Schistocephalus Solidus-Heisimadon Esiintymisestä Tiiroissa

Total Page:16

File Type:pdf, Size:1020Kb

Schistocephalus Solidus-Heisimadon Esiintymisestä Tiiroissa 68 Ornis Fennica Vol. 44, 1967 Schistocephalus solidus-heisimadon esiintymisestä tiiroissa (On the occurrence of Schistocephalus solidus (Cestoda) in terns) TAPIO RAITIS & RISTO LEMMETYINEN Tiiranpoikasia rengastettaessa kiinnit- sen esiintyvän eräässä tapauksessa tyi huomiomme siihen, että tiiran ulos- runsaana heinäsorsissa (Anas platyr- tusrefleksin vaikutuksesta suolistosta hynchos) Ruotsissa ja puolalainen tut- tuli ulosteiden mukana toisinaan myös kija BEZUBIK (1956) luettelee sen pää- heisimatoja. Kyseessä osoittautui ole- isäntinä 35 lintulajia, joista meillä tava- van Schistocephalus solidus (Meller, taan Gavia arctica, Podiceps cristatus, 1776) . P. griseigena, Ardea cinerea, Botaurus Schistocephaluksen kiertokulku luon- stellaris, Aythya marila, Clangula hye- nossa on seuraava . Munasta kuoriutu- malis, Mergus serrator, M. merganser, nut coracidium-toukka tunkeutuu han- M. albellus, Fulica atra, Haematopus kajalkaisäyriäiseen (meillä esim. suku ostralegus, Tringa totanus, Stercorarius Cyclops), jossa se kehittyy procercoi- parasiticus, Larus marinus, L. argen- diksi. Kalat käyttävät ravinnokseen em. tatus, Sterna hirundo, S. paradisea, äyriäisiä, ja sopivassa kalalajissa loinen Alca torda, Uria grylle, Corvus corax kehittyy edelleen plerocercoidiksi, joka ja C. corone . NIETHAMMER (1942) ja on jo sukukypsän muodon näköinen . VIK (1954) ilmoittavat edellisten lisäksi Schistocephalus ei kuitenkaan voi mu- seuraavat lajit : Gavia stellatus, Aythya nia ennen kuin se on päässyt lopulli- fuligula, Calidris maritima, Larus canes seen isäntäeläimeensä . ja L. ridibundus . Luetteloa tarkastel- Plerocercoidivaihe on erittäin laji- taessa on otettava huomioon, että aikai- spesifinen. Esim. BRATENin (1966) semmin uskottiin Schistocephalus soli- plerocercoidien siirtokokeet kalalajista duksen olevan sukunsa ainoa laji. toiseen osoittavat S . soliduksen vaati- DUBININAn (1959) tutkimukset osoit- van isännäkseen nimenomaan kolmipii- tavat kuitenkin lajeja olevan kolme : kin (Gasterosteus aculeatus). Sen si- S. solidus, S. pungitius ja S. nemachili. jaan lajispesifisyyttä ei esiinny enää Schistocephalusten lopullisen isäntä- Aineisto ja menetelmät eläimen suhteen. Meillä on pääisän- tinä todettu olevan koskeloiden (Mer- Aineisto koostui 17 lapintiiran poikasen gus merganser, M. serrator) ja telkän ja 13 täysi-ikäisen sekä yhden kalatii- (Bucephala Cangula) (kirjoittajien jul- ran poikasen ja yhden täysi-ikäisen ka- kaisematon aineisto ja Turun Yliopiston latiiran suolistoista . Kahdeksan täysi- Eläintieteen laitoksen loiskokoelma) . ikäistä lapintiiraa ja aikuinen kalatiira NYBEI.IN (1919) mainitsee S. soliduk- oli ammuttu Vehkalahden saaristossa Raitis & Lemmetyinen : Schistocephalus solidus tiiroissa 69 itäisellä Suomenlahdella 2 .6.1967 ja vii- keen suolistot ja loiset mitattiin. Suolen si täysi-ikäistä lapintiiraa Kustavissa tilavuus mitattiin laskemalla ympärys- Turun saaristossa 30.5.1967. Kaikki mitta kolmesta eri kohdasta mahaportin poikaset kerättiin Kustavista 10.7.1967. ja umpisuolten liittymiskohdan väliltä . Vehkalahden lapintiirat ammuttiin ulko- Samalta väliltä mitattiin myös suoliston vyöhykkeellä Reiskeri-nimiseltä karilta pituus . ja kalatiira sisävyöhykkeeltä . Kustavis- sa ammutut täysi-ikäiset lapintiirat ovat kaikki