An Assessment of the Effects of Psychoactive Drugs And

Total Page:16

File Type:pdf, Size:1020Kb

An Assessment of the Effects of Psychoactive Drugs And AN ASSESSMENT OF THE EFFECTS OF PSYCHOACTIVE DRUGS AND ELECTRICAL STIMULATION OF THE VENTRAL TEGMENTAL AREA ON THE STIMULUS PROPERTIES OF AMPHETAMINE By JONATHAN PETER DRUHAN B.Sc, McGill University, 1983 M.A., The University of British Columbia, 1985 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Psychology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January 1989 (c) Jonathan Peter Druhan , 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of PSYCHOLOGY The University of British Columbia Vancouver, Canada Date JANUARY 20, 1989 DE-6 (2/88) ABSTRACT The discriminative stimulus properties of amphetamine are thought to result from the facilitatory actions of this drug on dopamine neurotransmission within the nucleus accumbens. As such actions within the nucleus accumbens also are hypothesized to be responsible for amphetamine's rewarding effects, the stimulus properties of amphetamine may be related to the hedonic effects of the drug. If these conclusions are correct, then tests for generalization with the stimulus properties of amphetamine might be useful either to determine the dopaminergic actions of drugs, or to screen newly developed compounds for their abuse potential. In the present thesis rats were trained to discriminate 1.0 mg/kg amphetamine from saline, and then tested for stimulus generalization to a range of amphetamine doses (0.0, 0.25, 0.50 and 1.0 mg/kg) injected either alone or in combination with either cocaine, apomorphine, haloperidol, nicotine, morphine, midazolam, ethanol or electrical stimulation of the ventral tegmental area (VTA). Comparisons were then made between the amphetamine stimulus generalization functions obtained in the presence and absence of the test stimuli, to determine whether the functions were altered in a manner consistent with the known dopaminergic actions or hedonic effects of the drugs and VTA stimulation. It was predicted that test stimuli that could enhance dopamine neurotransmission or produce positive hedonic effects might augment the stimulus properties of 111 amphetamine and elevate stimulus generalization functions relative to a control curve. Conversely, test stimuli that inhibited dopamine neurotransmission or reduced positive affect might interfere with the amphetamine stimuli and lower the generalization functions. The results indicated that amphetamine stimulus generalization functions were altered in a manner that generally reflected the known actions of each test stimulus on dopamine neurotransmission. Thus, the generalization functions were elevated by stimuli that enhanced dopamine neurotransmission (cocaine, a dose of apomorphine affecting post-synaptic dopamine receptor sites, nicotine and VTA stimulation) and lowered by stimuli that interfered with dopamine neurotransmission (haloperidol, midazolam, and a dose of apomorphine that acts preferentially at presynaptic dopamine autoreceptors). Ethanol, which has not been found to consistently affect dopamine neurotransmission, did not generalize with the stimulus properties of amphetamine. Only morphine was found to affect amphetamine stimulus generalization functions (a lowering) in a manner that was inconsistent with the drug's facilitatory actions on dopamine neurotransmission. The amphetamine stimulus generalization functions were not affected in a manner consistent with the hedonic actions of each test stimulus. Certain drugs that could produce positive hedonic effects (morphine, midazolam and ethanol) failed to elevate the generalization functions. In fact, the iv functions were elevated only by stimuli that appear to produce most of their rewarding effects by enhancing mesoaccumbens dopamine neurotransmission (cocaine, apomorphine, nicotine, and VTA stimulation). Two additional experiments suggested that this property could have been responsible for the ability of VTA stimulation to elevate amphetamine stimulus generalization functions. In