Ecological and Evolutionary Consequences Of

Total Page:16

File Type:pdf, Size:1020Kb

Ecological and Evolutionary Consequences Of View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by D-Scholarship@Pitt ECOLOGICAL AND EVOLUTIONARY CONSEQUENCES OF PLANT GROWTH ON SERPENTINE SOIL: EFFECTS OF SOIL METALS ON PLANT MORPHOLOGY, METAL ACCUMULATION, PLANT-POLLINATOR INTERACTIONS, AND POLLEN- PISTIL INTERACTIONS by George A. Meindl BS, Humboldt State University, 2007 MA, Humboldt State University, 2009 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Biological Sciences University of Pittsburgh 2014 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by George A. Meindl It was defended on November 3, 2014 and approved by Dr. Daniel Bain, Dept. of Geology and Planetary Science, University of Pittsburgh Dr. Walter Carson, Dept. of Biological Sciences, University of Pittsburgh Dr. Susan Kalisz, Dept. of Biological Sciences, University of Pittsburgh Dr. Rick Relyea, Dept. of Biological Sciences, University of Pittsburgh Dissertation Advisor: Dr. Tia-Lynn Ashman, Dept. of Biological Sciences, University of Pittsburgh ii Copyright © by George A. Meindl 2014 iii ECOLOGICAL AND EVOLUTIONARY CONSEQUENCES OF PPLANTLANT GROWTH ON SERPENTINE SOIL: EFFECTS OF SOIL METALS ON PLANT MORPHOLOGY, METAL ACCUMULATION, PLANT-POLLINATOR INTERACTIONS, AND POLLEN-PISTIL INTERACTIONS George A. Meindl, PhD University of Pittsburgh, 2014 Edaphic factors are a strong selective force in shaping both plant species distributions and the diversification of many lineages. Specifically, adaptation to novel soil environments can result in species-level changes in floral morphology, phenology, or chemistry, each of which may affect plant reproduction. However, whether floral chemical changes alter plant reproduction following colonization of novel soils is poorly described. In this work, I investigate the effects of soil chemistry on plant chemistry, plant-animal interactions, and pollen-pistil interactions using serpentine-adapted plant species to help determine the effects of the soil chemical environment on plant reproduction and reproductive isolation. I show that (1) plants accumulate soil metals into vegetative and reproductive organs, as well as into pollen and nectar, (2) floral metal accumulation deters generalist pollinators and filters natural pollinator communities, and (3) floral metal accumulation alters pollen grain germination. These findings have important implications for plant reproduction on metal-rich soils. For example, my research has identified two novel mechanisms through which serpentine soil chemistry may foster reproductive isolation between species or populations growing in disparate soil environments. First, floral metal accumulation may result in pollinator filtering. Specifically, closely related plant species occurring in sympatry that differ in floral metal accumulation may become reproductively isolated through reduced pollinator sharing. Second, floral metal accumulation may provide a iv mechanism through which gene flow is reduced between serpentine and non-serpentine populations by altering pollen germination and pollen-pistil compatibility. I found that elevated metal concentrations in the pistils of maternal plants limits pollen tube growth towards ovules in non-adapted species. Furthermore, my results suggest that using metal hyperaccumulating plants in phytoremediation should be considered with caution. While I found that generalist pollinators exhibited decreased visitation to Ni-enriched flowers, they still visited these flowers, and therefore likely ingested a potentially toxic resource. If bioaccumulation of heavy metals occurs in plant-pollinator systems near metal-contaminated soils, pollinator populations may become threatened. This study highlights the influence of the soil environment on plant ecological interactions and plant evolution, and elucidates the role of the edaphic factor on plant reproduction. v TABLE OF CONTENTS PREFACE ............................................................................................................................... XXII 1.0 INTRODUCTION................................................................................................................ 1 2.0 EDAPHIC FACTORS AND PLANT-INSECT INTERACTIONS: DIRECT AND INDIRECT EFFECTS OF SERPENTINE SOIL ON FLORIVORES AND POLLINATORS ........................................................................................................................... 7 2.1 INTRODUCTION ....................................................................................................... 7 2.2 METHODS ................................................................................................................. 10 2.2.1 Study System .................................................................................................. 10 2.2.2 Study Sites ....................................................................................................... 11 2.2.3 Abiotic and Biotic Interactions in Natural Populations ............................. 12 2.2.3.1 Floral display/flower chemistry ......................................................... 12 2.2.3.2 Pollinators ............................................................................................ 13 2.2.3.3 Florivores ............................................................................................. 14 2.2.4 Abiotic and Biotic Interactions for Experimental Plants ........................... 15 2.2.4.1 Floral display/flower chemistry ......................................................... 