'One Toxicology', 'Ecosystem Health'

Total Page:16

File Type:pdf, Size:1020Kb

'One Toxicology', 'Ecosystem Health' Veterinaria Italiana, 45 (1), 97‐110 ‘One Toxicology’, ‘Ecosystem Health’ and ‘One Health’ Val Beasley, DVM, PhD Summary increasing efficiency to facilitate diagnosis and ‘One Health’ as a discipline links human and management of poisoning; to prevent veterinary medicine as co‐equal partners in an unwanted, unwise, and unnecessary toxic increasingly efficient joint venture into health injury to human, animal, plant, and microbial promotion and prioritised research. ‘One components of biodiversity; to decrease Toxicology’ is proposed as a way to reunify nutrients available that enable toxigenic toxicology as a component of ‘Ecosystem species; and to prevent releases of chemical Health’ and the encompassing ‘One Health’. contaminants that indirectly set the stage for Ecotoxicology, which includes wild animal, infectious diseases. plant and microbial communities, is a critical Keywords component of ‘Ecosystem Health’. ‘One Ecosystem, Health, Medicine, One Health, Toxicology’ is proposed to help hold Public health, Toxicology, Veterinary. toxicological sciences together and maintain intimate connections to medicine in general. ‘One Toxicology’ is efficient because bio‐ “Una sola tossicologia”, “Salute chemical systems are highly conserved and, dell’ecosistema” e “Una sola thus, when one group of species is at risk, salute” other groups of species are also often at risk. Fortunately, in the case of toxicological risk, Riassunto problems can be avoided, because humans can “Una sola salute”, intesa come disciplina, minimise exposures. Historically, human racchiude in sé la medicina umana e veterinaria health has benefited immensely from studies come componenti di pari livello di una “joint of the impacts of chemicals on laboratory venture” sempre più efficiente tesa alla promozione animals and wildlife. Similarly, veterinarians della salute e alla visione prioritaria della ricerca. and wildlife managers have learned from “Una sola tossicologia” è un approccio careless or accidental poisonings of humans to all’integrazione della tossicologia come componente protect the health of both domestic and wild di ʺSalute dell’ecosistemaʺ e che racchiude il animals. Yet, newly discovered emerging concetto di ʺUna sola saluteʺ. Lʹecotossicologia che toxicoses abound, and well‐known toxicoses comprende le comunità della fauna selvatica, persist – to the detriment of all life forms, vegetali e microbiotiche, è un componente including our own. Thus, in the ‘One intrinseco di “Salute dell’ecosistema”. Viene Toxicology’ of the future, disciplinary proposta “Una sola tossicologia” per riunire le boundaries should more rapidly blur. If this is tradizionali scienze tossicologiche preservando gli done well, physicians, various public health stretti legami con la medicina in generale. “Una specialists, veterinarians of many disciplines, sola tossicologia” è utile in quanto i sistemi wildlife health specialists, ecologists and an biochimici sono caratterizzati da un elevato grado array of toxicologists will share and rely upon di conservazione, pertanto, quando un gruppo di disparate sources of information with specie è a rischio, il rischio investe spesso anche Diplomate, American Board of Veterinary Toxicology, Professor of Veterinary, Wildlife and Ecological Toxicology, Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802, United States of America [email protected] © IZS A&M 2009 www.izs.it/vet_italiana Vol. 45 (1), Vet Ital 97 ‘One Toxicology’, ‘Ecosystem Health’ and ‘One Health’ Val Beasley altri gruppi. Fortunatamente, per quanto riguarda exposures of life forms to unwarranted il rischio tossicologico è possibile evitare problemi concentrations of chemicals. Unfortunately, poichè l’uomo è in grado di ridurre al minimo however, unnecessary chemically induced l’esposizione. Nella storia, la salute umana ha tratto diseases remain commonplace today around enormi benefici dallo studio dell’impatto degli the world. Direct poisonings involve all body agenti chimici su animali da laboratorio e fauna systems, cause acute and