one experiment, the ability of the VTA stimulation to substitute for the stimulus properties of amphetamine was found to be correlated positively with its rewarding efficacy measured during ICSS tests. A subsequent experiment indicated that dopamine neurons could indeed mediate discriminative stimuli produced by VTA stimulation, as the brain stimulation cues were augmented by amphetamine and attenuated by the dopamine receptor antagonist, haloperidol. Together, the findings of this thesis indicated that amphetamine stimulus generalization paradigms might be useful for detecting the dopaminergic actions of certain psychoactive drugs. However, such procedures may not detect the abuse potential of all compounds. This latter result indicates that certain drugs of abuse do not produce amphetamine-like stimulus properties, and that this may be due to differences in the neural mechanisms that mediate their positive hedonic effects. V TABLE OF CONTENTS Abstract ii Table of Contents v List of Tables ix List of Figures xi Acknowledgment xiii Introduction 1 Procedures for Measuring the Rewarding Effects of Drugs 4 Drug Discrimination Procedures: General Overview .. 9 The Relation of Drug Discrimination Performance to the Stimulus Properties of Drugs 11 Relations Between the Stimulus Properties and Hedonic Actions of Drugs 16 Pharmacological Specificity of Amphetamine Stimuli 18 Neurochemical Substrates for Amphetamine Stimuli .. 19 The Role of Specific Dopamine Projections in Mediating the Stimulus Properties of Amphetamine .. 21 Common Neurochemical Substrates for the Stimulus Properties and Rewarding Effects of Amphetamine ... 23 Issues to be Addressed in the Present Thesis 24 Discrimination Training Procedures 27 The Amphetamine Stimulus Generalization Paradigm .. 28 Predicted Effects of Different Test Stimuli on Amphetamine Stimulus Generalization Functions 33 vi General Methods 40 Subjects 40 Surgery and Histology 40 Apparatus 41 Drug Discrimination Training 43 Generalization Tests 44 Locomotor Activity Tests 45 Drugs 46 Statistical Analyses 47 Experiment 1: The Effects of Cocaine, Apomorphine, and Haloperidol on Amphetamine Stimulus Generalization Functions 50 Methods 52 Results 53 Discussion 62 Experiment 2: The Effects of Nicotine on Amphetamine Stimulus Generalization Functions 67 Methods 69 Results 69 Discussion 76 Experiment 3: The Effects of Morphine on Amphetamine Stimulus Generalization Functions 81 Methods 83 Results 83 Discussion 89 vii Experiment 4: The Effects of Midazolam on Amphetamine Stimulus Generalization Functions 94 Methods 95 Results 96 Discussion 101 Experiment 5: The Effects of Ethanol on Amphetamine Stimulus Generalization Functions 105 Methods 106 Results 107 Discussion 113 Experiment 6: The Effects of Electrical Stimulation of the VTA on Amphetamine Stimulus Generalization Functions 117 Methods 118 Results 119 Discussion 128 Experiment 7: The Relationship Between the Rewarding Effects of VTA Stimulation and its Ability to Generalize with the Stimulus Properties of Amphetamine 131 Methods 132 Results 133 Discussion 147 Experiment 8: The Effects of Amphetamine and Haloperidol on Discriminative Stimuli Produced by Electrical Stimulation of the VTA 151 Methods 153 viii Results 156 Discussion 162 General Discussion 165 Implications of the Present Findings for a Theory of the Stimulus Properties of Amphetamine 177 The Utility of Amphetamine Stimulus Generalization Paradigms as Screening Procedures for Assessing the Dopaminergic and Hedonic Properties of Drugs 184 Implications of the Present Findings for Theories of Drug Abuse 188 References 192 ix LIST OF TABLES Table 1: The actions on dopamine neurotransmission and the hedonic effects of the test stimuli employed for Experiments 1 through 6 35 Table 2: Percentages of responses on the initially selected lever after cocaine, apomorphine and haloperidol 59 Table 3: Total number of responses after cocaine, apomorphine and haloperidol 61 Table 4: Percentages of responses on the initially selected lever after nicotine 73 Table 5: Total number of responses after nicotine 75 Table 6: Percentages of responses on the initially selected lever after morphine 87 Table 7: Total number of responses after morphine 88 Table 8: Percentages of responses on the initially selected lever after midazolam 99 Table 9: Total number of responses after midazolam .... 