ulkovyöhykkeeltä, Loukeenkaril- Tulokset ta. Poikaset sen sijaan on kerätty ulko- ja välivyöhykkeiden vaihtuma-alueelta . Ruoansulatuskanavan ravintoanalyysit Vehkalahden Reiskeri on näytteidenot- osoittivat, että heimoon Gasterosteidae topaikoista biotoopiltaan kaikkein me- kuuluvat kalat ovat lapintiiran tärkeintä rellisin . Välivyöhykkeelle on sieltä mat- ravintoa Kustavin alueella . Kaikista kaa noin 17 km. näytteistä 74 % sisälsi tämän ryhmän Vertailumateriaalina käytettiin Poh- jätteitä . Kaikki lajilleen määritetyt piik- janlahdelta kerätyistä kolmipiikeistä kikalat olivat kolmipiikkejä . otettuja S. soliduksen plerocercoideja . Vehkalahden ulkokarilta ammuttu- Plerocercoidit oli fiksoisimisen jäl- jen tiirojen ruoansulatuskanavat sisäl- keen (70 % alkoholia ja 4 % formalii- sivät sitä vastoin yksinomaan silakkaa nia) säilytetty liuokseen, joka sisälsi (Clupea harengus membras). Kolmipii- 70 % alkoholia. Myös tiirojen suolistot kit ovat keväällä ja alkukesällä saaris- säilytettiin 70 % alkoholiliuoksessa ton sisemmissä osissa kutemassa, mikä syyskuuhun 1967, jolloin ne tutkittiin. selittänee niiden puuttumisen näistä Suolistot avattiin, ja loisten sijanti sekä näytteistä. Olettamusta tukee se, että asento merkittiin muistiin . Tämän jäl- sisävyöhykkeeltä ammutun kalatiiran Taulukko 1 . Schistocephalus solidus-heisimadon yleisyys lapintiiroissa . Table 1 . The incidence of Schistocephalus solidus in the Arctic Tern. Tutkittuja Loisia sisältä- näytteitä neitä Pitäjä Number of With Commune examined terns parasites % Aikuiset 5 3 60.0 Adults Poikaset 17 13 76.5 Kustavi Chicks Yhteensä 22 16 72.7 Total Aikuiset 8 - 0 Adults Poikaset Vehkalahti Chicks Yhteensä 8 - 0 Total Koko materiaali 30 16 53.3 Total material 70 Ornis Fennica Vol. 44, 1967 suolisto sisälsi Schistocephaluksia (ks. myöh.) . Tiiran poikasissa loisia esiintyi jon- kin verran yleisemmin kuin aikuisissa (taulukko 1), ero ei kuitenkaan ollut tilastollisesti merkitsevä . Loisten luku- määrä yksilöä kohti oli tiiroissa 1-11, keskimäärin 3.6±0.75. Niitä esiintyi kaikissa alle kolmen viikon ikäisissä poikasissa. Kolmeviikkoisissa eli lähes lentokykyisissä poikasissa loisia oli huomattavasti vähemmän (diagr . 1) . Suoliston ja loisten tilavuuden mittauk- set osoittivat, että loisten osuus suolis- ton tilavuudesta on nuorilla linnuilla suurin. Ääritapauksina mainittakoon kahden vuorokauden ikäinen poikanen, Diagr. 1 . Schistocephalus solidus-loisen esiin- jonka suoliston tilavuudesta loiset täyt- tyminen eri-iktäisissä tiiroissa Kustavissa. Val- tivät 50 %. koiset pylväät esittävät heisimadottomien tii- rojen lukumäärää. Jyrkkä ero loisen esiinty- Schistocephaluksia ei löydetty lain- misessä kolmeviikkoisten ja sitä nuorempien kaan Vehkalahden lapintiiroista . Ero poikasten välillä johtunee aineiston pienuu- tämän ja Kustavin materiaalin välillä desta. Fig. 1. The occurrence of Schistocephalus johtui epäilemättä tiirojen käyttämän solidus in terns of different age in Kustavi. ravinnon erilaisuudesta . White columns show the number of unin- Tiirassa loisivien yksilöiden ja kol- fected birds. The large difference in the mipiikissä elävien plerocercoidien ulko- occurrence of the parasite between the 3 weeks old and the younger chicks may be näköjen vertaamiseksi mitattiin niiden due to the limited material used. pituus ja leveys. Tiiroista löydetyt Taulukko 2. Schistocephalus solidus-heisimadon mitat tutkitussa aineistossa. Table 2. Measurements of Schistocephalus solidus. Kehitysvaiheet Muoto- Different stages Pituus t-testi Leveys t-testi indeksi* t-testi of development Length Student's t. Width Student's t. Shape- Student's t. index* Plerocercoidit (kolmipiikeistd) 31.16±0.83 8.11 ±-0.18 3.83-±0.04 Plerocercoids (from 3-spined stickleback) 3.26** 11.1*** 6.40*** Sukukypsät + plerocerc. (kala- ja lapintiiroista) Mature stages + pleroc. 