chronic dysfunction selvatica. Analogamente, veterinari ed esperti di and often induce lesions, malformations and fauna selvatica hanno imparato a proteggere la death. When the immune system is directly salute di animali domestici e selvatici da involved – as in the case of many heavy metals intossicazioni dovute a cause accidentali o and mycotoxins – or when it is indirectly comportamenti incauti. Tuttavia, si osserva involved – as in the case of toxicants that stress un’abbondanza di tossicosi emergenti di recente animals to prompt the chronic release of scoperta, con la persistenza di quelle ben note, a cortisol, the risks of infectious diseases scapito di tutte le forme di vita, compreso l’uomo. increase. Pertanto, nel concetto futuro di “Una sola Poisoning of predators at all scales of the tossicologia” i confini tra le varie discipline ecosystem may aggravate infectious disease dovranno svanire più rapidamente. Così facendo, problems. Small invertebrates, such as hydra, medici, esperti di salute pubblica, veterinari di copepods, damselfly larvae and dragonfly diverse discipline, professionisti nel campo della larvae eat trematode cercariae, reducing salute della fauna selvatica, ecologisti e una lunga infective loads (45). Other predators eat snails, schiera di tossicologi potranno condividere e thereby reducing their role in the vast asexual impiegare in modo più efficiente le molteplici fonti reproduction of trematodes. Various small di informazione per diagnosi e gestioni più agevoli predators (e.g. fish) eat mosquito larvae and delle intossicazioni che possono colpire i thus reduce the numbers of these vectors componenti della biodiversità; per evitare available to transmit viruses. Others eat intossicazioni indesiderate, inopportune e inutili ai rodents, birds and small predators, such as componenti umani, animali, vegetali e microbici opossums, raccoons and cats that may also della biodiversità; per ridurre i nutrienti che transmit diseases, especially when present in consentono la riproduzione delle specie tossicogene; high numbers. Of course, large predators test e per evitare il rilascio di contaminanti chimici herds of prey and the sick ‘typhoid Marys’ that all’origine di malattie infettive. tend to be slower and thus easy to catch are Parole chiave more likely to be removed from the population Ecosistema, Medicina, Salute, Salute pubblica, compared to those able to resist or rapidly Tossicologia, Una sola salute, Veterinaria. recover from infection. Removal of predators from the small to the very large, through any means, including poisoning, may thus set the Introduction stage for increased risks of infectious diseases. The widespread contamination of the environ‐ This paper endeavours to illustrate how ment with nutrients – as well as the poisoning ‘Ecosystem Health’, ‘One Health’ and ‘One of organisms that would normally trap Toxicology’ can better support one another. It nutrients – are ‘making life easy’ for toxigenic illustrates how ‘One Toxicology’ has existed species and they, in turn, poison humans, and how it should evolve to do a far better job animals and other life forms on Earth. of controlling both direct and indirect toxicant‐ Examples of toxicoses are used below to induced injury to human beings, other animals illustrate how toxicant‐induced problems come and other components of biodiversity. about and how a new, smarter, more efficient In terms of prevention of problems now and approach to ‘One Toxicology’ can contribute to into the future, toxicology should be the easy both ‘Ecosystem Health’ and ‘One Health’ not component of health stewardship. After all, the only in the short term but also far into the solution is simple: decrease or prevent future. 