15 2.2.4.2 Pollinators ............................................................................................ 16 2.2.4.3 Florivores ............................................................................................. 17 2.3 RESULTS ................................................................................................................... 18 vi 2.3.1 Abiotic and Biotic Interactions in Natural Populations ............................. 18 2.3.1.1 Floral display/flower chemistry ......................................................... 18 2.3.1.2 Pollinators ............................................................................................ 18 2.3.1.3 Florivores ............................................................................................. 19 2.3.2 Abiotic and Biotic Interactions for Experimental Plants ........................... 19 2.3.2.1 Floral display/flower chemistry ......................................................... 19 2.3.2.2 Pollinators ............................................................................................ 20 2.3.2.3 Florivores ............................................................................................. 20 2.4 DISCUSSION ............................................................................................................. 21 3.0 NICKEL ACCUMULATION IN LEAVES, FLORAL ORGANS AND REWARDS VARIES BY SERPENTINE SOIL AFFINITY ....................................................................... 42 3.1 INTRODUCTION ..................................................................................................... 42 3.2 METHODS ................................................................................................................. 45 3.2.1 Study system ................................................................................................... 45 3.2.2 Experimental design ...................................................................................... 46 3.2.3 Organ/reward collection and chemical analysis .......................................... 47 3.2.4 Statistical analysis .......................................................................................... 48 3.3 RESULTS ................................................................................................................... 49 3.4 DISCUSSION ............................................................................................................. 50 3.5 CONCLUSIONS ........................................................................................................ 55 4.0 VARIATION IN NICKEL ACCUMULATION IN LEAVES, REPRODUCTIVE ORGANS AND FLORAL REWARDS IN TWO HYPERACCUMULATING BRASSICACEAE SPECIES...................................................................................................... 60 vii 4.1 INTRODUCTION ..................................................................................................... 60 4.2 MATERIALS AND METHODS .............................................................................. 63 4.2.1 Study system ................................................................................................... 63 4.2.2 Experimental design ...................................................................................... 64 4.2.3 Organ/reward collection and chemical analysis .......................................... 65 4.2.4 Statistical analysis .......................................................................................... 66 4.3 RESULTS ................................................................................................................... 67 4.4 DISCUSSION ............................................................................................................. 68 5.0 THE EFFECTS OF ALUMINUM AND NICKEL IN NECTAR ON THE FORAGING BEHAVIOR
Recommended publications
  • Wild Bees of Grand Staircase-Escalante National Monument: Richness, Abundance, and Spatio-Temporal Beta-Diversity
    Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity Olivia Messinger Carril1, Terry Griswold2, James Haefner3 and Joseph S. Wilson4 1 Santa Fe, NM, United States of America 2 USDA-ARS Pollinating Insects Research Unit, Logan, UT, United States of America 3 Biology Department, Emeritus Professor, Utah State University, Logan, UT, United States of America 4 Department of Biology, Utah State University - Tooele, Tooele, UT, United States of America ABSTRACT Interest in bees has grown dramatically in recent years in light of several studies that have reported widespread declines in bees and other pollinators. Investigating declines in wild bees can be difficult, however, due to the lack of faunal surveys that provide baseline data of bee richness and diversity. Protected lands such as national monuments and national parks can provide unique opportunities to learn about and monitor bee populations dynamics in a natural setting because the opportunity for large-scale changes to the landscape are reduced compared to unprotected lands. Here we report on a 4-year study of bees in Grand Staircase-Escalante National Monument (GSENM), found in southern Utah, USA. Using opportunistic collecting and a series of standardized plots, we collected bees throughout the six-month flowering season for four consecutive years. In total, 660 bee species are now known from the area, across 55 genera, and including 49 new species. Two genera not previously known to occur in the state of Utah were discovered, as well as 16 new species records for the state. Bees include ground-nesters, cavity- and twig-nesters, cleptoparasites, narrow specialists, generalists, solitary, and social species.