37.15± 1.64 5.64±0.13 5.75±0.30 (from Arctic and Common Tern) pituus length *) Muotoindeksi = loisen Shape index = of the parasite. leveys width Raitis & Lemmetyinen : Schistocephalus solidus tiiroissa 71 Taulukko 3. Tiiroista löydettyjen Schisto- ennemmin tai myöhemmin pää linnun cephalus solidus-loisten jakaantuminen eri kehitysvaiheisiin . anusta kohti. Sen vuoksi suolistoa avat- Table 3. Different stages of Schistocephalus taessa merkittiin muistiin loisten suun- solidus found in the terns. ta. Kuten diagrammista 2 havaitaan, lä- hes kaikki pää linnun peräaukkoa Kehitysvaihe Lukumäärä % Stage of development Number kohti olleet loiset löytyivät suolen lop- puosasta. VIKin (1954) mukaan useim- Plerocercoidit mat Schistocephalukset olivat umpisuo- Plerocercoids 24 31 .6 lissa, peräsuolessa ja kloakassa. Käsi- tyksemme on, että Vdlimuodot 19 S. solidus loisii tiiran Immature adults 25.0 ohutsuolen loppuosassa, ja peräsuoles- Sukukypsat sa sekä kloakasta löydetyt yksilöt ovat Mature adults 33 43.4 jo poistumassa isäntäeläimestä. Yhteensä Schistocephalus solidus oli ainoa tut- Total 76 100.0 kituista tiiroista löytynyt suolistoloinen (alkueläinloisia ei kuitenkaan etsitty) . Schistocephalukset ovat selvästi pitem- Se näyttää olevan hyvin yleinen tiirois- piä ja kapeampia kuin piikkikalasta sa, ja sen runsaus on kytkeytynyt tiiran otetut plerocercoidit, mikä ilmenee tau- käyttämän ravinnon laatuun. Tiiran poi- lukossa 2 esitetyistä tuloksista. Ero joh- kaset saavat Schistocephaluksen plero- tunee loisen kiihtyneestä aineenvaih- cercoideja suolistoonsa jo ensimmäisten dunnasta, sillä energiaa vaativa lisään- elinvuorokausiensa aikana. Kentällä tymisprosessi alkaa 2-3 vrk:n kulut- suoritetut painomittaukset eivät osoitta- tua loisen päästyä lopulliseen isäntään- sä (SMYTH 1947, VIK 1954) . Pitkän, "lauenneen" jaokkeen pinnan läpi ta- pahtuva aineenvaihdunta on tehok- kaampaa kuin tiukasti kokoonvetäyty- neen jaokkeen. Tiiran suolistosta löydettyjen S. soli- dusten kehitysvaiheiden lukumäärät on esitetty taulukossa 3 . Sukukypsien suh- teellisen vähäinen osuus viittaa sii- hen, että loiset kulkeutuvat nopeasti suoliston läpi. VIKin (1954) mukaan Schistocephalus pysyy suolistossa 2- Diagr. 2. Schistocephalus solidus-loisten 13 vrk. (vrt. MYÖS SMYTH 1947) . suunta suoliston eri osissa. Ohutsuoli on Normaaliasennossaan heisimato on jaettu kahdeksaan eri osaan (I-VIII) . Nuoli suolistossa pää ylöspäin, ts . kohti
Recommended publications
  • Broad Tapeworms (Diphyllobothriidae)
    IJP: Parasites and Wildlife 9 (2019) 359–369 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: T Recent progress and future challenges ∗ Tomáš Scholza, ,1, Roman Kuchtaa,1, Jan Brabeca,b a Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic b Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland ABSTRACT Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by ‘Sparganum proliferum’. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classi- fication of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D.