98 Vol. 45 (1), Vet Ital www.izs.it/vet_italiana © IZS A&M 2009 Val Beasley ‘One Toxicology’, ‘Ecosystem Health’ and ‘One Health’ ‘One Health’ and ‘One Given current conditions and trends, even if people, animals and other components of Toxicology’ in context biodiversity were no longer exposed to highly ‘One Health’ can be thought of as a broad infectious agents, toxic doses of anthropogenic discipline that relates to the understanding and chemicals and human‐induced elevations in care of human beings, domestic animals, natural toxins, Homo sapiens and other wildlife and other life forms – as individuals components of animal life would still be in and as populations. Hence, we have multiple peril. This is because it is essential to address health sciences and professions within the not only these concerns but also the other ‘big discipline of ‘One Health’. drivers’ of ecosystem disease. To have a regulated climate, a breathable atmosphere, Of course, in regard to one or more humans or clean air and clean water, fertile soils, diverse other animals, the word ‘health’ is used organisms from which we may discover routinely not only in the disciplinary sense but disease‐resistant strains of existing food‐ also to describe the overall condition of the producing plants and animals, and life forms individual or group of individuals examined from which we may derive new foods, within a given time frame. Without question, medicines and other commercial products, as when we consider health as a condition, we have well as the natural biota whose lives stimulate preferences; and the value judgment that we make the mental and emotional development and
Recommended publications
  • Characterization of a Domoic Acid Binding Site from Pacific Razor Clam
    Aquatic Toxicology 69 (2004) 125–132 Characterization of a domoic acid binding site from Pacific razor clam Vera L. Trainer∗, Brian D. Bill NOAA Fisheries, Northwest Fisheries Science Center, Marine Biotoxin Program, 2725 Montlake Blvd. E., Seattle, WA 98112, USA Received 5 November 2003; received in revised form 27 April 2004; accepted 27 April 2004 Abstract The Pacific razor clam, Siliqua patula, is known to retain domoic acid, a water-soluble glutamate receptor agonist produced by diatoms of the genus Pseudo-nitzschia. The mechanism by which razor clams tolerate high levels of the toxin, domoic acid, in their tissues while still retaining normal nerve function is unknown. In our study, a domoic acid binding site was solubilized from razor clam siphon using a combination of Triton X-100 and digitonin. In a Scatchard analysis using [3H]kainic acid, the partially-purified membrane showed two distinct receptor sites, a high affinity, low capacity site with a KD (mean ± S.E.) of 28 ± 9.4 nM and a maximal binding capacity of 12 ± 3.8 pmol/mg protein and a low affinity, high capacity site with a mM affinity for radiolabeled kainic acid, the latter site which was lost upon solubilization. Competition experiments showed that the rank order potency for competitive ligands in displacing [3H]kainate binding from the membrane-bound receptors was quisqualate > ibotenate > iodowillardiine = AMPA = fluorowillardiine > domoate > kainate > l-glutamate. At high micromolar concentrations, NBQX, NMDA and ATPA showed little or no ability to displace [3H]kainate. In contrast, Scatchard analysis 3 using [ H]glutamate showed linearity, indicating the presence of a single binding site with a KD and Bmax of 500 ± 50 nM and 14 ± 0.8 pmol/mg protein, respectively.
    [Show full text]
  • Red-Legged Frog Rana Aurora
    COSEWIC Assessment and Update Status Report on the Red-legged Frog Rana aurora in Canada SPECIAL CONCERN 2004 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2004. COSEWIC assessment and update status report on the Red-legged Frog Rana aurora in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 46 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: Waye, H. 1999. COSEWIC status report on the red-legged frog Rana aurora in Canada in COSEWIC assessment and status report on the red-legged frog Rana aurora in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-31 pp. Production note: COSEWIC would like to acknowledge Kristiina Ovaska and Lennart Sopuck for writing the status report on the Red-legged Frog Rana aurora. This report was prepared under contract with Environment Canada and was overseen and edited by David Green, the COSEWIC Amphibians and Reptiles Species Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la situation de Grenouille à pattes rouges (Rana aurora) au Canada — Mise à jour.