    [Show full text]
  • Macroevolutionary Patterns of Glucosinolate Defense and Tests of Defense-Escalation and Resource Availability Hypotheses
    Research Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses N. Ivalu Cacho1,2, Daniel J. Kliebenstein3,4 and Sharon Y. Strauss1 1Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA; 2Instituto de Biologıa, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico; 3Department of Plant Sciences, University of California. One Shields Avenue, Davis, CA 95616, USA; 4DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark Summary Author for correspondence: We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassi- N. Ivalu Cacho caceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven’s Tel: +1 530 304 5391 plant–herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting Email: [email protected] low-resource or harsh environments invest more in defense, as predicted by the resource Received: 13 April 2015 availability hypothesis (RAH). Accepted: 8 June 2015 We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting New Phytologist (2015) 208: 915–927 varied environments and soils. doi: 10.1111/nph.13561 We found weak to moderate phylogenetic signal in glucosinolate classes
    [Show full text]
  • California's Serpentine
    CALIFORNIA'S SERPENTINE by Art Kruckeberg Serpentine Rock Traditional teaching in geology tells us that rocks Californians boast of their world-class tallest and can be divided into three major categories—igneous, oldest trees, highest mountain and deepest valley; but metamorphic, and sedimentary. The igneous rocks, that "book of records" can claim another first for the formed by cooling from molten rock called magma, state. California, a state with the richest geological are broadly classified as mafic or silicic depending tapestry on the continent, also has the largest exposures mainly on the amount of magnesium and iron or silica of serpentine rock in North America. Indeed, this present. Serpentine is called an ultramafic rock because unique and colorful rock, so abundantly distributed of the presence of unusually large amounts of around the state, is California's state rock. For magnesium and iron. Igneous rocks, particularly those botanists, the most dramatic attribute of serpentine is that originate within the earth's crust, above the its highly selective, demanding influence on plant life. mantle, contain small but significant amounts of The unique flora growing on serpentine in California illustrates the ecological truism that though regional climate controls overall plant distribution, regional Views of the classic serpentine areas at New Idria in San Benito County. The upper photo was taken in 1932, the lower in 1960 geology controls local plant diversity. Geology is used of the same view; no evident change in 28 years. Photos here in its broad sense to include land forms, rocks courtesy of the U.S. Forest Service and Dr.
    [Show full text]
  • Woolsey Fire Cleanup Sampling and Analysis Plan
    Woolsey Fire Cleanup Sampling and Analysis Plan Santa Monica Mountains National Recreation Area Paramount Ranch, Peter Strauss Ranch, Morrison Ranch, Rocky Oaks, Cooper Brown, Dragon Property, Miller Property, Arroyo Sequit, Circle X Ranch Prepared by Terraphase Engineering, Inc. 5/27/2020 Santa Monica Mountains National Recreation Area May 27, 2020 Page | i Signatories: [Federal Government Lead] [Signature] [Date Signed] [Cleanup Lead] [Signature] [Date Signed] [Legal Lead] [Signature] [Date Signed] [Regional Coordinator] [Signature] [Date Signed] [Contaminated Sites Program] [Signature] [Date Signed] By signing above, the signatories verify that they understand and concur with the information, procedures, and recommendations presented herein. Santa Monica Mountains National Recreation Area May 27, 2020 Page | ii Table of Contents List of Figures ........................................................................................................................................ v List of Tables .......................................................................................................................................... v 1 Introduction .................................................................................................................................. 1-1 1.1 CERCLA and National Park Service (NPS) Authority ................................................... 1-1 1.2 Purpose of Field Sampling...................................................................................................... 1-2 2 Site Description
    [Show full text]
  • Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia)