    [Show full text]
  • Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
    bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus.
    [Show full text]
  • The Parasite Schistocephalus Solidus Secretes Proteins With
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932509; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The parasite Schistocephalus solidus secretes 2 proteins with putative host manipulation functions 3 Chloé Suzanne Berger1,2,3, Jérôme Laroche2, Halim Maaroufi2, Hélène Martin1,2,4, 4 Kyung-Mee Moon5, Christian R. Landry1,2,4,6,7, Leonard J. Foster5 and Nadia Aubin- 5 Horth1,2,3 6 1Département de Biologie, Université Laval, Québec, QC, Canada 7 2Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, 8 Canada 9 3Ressources Aquatiques Québec (RAQ), Institut des sciences de la mer de Rimouski, 10 Québec, Canada 11 4Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, 12 QC, Canada 13 5Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 14 University of British Columbia, Vancouver, Canada V6T 1Z4 15 6PROTEO, Le réseau québécois de recherche sur la fonction, la structure et l’ingénierie 16 des protéines, Université Laval, Québec, Canada 17 7Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, 18 Canada 19 Corresponding author: Nadia Aubin-Horth ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932509; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Parasite Schistocephalus Solidus Secretes
    Berger et al. Parasites Vectors (2021) 14:436 https://doi.org/10.1186/s13071-021-04933-w Parasites & Vectors RESEARCH Open Access The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions Chloé Suzanne Berger1,2,3, Jérôme Laroche2, Halim Maarouf2, Hélène Martin1,2,4, Kyung‑Mee Moon5, Christian R. Landry1,2,4,6,7, Leonard J. Foster5 and Nadia Aubin‑Horth1,2,3* Abstract Background: Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host’s physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. Methods: Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fsh host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm’s proteome and its secretome during fsh host infection using LC–MS/MS. Results: A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifcally in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication.
    [Show full text]
  • Gasterosteus Aculeatus) Infection with Schistocephalus Solidus in Hel Marina (Puck Bay, Baltic Sea, Poland) by Abstract
    Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology Volume 44, Issue 1, March 2015 ISSN 1730-413X pages (11-17) eISSN 1897-3191 The three-spined stickleback (Gasterosteus aculeatus) infection with Schistocephalus solidus in Hel marina (Puck Bay, Baltic Sea, Poland) by Abstract Zdeněk Mačát* Parasitic relations between animals are very common in wild nature. In this paper, we studied levels of infection in Adam Bednařík three-spined stickleback with plerocercoids of Schistocephalus Martin Rulík solidus from Puck Bay (Baltic Sea, Poland). The total prevalence of infection was 54.2%, while proportion of infected individuals was significantly higher for females than for males. The body width was found to be significantly positively correlated with the number and the weight of parasites. In spite of the increasing deterioration of the Baltic Sea ecosystem by excessive eutrophication and hypoxia, lower DOI: 10.1515/ohs-2015-0002 prevalence of infection compared to previous published data Category: Original research paper indicates that there are likely other factors than pollution affecting the life cycle of parasites and the level of parasitism. Received: November 7, 2014 Accepted: December 11, 2014 Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic Key words: parasite, infection prevalence, Schisto- cephalus solidus, three-spined stickleback, Puck Bay * Corresponding author: [email protected] The Oceanological and Hydrobiological Studies is online at oandhs.ocean.ug.edu.pl ©Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved. 12 Oceanological and Hydrobiological Studies, VOL. 44, ISSUE 1 | MARCH 2015 Zdeněk Mačát, Adam Bednařík, Martin Rulík Introduction 1976).