    [Show full text]
  • Six Domoic Acid Related Compounds from the Red Alga, Chondria Armata
    www.nature.com/scientificreports OPEN Six domoic acid related compounds from the red alga, Chondria armata, and domoic acid biosynthesis Received: 1 September 2017 Accepted: 15 December 2017 by the diatom, Pseudo-nitzschia Published: xx xx xxxx multiseries Yukari Maeno1, Yuichi Kotaki2, Ryuta Terada3, Yuko Cho1, Keiichi Konoki1 & Mari Yotsu-Yamashita1 Domoic acid (DA, 1), a potent neurotoxin that causes amnesic shellfsh poisoning, has been found in diatoms and red algae. While biosynthetic pathway towards DA from geranyl diphosphate and l-glutamate has been previously proposed, its late stage is still unclear. Here, six novel DA related compounds, 7′-methyl-isodomoic acid A (2) and B (3), N-geranyl-l-glutamic acid (4), 7′-hydroxymethyl- isodomoic acid A (5) and B (6), and N-geranyl-3(R)-hydroxy-l-glutamic acid (7), were isolated from the red alga, Chondria armata, and their structures were determined. The compounds 4 and 7, linear compounds, are predictable as the precursors to form the DA pyrrolidine ring. The compounds 2 and 3 are thought as the cyclized products of 7; therefore, dehydration and electron transfer from the internal olefn of 7 is a possible mechanism for the pyrrolidine ring formation. One terminal methyl group of the side chain of 2 and 3 is predicted to be oxidized to hydroxymethyl (5, 6), and then to carboxylic acids, forming isodomoic acids A and B. Finally, the terminal olefn of isodomoic acid A would be isomerized to form DA. In addition, [15N, D]-labeled 4 was incorporated into DA using the diatom, Pseudo-nitzschia multiseries, demonstrating that 4 is the genuine precursor of DA.
    [Show full text]
  • Amnesic Shellfish Poisoning: Emergency Medical Management
    nce: Res ie ea c rc S h e & n i Schroeder et al., J Marine Sci Res Dev 2015, 6:1 D r e Journal of a v M DOI; 10.4172/2155-9910.1000179 e f l o o p l m a ISSN:n 2155-9910 e r n u t o J Marine Science: Research & Development ResearchShort Communication Article OpenOpen Access Access Amnesic Shellfish Poisoning: Emergency Medical Management George Schroeder1*, Stephen S. Bates2 and John Spallino3 1American Academy of Urgent Care Medicine 2813 Hiawassee Road, Suite 206 Orlando, FL USA 32835 2Fisheries and Oceans Canada Gulf Fisheries Centre P.O. Box 5030 Moncton, NB E1C 9B6, Canada 3Laser Spine Institute 3001 N Rocky Point Dr. # 185 Tampa, FL 33607 USA Keywords: Amnesic shellfish poisoning; Diatom; Domoic acid; Blooms of toxigenic Pseudo-nitzschia have become more prevalent Excitotoxicity; Neurotoxin; Pseudo-nitzschia along coastal waters worldwide. The 2015 toxic bloom along the entire west coast of North America resulted in numerous harvesting closures Introduction and human health concerns. It is not known why this diatom produces Human consumption of shellfish and certain finfish contaminated domoic acid, as this biotoxin does not appear to harm its immediate with the neurotoxin domoic acid causes Amnesic Shellfish Poisoning predators. (ASP), a syndrome that results in preventable morbidity and mortality Humans become poisoned after consuming molluscan shellfish [1-5]. Although the incidence of ASP is rare around the world due to (e.g., mussels, clams, oysters, scallops, cockles) that have filtered the careful monitoring by government agencies since the original incident toxic diatom cells out of the water, therefore concentrating the toxin in in 1987, patients can still present with clinical symptoms (Table 1) that their digestive system (Figure 2).
    [Show full text]
  • A Human Stem Cell-Derived Test System for Agents Modifying Neuronal N
    Archives of Toxicology (2021) 95:1703–1722 https://doi.org/10.1007/s00204-021-03024-0 IN VITRO SYSTEMS A human stem cell‑derived test system for agents modifying neuronal 2+ N‑methyl‑D‑aspartate‑type glutamate receptor Ca ‑signalling Stefanie Klima1,2 · Markus Brüll1 · Anna‑Sophie Spreng1,3 · Ilinca Suciu1,3 · Tjalda Falt1 · Jens C. Schwamborn4 · Tanja Waldmann1 · Christiaan Karreman1 · Marcel Leist1,5 Received: 28 October 2020 / Accepted: 4 March 2021 / Published online: 13 March 2021 © The Author(s) 2021 Abstract Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neu- roepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell- derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intra- 2+ cellular free calcium ion concentration ([Ca ]i) were measured by fuorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range.