100 Table 10: Percentages of responses on the initially selected lever after ethanol 111 Table 11: Total number of responses after ethanol 112 Table 12: Percentages of responses on the initially selected lever during VTA stimulation 126 Table 13: Total number of responses durinng VTA stimulation 127 X Table 14: Percentages of responses on the initially selected lever during substitution tests with different parameters of VTA stimulation 140 Table 15: Total number of responses during substitution tests with different parameters of VTA stimulation . 141 LIST OF FIGURES Figure 1: Theoretical outcomes of stimulus generalization experiments 31-32 Figure
Recommended publications
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • 82 Acts, Ch 1044, §1, 2
    93 LA WS OF THE SIXTY-NINTH G.A., 1982 SESSION CH. 1044 CHAPTER 1044 SCHEDULE OF CONTROLLED SUBSTANCES S.F.2101 AN ACT amending the schedule of controlled substances. Be It Enacted by the General Assembly of the State of Iowa: Section 1. Section 204.204, subsection 2, Code 1981, is amended by adding the following new lettered paragraphs in alphabetical sequence and relettering the remaining paragraphs: NEW LETTERED PARAGRAPH. Alpha-Methylfentanyl (N-( l-(alpha-methyl-beta-phenyl) ethyl-4-piperidyI) propionanilide; 1-(1-methyl-2-phenylethyI)-4-(N -propanilido)piperidine). NEW LETTERED PARAGRAPH. Sufentanil. NEW LETTERED PARAGRAPH. Tilidine. Sec. 2. Section 204.204, Code 1981, is amended by adding after subsection 5 the following new subsection and renumbering the remaining subsections: NEW SUBSECTION. 6. Unless specifically excepted or unless listed in another schedule, any material, compound, mixture, or preparation which contains any quantity of the following substance having a stimulant effect on the central nervous system, including its salts, isomers, and salts of isomers: a. Fenethylline. Sec. 3. Section 204.206, subsection 3, Code 1981, is amended by adding after paragraph c the following new lettered paragraph: NEW LETTERED PARAGRAPH. d. Bulk dextropropoxyphene (nondosage forms). Sec. 4. Section 204.206, Code 1981, is amended by adding the following new subsection: NEW SUBSECTION. Unless specifically excepted or unless listed in another schedule, any material, compound, mixture, or preparation which contains any quantity of the following substances: a. Immediate precursor to amphetamine and methamphetamine: (1) Phenylacetone. Sec. 5. Section 204.208, subsection 6, paragraph c, Code 1981, is amended by striking the paragraph.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • ARTICLE 33: NEW YORK STATE CONTROLLED SUBSTANCES ACT As of January 26, 2017 +
    ARTICLE 33: NEW YORK STATE CONTROLLED SUBSTANCES ACT As of January 26, 2017 + Notice The information contained in this document is not the official version of the New York State Public Health Law. No representation is made as to its accuracy. To ensure accuracy and for evidentiary purposes, reference should be made to the official version available on the New York State Legislature Web site. Click on the link for "Laws of New York" and then the link for "PBH Public Health". Page TITLE 1 – GENERAL PROVISIONS 3300 - Short Title 4 3300a- Legislative purposes 4 3301 - Applicability of this article to actions and matters occurring or arising before and after the effective date. 4 3302 - Definitions of terms of general use in this article 4 3304 - Prohibited acts 7 3304* - Prohibited acts 8 3305 - Exemptions 8 3306 - Schedules of controlled substances 9 3307 - Exception from schedules 23 3308 - Powers and duties of the commissioner 24 3309 - Opioid overdose prevention 24 3309a - Prescription pain medication awareness program 26 TITLE 2 – MANUFACTURE AND DISTRIBUTION OF CONTROLLED SUBSTANCES 3310 - Licenses for manufacture or distribution of controlled substances 28 3311 - Authority to issue initial licenses, amended licenses and to renew licenses 29 3312 - Application for initial license 29 3313 - Granting of initial license 29 3315 - Applications for renewal of licenses to manufacture or distribute controlled substances 30 3316 - Granting of renewal of licenses 30 3318 - Identification of controlled substances 31 3319 - Distribution of free