    [Show full text]
  • The Parasite Schistocephalus Solidus Secretes Proteins With
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932509; this version posted January 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The parasite Schistocephalus solidus secretes 2 proteins with putative host manipulation functions 3 Short title: the secretome of a putative host manipulative parasite 4 Chloé Suzanne Berger1,2,3, Jérôme Laroche2, Halim Maaroufi2, Hélène Martin1,2,4, 5 Kyung-Mee Moon5, Christian R. Landry1,2,4,6,7, Leonard J. Foster5 and Nadia Aubin- 6 Horth1,2,3 7 1Département de Biologie, Université Laval, Québec, QC, Canada 8 2Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, 9 Canada 10 3Ressources Aquatiques Québec (RAQ), Institut des sciences de la mer de Rimouski, 11 Québec, Canada 12 4Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, 13 QC, Canada 14 5Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 15 University of British Columbia, Vancouver, Canada V6T 1Z4 16 6PROTEO, Le réseau québécois de recherche sur la fonction, la structure et l’ingénierie 17 des protéines, Université Laval, Québec, Canada 18 7Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, 19 Canada 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932509; this version posted January 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Schistocephalus Parasite Infection Alters Sticklebacks' Movement
    www.nature.com/scientificreports OPEN Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions Jolle W. Jolles 1,2,3*, Geofrey P. F. Mazué1,4, Jacob Davidson1,3, Jasminca Behrmann‑Godel 5 & Iain D. Couzin1,3 Parasitism is ubiquitous in the animal kingdom. Although many fundamental aspects of host‑parasite relationships have been unravelled, few studies have systematically investigated how parasites afect organismal movement. Here we combine behavioural experiments of Schistocephalus solidus infected sticklebacks with individual‑based simulations to understand how parasitism afects individual movement ability and thereby shapes social interaction patterns. High‑resolution tracking revealed that infected fsh swam, accelerated, and turned more slowly than did non‑infected fsh, and tended to be more predictable in their movements. Importantly, the strength of these efects increased with increasing parasite load (proportion of body weight), with more heavily infected fsh showing larger changes and impairments in behaviour. When grouped, pairs of infected fsh moved more slowly, were less cohesive, less aligned, and less temporally coordinated than non‑infected pairs, and mixed pairs were primarily led by the non‑infected fsh. These social patterns also emerged in simulations of self‑organised groups composed of individuals difering similarly in speed and turning tendency, suggesting infection‑induced changes in mobility and manoeuvrability may drive collective outcomes. Together, our results demonstrate how infection with a complex life‑cycle parasite afects the movement ability of individuals and how this in turn shapes social interaction patterns, providing important mechanistic insights into the efects of parasites on host movement dynamics. Parasitism is ubiquitous across the animal kingdom, with parasites ofen exerting considerable infuence on their hosts by consuming energy and inducing morphological, physiological, and behavioural changes 1–3.
    [Show full text]
  • Caspian Tern (Sterna Caspia)
    Conservation Assessment for Caspian tern (Sterna caspia) USDA Forest Service, Eastern Region October 2001 Prepared by: Janet Kudell-Ekstrum Hiawatha National Forest This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. Table of Contents USDA Forest Service, Eastern Region........................................................ 1 Executive Summary...................................................................................... 3 Acknowledgements ....................................................................................... 4 Nomenclature and Taxonomy ..................................................................... 4 Description of Species..................................................................................
    [Show full text]
  • Host Specificity and Adaptation of Schistocephalus to Its Stickleback Hosts
    Host specificity and adaptation of Schistocephalus to its stickleback hosts Dissertation zur Erlangung des Doktorgrades - Dr. rer. nat. - der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Tina Henrich Kiel 2014 Erstellt am Max Planck Institut für Evolutionsbiologie, Plön Graduiertenschule IMPRS for Evolutionary Biology Abteilung Evolutionsökologie Arbeitsgruppe Parasitologie Erster Gutachter: Dr. Martin Kalbe Zweiter Gutachter: Tag der mündlichen Prüfung: Zum Druck genehmigt: Table of Contents Summary .............................................................................................................................. 1 Zusammenfassung................................................................................................................ 3 Introduction .......................................................................................................................... 7 Thesis outline ..................................................................................................................... 16 Chapter I............................................................................................................................. 19 Chapter II ........................................................................................................................... 33 Chapter III .......................................................................................................................... 53 Chapter IV .........................................................................................................................