    [Show full text]
  • Draft Order No. R3-2018-0017 Npdes No. Ca0048551 Waste Discharge Requirements for the Monterey One Water Regional Wastewater Tr
    DRAFT ORDER NO. R3-2018-0017 NPDES NO. CA0048551 WASTE DISCHARGE REQUIREMENTS FOR THE MONTEREY ONE WATER REGIONAL WASTEWATER TREATMENT PLANT AND ADVANCED WATER PURIFICATION FACILITY DISCHARGE TO THE PACIFIC OCEAN The following Discharger is subject to waste discharge requirements (WDRs) set forth in this Order: Table 1. Discharger Information Discharger Monterey One Water1 Regional Wastewater Treatment Plant (WWTP) and Advanced Water Name of Facility Purification Facility (AWPF), Marina, Monterey County 14811 Del Monte Boulevard Facility Address Marina, CA 93933 Monterey County Table 2. Discharge Location Discharge Effluent Discharge Point Discharge Point Receiving Water Point Description Latitude (North) Longitude (West) Secondary Treated Wastewater, 001 Saline Waste, 36.72778º -121.83750º Pacific Ocean and Reverse Osmosis (RO) Concentrate Disinfected Tertiary 002 Recycled _ _ Reclamation Use Municipal Wastewater 1 Monterey One Water (abbreviated M1W) was formerly called the “Monterey Regional Water Pollution Control Agency.” Prior orders issued for this facility used this name for the Discharger. 1 / 133 Item No. 8 Attachment 1 December 6-7, 2018 Proposed Order No. R3-2018-0017 Table 3. Administrative Information This Order was adopted on: December 6, 2018 This Order shall become effective on: April 1, 2019 This Order shall expire on: November 30, 2023 The Discharger shall file a Report of Waste Discharge as an application for reissuance of WDRs in accordance with title 23, California Code of June 3, 2023 Regulations, and an application for reissuance of a National Pollutant Discharge Elimination System (NPDES) permit no later than: The U.S. Environmental Protection Agency (U.S. EPA) and the California Regional Water Quality Control Board, Central Coast Region have classified Major discharge this discharge as follows: I, John M.
    [Show full text]
  • Fda and Epa Safety Levels in Regulations and Guidance
    APPENDIX 5: FDA AND EPA SAFETY LEVELS IN REGULATIONS AND GUIDANCE This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance. This appendix lists FDA and EPA levels relating to safety attributes of fish and fishery products. In many cases, these levels represent the point at which the agency could take legal action to include removing product from market. Consequently, the levels contained in this table may not always be suitable for critical limits. Regardless of an established level or not, FDA may take legal action against food deemed to be adulterated as defined by the Federal Food, Drug and Cosmetic Act (FD&C Act) [21 U.S.C. 342]. A food is adulterated if the food bears or contains any poisonous or deleterious substance which may render it injurious to health under section 402 (a)(1) of the FD&C Act. Additionally, a food is adulterated if the food has been prepared, packed or held under insanitary conditions whereby it may have become contaminated with filth, or whereby it may have been rendered injurious to health under section 402 (a)(4) of the FD&C Act.