    Article Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia) Valeria Cardelli 1,*, Stefania Cocco 1, Alberto Agnelli 2, Serenella Nardi 3, Diego Pizzeghello 3, Maria J. Fernández‐Sanjurjo 4 and Giuseppe Corti 1 1 Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, 60131, Italy; [email protected] (S.C.); [email protected] (G.C.) 2 Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Perugia, 06121, Italy; [email protected] 3 Department of Agronomy, Food, Natural Resources, Animals and the Environment, Università degli Studi di Padova, Legnaro, 35020, Italy; [email protected] (S.N.); [email protected] (D.P.) 4 Department of Soil and Agronomic Chemistry, Universidade de Santiago de Compostela, Lugo, 27001, Spain; [email protected] * Correspondence: [email protected]; Tel.: +39‐338‐599‐6867 Academic Editors: Adele Muscolo and Miroslava Mitrovic Received: 15 March 2017; Accepted: 19 April 2017; Published: 22 April 2017 Abstract: Physical and chemical soil properties are generally correlated with the parent material, as its composition may influence the pedogenetic processes, the content of nutrients, and the element biocycling. This research studied the chemical and biochemical properties of the A horizon from soils developed on different rocks like amphibolite, serpentinite, phyllite, and granite under a relatively similar climatic regime from Galicia (northwest Spain). In particular, the effect of the parent material on soil evolution, organic carbon sequestration, and the hormone‐like activity of humic and fulvic acids were tested. Results indicated that all the soils were scarcely fertile because of low concentrations of available P, exchangeable Ca (except for the soils on serpentinite and phyllite), and exchangeable K, but sequestered relevant quantities of organic carbon.
    [Show full text]
  • Abies Bracteata Revised 2011 1 Abies Bracteata (D. Don) Poit
    Lead Forest: Los Padres National Forest Forest Service Endemic: No Abies bracteata (D. Don) Poit. (bristlecone fir) Known Potential Synonym: Abies venusta (Douglas ex Hook.) K. Koch; Pinus bracteata D. Don; Pinus venusta Douglas ex Hook (Tropicos 2011). Table 1. Legal or Protection Status (CNDDB 2011, CNPS 2011, and Other Sources). Federal Listing Status; State Heritage Rank California Rare Other Lists Listing Status Plant Rank None; None G2/S2.3 1B.3 USFS Sensitive Plant description: Abies bracteata (Pinaceae) (Fig. 1) is a perennial monoecious plant with trunks longer than 55 m and less than 1.3 m wide. The branches are more-or-less drooping, and the bark is thin. The twigs are glabrous, and the buds are 1-2.5 cm long, sharp-pointed, and non- resinous. The leaves are less than 6 cm long, are dark green, faintly grooved on their upper surfaces, and have tips that are sharply spiny. Seed cones are less than 9 cm long with stalks that are under15 mm long. The cones have bracts that are spreading, exserted, and that are 1.5–4.5 cm long with a slender spine at the apex. Taxonomy: Abies bracteata is a fir species and a member of the pine family (Pinaceae). Out of the fir species growing in North America (Griffin and Critchfield 1976), Abies bracteata has the smallest range and is the least abundant. Identification: Many features of A. bracteata can be used to distinguish this species from other conifers, including the sharp-tipped needles, thin bark, club-shaped crown, non-resinous buds, and exserted spine tipped bracts (Gymnosperms Database 2010).
    [Show full text]
  • Synthesis and Future Directions: What Have Harsh Environments Taught Us About Ecology, Evolution, Conservation and Restoration
    In: Plant Ecology and Evolution in Harsh Environments ISBN: 978-1-63321-955-7 Editors: N. Rajakaruna, R. S. Boyd and T. B. Harris © 2014 Nova Science Publishers, Inc. The exclusive license for this PDF is limited to personal website use only. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 16 SYNTHESIS AND FUTURE DIRECTIONS: WHAT HAVE HARSH ENVIRONMENTS TAUGHT US ABOUT ECOLOGY, EVOLUTION, CONSERVATION, AND RESTORATION? Nishanta Rajakaruna1, 2,*, Robert S. Boyd3 and Tanner B. Harris4 1College of the Atlantic, Bar Harbor, ME, USA 2Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa 3Department of Biological Sciences, Auburn University, Auburn, AL, USA 4WRA, Inc., San Rafael, CA, USA INTRODUCTION Harsh environments, due to their extreme conditions and unique biota, have piqued human interest over the centuries. Botanists interested in the study of plant diversity are especially drawn to harsh environments because they are frequently characterized by unique plant communities with relatively high proportions of rare and endemic species. Such plant communities, which are often restricted to fragmented islands of habitat, offer exceptional opportunities for exploring biogeographical and ecological theory (Harrison, 2011), including aspects of plant-plant (Davies, 2011; Moore & Elmendorf, 2011) and cross-kingdom (Strauss & Boyd, 2011; Wolf & Thorp, 2011) interactions.
