KW. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database of Systematic Reviews 2017, Issue 1. Art. No.: CD012040. DOI: 10.1002/14651858.CD012040.pub2. www.cochranelibrary.com Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis (Review) Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 7 OBJECTIVES ..................................... 8 METHODS ...................................... 8 RESULTS....................................... 12 Figure1. ..................................... 13 Figure2. ..................................... 16 DISCUSSION ..................................... 20 AUTHORS’CONCLUSIONS . 22 ACKNOWLEDGEMENTS . 22 REFERENCES ..................................... 23 CHARACTERISTICSOFSTUDIES . 26 DATAANDANALYSES. 33 Analysis 1.1. Comparison 1 Ataluren versus placebo, Outcome 1 FEV - mean relative change from baseline. 35 Analysis 1.2. Comparison 1
    [Show full text]
  • Ataluren Stimulates Ribosomal Selection of Near-Cognate Trnas to Promote Nonsense Suppression
    Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression Bijoyita Roya,b,1, Westley J. Friesenb,1, Yuki Tomizawab, John D. Leszykc, Jin Zhuob, Briana Johnsonb, Jumana Dakkab, Christopher R. Trottab, Xiaojiao Xueb,d,e, Venkateshwar Mutyame,f, Kim M. Keelingd,e, James A. Mobleyg, Steven M. Rowee,f, David M. Bedwelld,e, Ellen M. Welchb, and Allan Jacobsona,2 aDepartment of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655-0122; bPTC Therapeutics Inc., South Plainfield, NJ 07080; cDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655-0122; dDepartment of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294; eGregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294; fDepartment of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and gDepartment of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294 Edited by Rachel Green, Johns Hopkins University, Baltimore, MD, and approved September 6, 2016 (received for review April 1, 2016) A premature termination codon (PTC) in the ORF of an mRNA promote therapeutic nonsense suppression (1, 3). To date, ataluren generally leads to production of a truncated polypeptide, accelerated has been shown to restore function to more than 20 different degradation of the mRNA, and depression of overall mRNA ex- disease-specific or reporter nonsense alleles in systems ranging in pression. Accordingly, nonsense mutations cause some of the most complexity from in vitro translation to cell culture to mouse models severe forms of inherited disorders. The small-molecule drug ataluren and human patients (1, 3–14).
    [Show full text]
  • Annexes to the Annual Report of the European Medicines Agency 2014
    Annexes to the annual report of the European Medicines Agency 2014 Table of contents Annex 1 – Members of the Management Board ............................................................................. 2 Annex 2 – Members of the Committee for Medicinal Products for Human Use ................................... 4 Annex 3 – Members of the Pharmacovigilance Risk Assessment Committee ...................................... 6 Annex 4 – Members of the Committee for Medicinal Products for Veterinary Use ............................... 8 Annex 5 – Members of the Committee on Orphan Medicinal Products ............................................ 10 Annex 6 – Members of the Committee on Herbal Medicinal Products .............................................. 12 Annex 07 – Committee for Advanced Therapies .......................................................................... 14 Annex 8 – Members of the Paediatric Committee ........................................................................ 16 Annex 9 – Working parties and working groups .......................................................................... 18 Annex 10 – CHMP opinions in 2014 on medicinal products for human use ...................................... 22 Annex 11 – CVMP opinions in 2014 on medicinal products for veterinary use .................................. 36 Annex 12 – COMP opinions in 2014 on designation of orphan medicinal products ............................ 41 Annex 13 – HMPC European Union herbal monographs in 2014....................................................