    [Show full text]
  • Guidance on the Clinical Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances NEPTUNE
    Novel Psychoactive Treatment UK Network NEPTUNE Guidance on the Clinical Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances NEPTUNE This publication of the Novel Psychoactive Treatment UK Network (NEPTUNE) is protected by copyright. The reproduction of NEPTUNE guidance is authorised, provided the source is acknowledged. © 2015 NEPTUNE (Novel Psychoactive Treatment UK Network) 2015 Club Drug Clinic/CAPS Central and North West London NHS Foundation Trust (CNWL) 69 Warwick Road Earls Court SW5 9HB http://www.Neptune-clinical-guidance.com http://www.Neptune-clinical-guidance.co.uk The guidance is based on a combination of literature review and expert clinical con sensus and is based on information available up to March 2015. We accept no responsi bility or liability for any consequences arising from the use of the information contained in this document. The recommended citation of this document is: Abdulrahim D & Bowden-Jones O, on behalf of the NEPTUNE Expert Group. Guidance on the Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances. Novel Psychoactive Treatment UK Network (NEPTUNE). London, 2015. NEPTUNE is funded by the Health Foundation, an independent charity working to improve the quality of health care in the UK. Editorial production and page design by Ralph Footring Ltd, http://www.footring.co.uk NEPTUNE Chapter 11 Pipradrols and pipradrol derivatives Pipradrols and pipradrol derivatives are a group of amphetamine-type substances (ATS) structurally related to methamphetamines. In recent years, 2-DPMP (desoxy- pipradrol, also known as 2-diphenylmethylpiperadine) and D2PM (diphenylprolinol) have appeared on the recreational drug market, initially as so-called legal highs.
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Intravenous Self-Administration, Drug Discrimination, and Locomotor Cross-Sensitization
    Neuropsychopharmacology (2008) 33, 1137–1148 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 www.neuropsychopharmacology.org Methylphenidate Enhances the Abuse-Related Behavioral Effects of Nicotine in Rats: Intravenous Self-Administration, Drug Discrimination, and Locomotor Cross-Sensitization 1 1 1,2,3 ,1 Thomas E Wooters , Nichole M Neugebauer , Craig R Rush and Michael T Bardo* 1Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA; 2Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA; 3Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, USA Stimulant drugs, including D-amphetamine, cocaine, and methylphenidate, increase cigarette smoking in controlled human laboratory experiments. Although the mechanism(s) underlying this effect are unknown, it is possible that stimulants may enhance directly the abuse-related effects of nicotine. In the present study, we characterized the behavioral pharmacological interactions between methylphenidate and nicotine in the intravenous self-administration, drug discrimination, and locomotor cross-sensitization procedures. Adult male Sprague–Dawley rats were trained to respond for intravenous nicotine (0.01 or 0.03 mg/kg/infusion) or sucrose, and the acute effects of methylphenidate (1.25–10 mg/kg) were determined; in addition, separate groups of rats were treated with methylphenidate (2.5 mg/kg) or saline before 12 consecutive nicotine (0.03 mg/kg/infusion) self-administration sessions. Next, the discriminative stimulus effects of nicotine (0.03–0.3 mg/kg) and methylphenidate (1.25–10 mg/kg), alone and in combination with a low nicotine dose (0.056 mg/kg), were tested in nicotine-trained rats.