    [Show full text]
  • Transfer of Heavy Metals Through Terrestrial Food Webs: a Review
    Gall, et al. 2015. Published in Environmental Monitoring and Assessment. 187:201 Transfer of heavy metals through terrestrial food webs: areview Jillian E. Gall & Robert S. Boyd & Nishanta Rajakaruna Abstract Heavy metals are released into the environ- metal-tolerant insects, which occur in naturally high- ment by both anthropogenic and natural sources. Highly metal habitats (such as serpentine soils) and have adap- reactive and often toxic at low concentrations, they may tations that allow them to tolerate exposure to relatively enter soils and groundwater, bioaccumulate in food high concentrations of some heavy metals. Some webs, and adversely affect biota. Heavy metals also metallophyte plants are hyperaccumulators of certain may remain in the environment for years, posing long- heavy metals and new technologies using them to clean term risks to life well after point sources of heavy metal metal-contaminated soil (phytoextraction) may offer pollution have been removed. In this review, we compile economically attractive solutions to some metal pollu- studies of the community-level effects of heavy metal tion challenges. These new technologies provide incen- pollution, including heavy metal transfer from soils to tive to catalog and protect the unique biodiversity of plants, microbes, invertebrates, and to both small and habitats that have naturally high levels of heavy metals. large mammals (including humans). Many factors con- tribute to heavy metal accumulation in animals includ- Keywords Ecosystem health . Metal toxicity. Metal ing behavior, physiology, and diet. Biotic effects of hyperaccumulation . Bioaccumulation . Environmental heavy metals are often quite different for essential and pollution . Phytoremediation non-essential heavy metals, and vary depending on the specific metal involved.
    [Show full text]
  • Impact of Various Amendments on Immobilization and Phytoavailability of Nickel and Zinc in a Contaminated floodplain Soil
    Int. J. Environ. Sci. Technol. (2015) 12:2765–2776 DOI 10.1007/s13762-014-0713-x ORIGINAL PAPER Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil S. M. Shaheen • J. Rinklebe • M. H. Selim Received: 15 April 2014 / Revised: 17 October 2014 / Accepted: 10 November 2014 / Published online: 4 December 2014 Ó Islamic Azad University (IAU) 2014 Abstract The immobilization of toxic metals in soils respectively. The addition of SBFL, CBD, and LS leads to using amendments is a cost-effective remediation tech- the highest decreasing rate of concentrations of Ni in plants nique for contaminated soils. Therefore, this study aimed to (56–68 %) and Zn (40–49 %). The results demonstrate the assess the efficiency of various amendments to immobilize high potential of CBD, SBFL, LS, BE, AC, and BI for the nickel (Ni) and zinc (Zn) in soil and reduce their phyto- immobilization of Ni and Zn in contaminated floodplain availability. A greenhouse pot experiment was established soils. with a contaminated agricultural floodplain soil. The soil was treated with activated carbon (AC), bentonite (BE), Keywords Low-cost immobilizing agents Á Nano- biochar (BI), cement bypass kiln dust (CBD), chitosan hydroxyapatite Á Organo-clay Á Rapeseed Á Remediation Á (CH), coal fly ash (FA), limestone (LS), nano-hydroxyap- Toxic metals atite (HA), organo-clay (OC), sugar beet factory lime (SBFL), and zeolite (Z) with an application rate of 1 % (0.2 % for HA) and cultivated by rapeseed (Brassica na- Introduction pus). After plant harvesting, the soil was analyzed for water-soluble and geochemical fractions of Ni and Zn.