    [Show full text]
  • Rxoutlook® 1St Quarter 2019
    ® RxOutlook 1st Quarter 2020 optum.com/optumrx a RxOutlook 1st Quarter 2020 Orphan drugs continue to feature prominently in the drug development pipeline In 1983 the Orphan Drug Act was signed into law. Thirty seven years later, what was initially envisioned as a minor category of drugs has become a major part of the drug development pipeline. The Orphan Drug Act was passed by the United States Congress in 1983 in order to spur drug development for rare conditions with high unmet need. The legislation provided financial incentives to manufacturers if they could demonstrate that the target population for their drug consisted of fewer than 200,000 persons in the United States, or that there was no reasonable expectation that commercial sales would be sufficient to recoup the developmental costs associated with the drug. These “Orphan Drug” approvals have become increasingly common over the last two decades. In 2000, two of the 27 (7%) new drugs approved by the FDA had Orphan Designation, whereas in 2019, 20 of the 48 new drugs (42%) approved by the FDA had Orphan Designation. Since the passage of the Orphan Drug Act, 37 years ago, additional regulations and FDA designations have been implemented in an attempt to further expedite drug development for certain serious and life threatening conditions. Drugs with a Fast Track designation can use Phase 2 clinical trials to support FDA approval. Drugs with Breakthrough Therapy designation can use alternative clinical trial designs instead of the traditional randomized, double-blind, placebo-controlled trial. Additionally, drugs may be approved via the Accelerated Approval pathway using surrogate endpoints in clinical trials rather than clinical outcomes.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae PERSONAL INFORMATION Ulrike Schara WORK EXPERIENCE 1991- 1997 Education in Paediatrics Paediatric Outpatient Centre,City Hospital Gelsenkirchen. (Germany) Paediatric Outpatient Centre. City Hospital Gelsenkirchen.<br/>Childrens Hospital, Ruhr University Bochum<br/> 1998- 2002 Senior Neuropediatrics Children&apos;s University Hospital Bochum (Germany) . 2002- 2003 Head of Neuropediatrics Children&apos;s University Hospital Bochum (Germany) 2004- 2006 Head of Neuropediatrics Children&apos;s Hospital, City of Neuss (Germany) 2007- Present Head of the Neuropaediatric Outpatient Centre and Consultant for Neuropaediatrics University of Essen (Germany) EDUCATION AND TRAINING 1991- 2012 MD, Professor Ruhr University of Bochum, Germany University of Essen (Germany) ADDITIONAL INFORMATION Expertise Publications Publcations of the past 5 years 1.Rudnik-Schöneborn S, Tölle D, Senderek J, Eggermann K, Elbracht M, Kornak U, von der Hagen M, Kirschner J, Leube B, Müller-Felber W, Schara U, von Au K, Wieczorek D, Bußmann C, Zerres K. Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: experiences from a German genetic laboratory on the basis of 1206 index patients. Clin Genet. 2016 Jan;89(1):34-43 2.Byrne S, Jansen L, U-King-Im JM, Siddiqui A, Lidov HG, Bodi I, Smith L, Mein R, Cullup T, Dionisi-Vici C, Al-Gazali L, Al-Owain M, Bruwer Z, Al Thihli K, El-Garhy R, Flanigan KM, Manickam K, Zmuda E, Banks W, Gershoni-Baruch R, Mandel H, Dagan E, Raas-Rothschild A, Barash H, Filloux F, Creel D, Harris M, Hamosh A, Kölker S, Ebrahimi-Fakhari D, Hoffmann GF, Manchester D, Boyer PJ, Manzur AY, Lourenco CM, Pilz DT, Kamath A, Prabhakar P, Rao VK, Rogers RC, Ryan MM, Brown NJ, McLean CA, Said E, Schara U, Stein A, Sewry C, Travan L, Wijburg FA, Zenker M, Mohammed S, Fanto M, Gautel M, Jungbluth H.
    [Show full text]
  • Drug Utilization Review Board
    Drug Utilization Review Board Oklahoma Health Care Authority 2401 N.W. 23rd Street, Suite 1A Oklahoma City, Oklahoma 73107 Ponca Room The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS MEMORANDUM TO: Drug Utilization Review Board Members FROM: Chris Le, Pharm.D. SUBJECT: Online Packet Contents DATE: October 1, 2013 NOTE: The DUR Board will not meet. Enclosed are the following items: DUR Board Recommendations Memorandum from September 11, 2013 – See Appendix A. MCAU & SoonerCare Atypical Rx Program Update – See Appendix B Annual Review of Kalydeco™ (Ivacaftor) – See Appendix C. Annual Review of Makena® (17-Hydroxyprogesterone Caproate) – See Appendix D. Annual Review of Cinryze® and Berinert® (C1 Esterase Inhibitors), Kalbitor® (Ecallentide), and Firazyr® (Icatibant) – See Appendix E. Annual Review of Xiaflex® (Collagenase Clostridium Histolyticum) – See Appendix F. Annual Review of Xgeva® (Denosumab) – See Appendix G. FDA and DEA Updates – See Appendix H. Future Business: Annual Reviews - Botulinum Toxins, Antihypertensive Medications, Glaucoma Medications, Nasal Allergy Medications, Pediculicides, Prenatal Vitamins ORI-4403 • P.O. BOX 26901 • OKLAHOMA CITY, OKLAHOMA 73126-0901 • (405) 271-9039 • FAX: (405) 271-2615 The University of Oklahoma Health Sciences Center COLLEGE OF PHARMACY PHARMACY MANAGEMENT CONSULTANTS Memorandum Date: September 11, 2013 To: Nancy Nesser, Pharm.D., J.D. Pharmacy Director Oklahoma Health Care Authority From: Bethany Holderread, Pharm.D. Clinical Pharmacist Pharmacy Management Consultants Subject: DUR Board Recommendations from Meeting of September 11, 2013 Recommendation 1: Vote to Prior Authorize Tysabri® (Natalizumab) MOTION CARRIED by unanimous approval. The College of Pharmacy recommends medical and pharmacy prior authorization of Tysabri® (natalizumab). Consideration will be based on all of the following criteria: 1.