    [Show full text]
  • PEPH Workshop: Engaging Policy and Decision Makers September 7, 2011 8:00 A.M
    Engaging Communities to Advance Environmental Health Policy PEPH Workshop: Engaging Policy and Decision Makers September 7, 2011 8:00 a.m. – 5:00 p.m. Sheraton Iowa City Hotel Iowa City, Ia. www.niehs.nih.gov/PEPH Table of Contents Alaska Collaborative on Health and the Environment (CHE-Alaska) .......................................... 2 Biomonitoring in Environmental Public Health Policy and Surveillance ...................................... 4 Children’s Environmental Health Policies ................................................................................... 6 City and County of San Francisco Healthy Nail Salon Recognition Program Ordinance ............. 8 Clean Air Study .........................................................................................................................10 Community Assessment of Freeway Exposure and Health .......................................................11 Community-Based Participatory Research and Pesticides Exposure Research Projects ..........12 Contaminated Sediment Remedies ...........................................................................................15 EH@Home Workshops - Residential environmental health issues and risk reduction strategies .................................................................................................................................................16 Environmental Reproductive Health Lecture Series ..................................................................18 Evaluating Rochester's lead law ................................................................................................20
    [Show full text]
  • ISSUES : DATA SET Parasites
    - 1 - TIEE Teaching Issues and Experiments in Ecology - Volume 13, March 2018 ISSUES : DATA SET Parasites – They’re what’s for dinner: Investigating the role of parasites in aquatic food webs Sarah A. Orlofske University of Wisconsin – Stevens Point; [email protected] Field sampling for amphibians and aquatic invertebrates. (Photo courtesy of Clara Boland) THE ECOLOGICAL QUESTION: How does the presence of parasites influence characteristics of freshwater food webs? ECOLOGICAL CONTENT: Food web ecology, wetland communities, parasitism, disease ecology, complex life cycles, network modeling WHAT STUDENTS DO: Students will: TIEE, Volume 13 © 2018 – Sarah A. Orlofske and the Ecological Society of America. Teaching Issues and Experiments in Ecology (TIEE) is a project of the Committee on Diversity and Education of the Ecological Society of America (http://tiee.esa.org). - 2 - TIEE Teaching Issues and Experiments in Ecology - Volume 13, March 2018 evaluate the methodology for collecting and analyzing food web data investigate metadata provided with a well-resolved food web database including parasites explore parasite life cycles and interactions with other species in a food web context formulate research questions and propose hypotheses about how including parasites could influence properties of the entire food web as well as individual taxa. manipulate the food web data set to extract the relevant data, calculate food web metrics, and create figures that illustrate the results discuss their findings and relate it back to key ecological concepts. STUDENT-ACTIVE APPROACHES: Guided inquiry, open-ended inquiry, predict-observe-explain, small group discussion, computer- based projects, calculation SKILLS: ● Hypothesis formation: Generate questions and propose hypotheses about how the inclusion of infectious agents may affect properties of aquatic food webs and individual taxa in those communities.
    [Show full text]
  • Domoic Acid and Amnesic Shellfish Poisoning - a Review
    69 Journal of Food Protection, Vol. 56, No. I, Pages 69-83 (January 1993) Copyright©, International Association of Milk, Food and Environmental Sanitarians Domoic Acid and Amnesic Shellfish Poisoning - A Review EWEN C. D. TODD Bureau of Microbial Hazards, Food Directorate, Health Protection Branch, Health and Welfare Canada, Sir Frederick G. Banting Research Centre, Ottawa, Ontario K1A 0L2 (Received for publication April 17, 1992) Downloaded from http://meridian.allenpress.com/jfp/article-pdf/56/1/69/1664397/0362-028x-56_1_69.pdf by guest on 30 September 2021 ABSTRACT products. It has also been postulated, however, that changes to the environment have increased the possibility of more A new type of seafood toxicity, called amnesic shell­ toxic phytoplankton blooms caused by more phytoplankton fish poisoning, was described from 107 human cases after species. These may be natural, such as unusual warm individuals consumed mussels containing domoic acid har­ currents (118), or man-made, such as eutrophication of vested from Prince Edward Island, Canada, in 1987. Most coastal waters (101) and the accidental spread of phyto­ of these cases experienced gastroenteritis, and many older plankton, e.g., through ballast water, to new locations (44). persons or others with underlying chronic illnesses devel­ In 1987, several unusual events occurred worldwide that oped neurologic symptoms including memory loss. Stan­ might have been coincidental or had some as yet undetec­ dard treatment procedures for the neurologic condition ted environmental link: mass fish mortality in Pakistan were not effective and three patients died. Domoic acid is because of PSP (94); the first red tide containing neurotoxic a known neurototoxin, and it is believed that in these cases shellfish poison produced by Ptychodiscus brevis to kill enough toxin was absorbed through the gastrointestinal shellfish and poison humans in North Carolina (118) and system to cause lesions in the central nervous system.