    [Show full text]
  • Distinct Lineages of Schistocephalus Parasites in Threespine and Ninespine Stickleback Hosts Revealed by DNA Sequence Analysis
    Distinct Lineages of Schistocephalus Parasites in Threespine and Ninespine Stickleback Hosts Revealed by DNA Sequence Analysis Nicole Nishimura1, David C. Heins2, Ryan O. Andersen3, Iain Barber4, William A. Cresko1* 1 Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America, 2 Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America, 3 Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America, 4 Department of Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom Abstract Parasitic interactions are often part of complex networks of interspecific relationships that have evolved in biological communities. Despite many years of work on the evolution of parasitism, the likelihood that sister taxa of parasites can co-evolve with their hosts to specifically infect two related lineages, even when those hosts occur sympatrically, is still unclear. Furthermore, when these specific interactions occur, the molecular and physiological basis of this specificity is still largely unknown. The presence of these specific parasitic relationships can now be tested using molecular markers such as DNA sequence variation. Here we test for specific parasitic relationships in an emerging host-parasite model, the stickleback-Schistocephalus system. Threespine and ninespine stickleback fish are intermediate hosts for Schistocephalus cestode parasites that are phenotypically very similar and have nearly identical life cycles through plankton, stickleback, and avian hosts. We analyzed over 2000 base pairs of COX1 and NADH1 mitochondrial DNA sequences in 48 Schistocephalus individuals collected from threespine and ninespine stickleback hosts from disparate geographic regions distributed across the Northern Hemisphere.
    [Show full text]
  • In Vitro Transition of Schistocephalus Solidus (Cestoda) from Coracidium to Procercoid and from Procercoid to Plerocercoid ⇑ P.J
    Experimental Parasitology 130 (2012) 267–273 Contents lists available at SciVerse ScienceDirect Experimental Parasitology journal homepage: www.elsevier.com/locate/yexpr In vitro transition of Schistocephalus solidus (Cestoda) from coracidium to procercoid and from procercoid to plerocercoid ⇑ P.J. Jakobsen a,b, , J.P. Scharsack b,c, K. Hammerschmidt b,d, P. Deines e,f, M. Kalbe b, M. Milinski b a Institute for Biology, University of Bergen, Thor Møhlensgt. 55, 5020 Bergen, Norway b Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, August Thienemann Str. 2, 24306 Plön, Germany c Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149 Muenster, Germany d NZ Institute for Advanced Study, Massey University, Private Bag 102904, Auckland, New Zealand e Max Planck Institute for Limnology, Department of Physiological Ecology, August Thienemann Str. 2, 24306 Plön, Germany f School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand article info abstract Article history: With the present study, a culture system for successive life-cycle stages of the tapeworm Schistocephalus Received 16 February 2010 solidus was developed and this report documents for the first time, cultivation of the procercoid stage of S. Received in revised form 16 September 2011 solidus from eggs. Additionally we have transformed procercoids dissected from experimentally infected Accepted 19 September 2011 copepods and cultured procercoids into the early plerocercoid stage in vitro. Observations in the culture Available online 15 October 2011 suggest that the coracidia can interact with their external environment and need no host specific stimuli, except for the components in the culture medium, for activation and hatching from the embryophore.
    [Show full text]
  • Can the Behaviour of Threespine Stickleback Parasitized With
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 237-246 doi:10.1242/jeb.151456 RESEARCH ARTICLE Can the behaviour of threespine stickleback parasitized with Schistocephalus solidus be replicated by manipulating host physiology? Lucie Grécias1, François Olivier Hébert1, ChloéSuzanne Berger1, Iain Barber2 and Nadia Aubin-Horth1,* ABSTRACT (Seppälä et al., 2006; Lagrue et al., 2007). For example, ants Sticklebacks infected by the parasitic flatworm Schistocephalus parasitized with trematodes show modified anti-predator responses solidus show dramatic changes in phenotype, including a loss of and altered activity, which increase their risk of predation by grazers, species-typical behavioural responses to predators. The timing of the final hosts of the parasite (Carney, 1969). Three non-mutually host behaviour change coincides with the development of infectivity exclusive hypotheses have been proposed to explain differences in of the parasite to the final host (a piscivorous bird), making it an ideal behaviour between parasitized and non-parasitized animals model for studying the mechanisms of infection-induced behavioural (reviewed by Poulin, 2010). Host behavioural changes might be: modification. However, whether the loss of host anti-predator (1) the result of host responses to pathology (Poulin, 2010; Adamo, behaviour results from direct manipulation by the parasite, or is a 2013; Dantzer et al., 2008); (2) non-adaptive side effects of infection, by-product (e.g. host immune response) or side effect of infection such as the consequences of the energetic stress endured by the host (e.g. energetic loss), remains controversial. To understand the owing to the presence of the parasite (Poulin, 1995); or (3) the result physiological mechanisms that generate these behavioural of direct host manipulation by parasites that obtain fitness benefits.
    [Show full text]