    [Show full text]
  • Virtual Posters
    VIRTUAL POSTERS Poster # Title Primary Author First Name Primary Author Last Name City State Brain Tumors/OnCology 200 Clinical and Molecular Features of Atypical Pediatric Neurocytoma: A Case Series Adam Kalawi San Diego CA 201 Atypical molecular features of pediatric tectal glioma: A single institutional series Maayan Yakir San Diego CA 202 Hypercalcemia in Use of the Ketogenic Diet for Treatment of Spinal Lipoma Lila Worden Hartford CT Cognitive/Behavioral Disorders (inCluding Autism) 203 The neurodevelopmental profile of HIVEP2-related disorder Alisa Mo Boston MA 204 Burden of disease in a rare neurologic disorder: caregiver’s perspective on Aicardi Goutières Syndrome Francesco Gavazzi Philadelphia PA 205 Diagnosis delay in Aicardi Goutières Syndrome: a parents’ perspective Francesco Gavazzi Philadelphia PA 206 Validation of the telemedicine application of the Gross Motor Function Measure-88 Francesco Gavazzi Philadelphia PA 207 Altered Cerebellar White Matter in Sensory Processing Dysfunction Is Associated With Impaired Multisensory Integration and Attention Elysa Marco San Rafael CA 208 A comparison of the adaptive and autistic behavior in three developmental epileptic encephalopathies – SLC6A1, SCN2A, STXBP1 Kimberly Goodspeed Dallas TX 209 Spatial topography of cross-frequency coupling during NREM sleep is disrupted in Rett Syndrome Patrick Davis Boston MA 210 Serotonin transporter genotype predicts adaptive behavior outcomes in children with autism Kevin Shapiro Los Angeles CA 211 Clinical and Numerical presentation of Neurocognitive
    [Show full text]
  • Deflazacort, Eteplirsen, and Golodirsen for Duchenne Muscular Dystrophy: Effectiveness and Value
    Deflazacort, Eteplirsen, and Golodirsen for Duchenne Muscular Dystrophy: Effectiveness and Value Final Evidence Report August 15, 2019 Prepared for ©Institute for Clinical and Economic Review, 2019 University of Illinois at Chicago College of Pharmacy ICER Staff and Consultants Modeling Group Grace A. Lin, MD Catherine Koola, MPH Surrey M. Walton, PhD Associate Professor of Program Manager Associate Professor, Pharmacy Systems, Outcomes and Policy Medicine and Health Policy ICER Assistant Director, Center for Pharmacoepidemiology and University of California, San Pharmacoeconomic Research Francisco University of Illinois at Chicago College of Pharmacy Foluso Agboola, MBBS, MPH Matt Seidner Nicole Boyer, PhD Director, Evidence Synthesis Program Director Postdoctoral Fellow ICER ICER The University of Chicago Noemi Fluetsch, MPH Rick Chapman, PhD, MS Danny Quach, PharmD Research Assistant, Health Director of Health Economics University of Illinois at Chicago College of Pharmacy Economics and Outcomes ICER Research ICER Varun M. Kumar, MBBS, MPH, David Rind, MD, MSc MSc Chief Medical Officer Associate Director of Health ICER Economics ICER The role of the University of Illinois (UIC) College of Pharmacy Sumeyye Samur, PhD, MS Steve Pearson, MD, MSc Modeling Group is limited to the development of the cost- Health Economist President effectiveness model, and the resulting ICER reports do not ICER ICER necessarily represent the views of the UIC. DATE OF PUBLICATION: August 15, 2019 Grace Lin served as the lead author for the report and wrote the background, other benefits, and contextual considerations sections of the report. Foluso Agboola was responsible for the oversight of the systematic review and authorship of the comparative clinical effectiveness section with the support of Ifeoma Otuonye and Noemi Fluetsch.
    [Show full text]