    [Show full text]
  • Individual Variation in the Motivational Properties of Cocaine
    Neuropsychopharmacology (2011) 36, 1668–1676 & 2011 American College of Neuropsychopharmacology. All rights reserved 0893-133X/11 www.neuropsychopharmacology.org Individual Variation in the Motivational Properties of Cocaine Benjamin T Saunders1 and Terry E Robinson1,* 1 Department of Psychology (Biopsychology Program), University of Michigan, Ann Arbor, MI, USA Cues in the environment associated with drug use draw the attention of addicts, elicit approach, and motivate drug-seeking and drug- taking behavior, making abstinence difficult. However, preclinical studies have identified large individual differences in the extent to which reward cues acquire these incentive motivational properties. For example, only in some rats does a spatially discrete food cue become attractive, eliciting approach and engagement with it, and acts as an effective conditioned reinforcer. Moreover, a discrete cocaine cue also acquires greater motivational control over behavior in rats prone to attribute incentive salience to a food cue. In this study, we asked whether there is similar individual variation in the extent to which interoceptive cues produced by cocaine itself instigate cocaine-seeking behavior. After quantifying individual variation in the propensity to attribute incentive salience to a food cue, rats were trained to self- administer cocaine in the absence of an explicit conditional stimulus. We then assessed motivation for cocaine by: (1) performance on a progressive ratio schedule, and (2) the degree to which a cocaine ‘prime’ reinstated cocaine-seeking following extinction of self- administration behavior. We found that rats prone to attribute incentive salience to a food cue worked harder for cocaine, and showed more robust cocaine-induced reinstatement. We conclude that there is considerable individual variation in the motivational properties of cocaine itself, and this can be predicted by the propensity to attribute incentive salience to reward cues.
    [Show full text]
  • Drug/Substance Trade Name(S)
    A B C D E F G H I J K 1 Drug/Substance Trade Name(s) Drug Class Existing Penalty Class Special Notation T1:Doping/Endangerment Level T2: Mismanagement Level Comments Methylenedioxypyrovalerone is a stimulant of the cathinone class which acts as a 3,4-methylenedioxypyprovaleroneMDPV, “bath salts” norepinephrine-dopamine reuptake inhibitor. It was first developed in the 1960s by a team at 1 A Yes A A 2 Boehringer Ingelheim. No 3 Alfentanil Alfenta Narcotic used to control pain and keep patients asleep during surgery. 1 A Yes A No A Aminoxafen, Aminorex is a weight loss stimulant drug. It was withdrawn from the market after it was found Aminorex Aminoxaphen, Apiquel, to cause pulmonary hypertension. 1 A Yes A A 4 McN-742, Menocil No Amphetamine is a potent central nervous system stimulant that is used in the treatment of Amphetamine Speed, Upper 1 A Yes A A 5 attention deficit hyperactivity disorder, narcolepsy, and obesity. No Anileridine is a synthetic analgesic drug and is a member of the piperidine class of analgesic Anileridine Leritine 1 A Yes A A 6 agents developed by Merck & Co. in the 1950s. No Dopamine promoter used to treat loss of muscle movement control caused by Parkinson's Apomorphine Apokyn, Ixense 1 A Yes A A 7 disease. No Recreational drug with euphoriant and stimulant properties. The effects produced by BZP are comparable to those produced by amphetamine. It is often claimed that BZP was originally Benzylpiperazine BZP 1 A Yes A A synthesized as a potential antihelminthic (anti-parasitic) agent for use in farm animals.
    [Show full text]
  • Treatment of Adhd Behandlung Von Adhd Traitement Du Thada
    (19) TZZ _ ¥9B_T (11) EP 2 129 369 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/19 (2006.01) A61K 31/137 (2006.01) 05.06.2013 Bulletin 2013/23 A61P 25/22 (2006.01) A61P 25/26 (2006.01) A61P 25/18 (2006.01) A61P 25/08 (2006.01) (2006.01) (21) Application number: 08700447.9 A61P 25/28 (22) Date of filing: 07.02.2008 (86) International application number: PCT/AU2008/000154 (87) International publication number: WO 2008/095253 (14.08.2008 Gazette 2008/33) (54) TREATMENT OF ADHD BEHANDLUNG VON ADHD TRAITEMENT DU THADA (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A2-2004/002462 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR • SCHALLER J L ET AL: "Carbamazepine and methylphenidate in ADHD" JOURNAL OF THE (30) Priority: 07.02.2007 US 900043 P AMERICAN ACADEMY OF CHILD AND 30.03.2007 PCT/AU2007/000421 ADOLESCENTPSYCHIATRY, THE ACADEMY, vol. 38, no. 2, 1 February 1999 (1999-02-01), pages (43) Date of publication of application: 112-113, XP009130030 ISSN: 0890-8567 09.12.2009 Bulletin 2009/50 • DAVIDS E. ET AL.: ’A pilot clinical trial of oxcarbazepine in adults with attention-deficit (60) Divisional application: disorder’ PROGRESS IN NEURO- 12174063.3 / 2 505 197 PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY vol. 30, 2006, pages 1033 - 1038, (73) Proprietor: Gosforth Centre (Holdings) Pty Ltd XP005518471 Maroochydore, Queensland 4558 (AU) • SCHREIER H.