    [Show full text]
  • Using Multi‐Response Models to Investigate Pathogen Coinfections Across Scales: Insights from Emerging Diseases of Amphibians
    University of South Florida Scholar Commons Integrative Biology Faculty and Staff Publications Integrative Biology 4-2018 Using Multi‐Response Models to Investigate Pathogen Coinfections across Scales: Insights from Emerging Diseases of Amphibians William E. Stutz University of Colorado Andrew R. Blaustein Oregon State University Cheryl J. Briggs University of California, Santa Barbara Jason T. Hoverman Purdue University Jason R. Rohr University of South Florida, [email protected] See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/bin_facpub Part of the Integrative Biology Commons Scholar Commons Citation Stutz, William E.; Blaustein, Andrew R.; Briggs, Cheryl J.; Hoverman, Jason T.; Rohr, Jason R.; and Johnson, Pieter T. J., "Using Multi‐Response Models to Investigate Pathogen Coinfections across Scales: Insights from Emerging Diseases of Amphibians" (2018). Integrative Biology Faculty and Staff Publications. 466. https://scholarcommons.usf.edu/bin_facpub/466 This Article is brought to you for free and open access by the Integrative Biology at Scholar Commons. It has been accepted for inclusion in Integrative Biology Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors William E. Stutz, Andrew R. Blaustein, Cheryl J. Briggs, Jason T. Hoverman, Jason R. Rohr, and Pieter T. J. Johnson This article is available at Scholar Commons: https://scholarcommons.usf.edu/bin_facpub/466 1 2 DR. PIETER JOHNSON (Orcid ID : 0000-0002-7997-5390) 3 4 5 Article type : Research Article 6 7 8 Using multi-response models to investigate pathogen coinfections across scales: insights 9 from emerging diseases of amphibians 10 11 William E.
    [Show full text]
  • Preparation and Application of a Molecularly Imprinted Monolith for Specific Recognition of Domoic Acid
    Analytical and Bioanalytical Chemistry https://doi.org/10.1007/s00216-017-0843-3 RESEARCH PAPER Preparation and application of a molecularly imprinted monolith for specific recognition of domoic acid Fan Yang1 & Ruirui Wang1 & Guangshui Na 1 & Qilun Yan1 & Zhongsheng Lin1 & Zhifeng Zhang1 Received: 14 September 2017 /Revised: 19 November 2017 /Accepted: 18 December 2017 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In this work, a molecularly imprinted monolithic column was synthesized by a facile procedure and was applied for specific recognition of domoic acid, an amnesic shellfish poison. The poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) molecu- larly imprinted monolith was synthesized in a stainless steel column by in situ polymerization. Pentane-1,3,5-tricarboxylic acid was used as a dummy imprinting template instead of the highly toxic and expensive target molecule. It is the first time that a molecularly imprinted monolith is introduced for separation and detection of domoic acid. After optimizing the preparation conditions, the prepared imprinted monolith was systematically characterized and exhibited excellent stability and permeability as a HPLC stationary phase. The results of chromatographic analysis demonstrated that the molecularly imprinted monolith exhibited specific retention and selective recognition toward domoic acid, with an imprinted factor up to 3.77. Furthermore, the molecularly imprinted monolith was successfully applied for selective enrichment of domoic acid from biological samples.
    [Show full text]