    [Show full text]
  • Wild Bees of Grand Staircase-Escalante National Monument: Richness, Abundance, and Spatio-Temporal Beta-Diversity
    Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity Olivia Messinger Carril1, Terry Griswold2, James Haefner3 and Joseph S. Wilson4 1 Santa Fe, NM, United States of America 2 USDA-ARS Pollinating Insects Research Unit, Logan, UT, United States of America 3 Biology Department, Emeritus Professor, Utah State University, Logan, UT, United States of America 4 Department of Biology, Utah State University - Tooele, Tooele, UT, United States of America ABSTRACT Interest in bees has grown dramatically in recent years in light of several studies that have reported widespread declines in bees and other pollinators. Investigating declines in wild bees can be difficult, however, due to the lack of faunal surveys that provide baseline data of bee richness and diversity. Protected lands such as national monuments and national parks can provide unique opportunities to learn about and monitor bee populations dynamics in a natural setting because the opportunity for large-scale changes to the landscape are reduced compared to unprotected lands. Here we report on a 4-year study of bees in Grand Staircase-Escalante National Monument (GSENM), found in southern Utah, USA. Using opportunistic collecting and a series of standardized plots, we collected bees throughout the six-month flowering season for four consecutive years. In total, 660 bee species are now known from the area, across 55 genera, and including 49 new species. Two genera not previously known to occur in the state of Utah were discovered, as well as 16 new species records for the state. Bees include ground-nesters, cavity- and twig-nesters, cleptoparasites, narrow specialists, generalists, solitary, and social species.
    [Show full text]
  • EFFECTS of LAND USE on NATIVE BEE DIVERSITY Byron
    THE BEES OF THE AMERICAN AND COSUMNES RIVERS IN SACRAMENTO COUNTY, CALIFORNIA: EFFECTS OF LAND USE ON NATIVE BEE DIVERSITY Byron Love B.S., California State University, Humboldt, 2003 THESIS Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in BIOLOGICAL SCIENCES (Biological Conservation) at CALIFORNIA STATE UNIVERSITY, SACRAMENTO SUMMER 2010 © 2010 Byron Love ALL RIGHTS RESERVED ii THE BEES OF THE AMERICAN AND COSUMNES RIVERS IN SACRAMENTO COUNTY, CALIFORNIA: EFFECTS OF LAND USE ON NATIVE BEE DIVERSITY A Thesis by Byron Love Approved by: __________________________________, Committee Chair Dr. Shannon Datwyler __________________________________, Second Reader Dr. Patrick Foley __________________________________, Third Reader Dr. Jamie Kneitel __________________________________, Fourth Reader Dr. James W. Baxter Date:____________________ iii Student: Byron Love I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis. ______________________,Graduate Coordinator _________________ Dr. James W. Baxter Date Department of Biological Sciences iv Abstract of THE BEES OF THE AMERICAN AND COSUMNES RIVERS IN SACRAMENTO COUNTY, CALIFORNIA: EFFECTS OF LAND USE ON NATIVE BEE DIVERSITY by Byron Love A survey of the bees in semi-natural habitat along the American and Cosumnes rivers in Sacramento County, California, was conducted during the flower season of 2007. Although the highly modified landscapes surrounding the two rivers is distinctly different, with urban and suburban development dominant along the American River, and agriculture along the Cosumnes River, there is no difference in the proportion of modified landscape between the two rivers.
    [Show full text]
  • Streptanthus Niger (Tiburon Jewelflower)
    Streptanthus niger (Tiburon jewelflower) 5-Year Review: Summary and Evaluation Photo by Angela Picco, Sacramento Fish and Wildlife Office U.S. Fish and Wildlife Service Sacramento Fish and Wildlife Office Sacramento, California August 2010 5-YEAR REVIEW Streptanthus niger (Tiburon jewelflower) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. Our original listing of a species as endangered or threatened is based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of a species. In the 5-year review, we consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed or last reviewed. If we recommend a change in listing status based on the results of the 5-year review, we must propose to do so through a separate rule-making process defined in the Act that includes public review and comment.
    [Show full text]