    [Show full text]
  • Chapter 124 Controlled Substances
    1 CONTROLLED SUBSTANCES, Ch 124 CHAPTER 124 CONTROLLED SUBSTANCES Referred to in §124B.2, 124C.1, 124E.12, 124E.16, 155A.3, 155A.6, 155A.6A, 155A.6B, 155A.12, 155A.13A, 155A.13C, 155A.17, 155A.17A, 155A.23, 155A.26, 155A.27, 155A.42, 189.16, 204.7, 204.8, 204.14, 204.15, 205.3, 205.11, 205.12, 205.13, 232.45, 232.52, 321.19, 321.215, 422.72, 462A.2, 702.6, 809A.21, 811.1, 811.2, 901.5, 914.7 See §205.11 – 205.13 for additional provisions relating to administration and enforcement This chapter not enacted as a part of this title; transferred from chapter 204 in Code 1993 SUBCHAPTER I 124.302 Registration requirements. 124.303 Registration. DEFINITIONS — CONTROLLED SUBSTANCES ADMINISTRATION — IMITATION CONTROLLED 124.304 Revocation, suspension, or SUBSTANCES restriction of registration. 124.305 Contested case proceedings. 124.101 Definitions. 124.306 Records of registrants. 124.101A Administration of controlled 124.307 Order forms. substances — delegation. 124.308 Prescriptions. 124.101B Factors indicating an imitation controlled substance. SUBCHAPTER IV OFFENSES AND PENALTIES SUBCHAPTER II STANDARDS AND SCHEDULES 124.401 Prohibited acts — manufacture, delivery, possession — 124.201 Duty to recommend changes counterfeit substances, in schedules — temporary simulated controlled amendments to schedules. substances, imitation 124.201A Cannabis-derived products — controlled substances — rules. penalties. 124.202 Controlled substances — listed 124.401A Enhanced penalty for regardless of name. manufacture or distribution 124.203 Substances listed in schedule I — to persons on certain real criteria. property. 124.204 Schedule I — substances 124.401B Possession of controlled included.
    [Show full text]
  • Consideration of Desoxypipradrol (2-DPMP) and Related Pipradrol Compounds
    ACMD Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Will Reynolds 3rd Floor Seacole Building 2 Marsham Street London SW1P 4DF 020 7035 0454 Email: [email protected] Rt. Hon. Theresa May MP Home Office 2 Marsham Street 3rd Floor Peel Building London SW1P 4DF 13 September 2011 Dear Home Secretary, Re: Desoxypipradrol (2-DPMP) advice I write further to my correspondence of 29 October 2010 in relation to the compound desoxypipradrol (2-diphenylmethyl-piperidine, 2-DPMP). In its advice the Advisory Council on the Misuse of Drugs (ACMD) recommended that desoxypipradrol, identified in samples of a product known as „Ivory Wave‟, should be subject to an immediate ban under the Open General Import Licence. This advice was accepted by the Government and a ban was implemented on 4 November 2011. The ACMD has considered the available evidence and can now provide you with substantive consideration of the compound desoxypipradrol and its related compounds. A short report is annexed to this letter. The National Poisons Information Service in Edinburgh highlighted that a number of individuals had presented to the Royal Edinburgh Infirmary in the summer of 2010 following use of desoxypipradrol with symptoms that were similar to amphetamine toxicity, but with predominant neuropsychiatric features including: o Hallucinations o Paranoia o Severe Agitation In some cases these effects persisted for several days after ingestion. 1 In the attached report the ACMD has considered the available evidence from forensic providers, the National Programme on Substance Abuse Deaths, Clinical Toxicology Services, scientific research and Government Departments on the harms and sales of desoxypipradrol.
    [Show full text]