Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.103341 Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by Adam S. Wilkins The Szilard Hypothesis on the Nature of Aging Revisited Henrik Zetterberg,*,1 Magnus Ba˚th,†,‡ Madeleine Zetterberg,§,** Peter Bernhardt†,‡ and Ola Hammarsten†† *Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-431 80 Mo¨lndal, Sweden, †Institute of Clinical Sciences, Department of Radiation Physics, The Sahlgrenska Academy at University of Gothenburg, S-413 45 Gothenburg, Sweden, ‡Department of Medical Physics and Biomedical Engineering, The Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden, §Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, The Sahlgrenska Academy at University of Gothenburg, S-405 30 Gothenburg, Sweden, **Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, S-431 80 Mo¨lndal, Sweden and ††Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy at University of Gothenburg, S-413 45 Gothenburg, Sweden ABSTRACT This year marks the 50th anniversary of a nearly forgotten hypothesis on aging by Leo Szilard, best known for his pioneering work in nuclear physics, his participation in the Manhattan Project during World War II, his opposition to the nuclear arms race in the postwar era, and his pioneering ideas in biology. Given a specific set of assumptions, Szilard hypothesized that the major reason for the phenomenon of aging was aging hits, e.g., by ionizing radiation, to the gene-bearing chromosomes and presented a mathematical target-hit model enabling the calculation of the average and maximum life span of a species, as well as the influence of increased exposure to DNA-damaging factors on life expectancy. While many new findings have cast doubt on the specific features of the model, this was the first serious effort to posit accumulated genetic damage as a cause of senescence. Here, we review Szilard’s assumptions in the light of current knowledge on aging and reassess his mathematical model in an attempt to reach a conclusion on the relevance of Szilard’s aging hypothesis today. EO Szilard (born in Budapest, Hungary, 1898; died control of atomic energy out of the hands of the L in La Jolla, California, 1964) was one of the military and within a civilian department at a global leading contributors to the development of nuclear level. He joined the forces of a large number of fellow energy and the first atomic bomb. He understood the scientists and formed the Federation of Atomic Scien- concept of a nuclear chain reaction in 1933 and filed a tists, later Federation of American Scientists, which is patent for his idea the following year (Lanouette still active (http://www.fas.org/main/home.jsp). He also 1992). In 1942, with Enrico Fermi, he set up the first made efforts to encourage mutual disarmament and nuclear chain reaction. Realizing the power of what he the reduction of tensions between the United States had helped unleash, he became among the earliest and and the Soviet Union. To this end, he was active in the most active campaigners for nuclear arms control. In formation of the Pugwash Conferences on Science and spite of intense lobbying, he failed to prevent the World Affairs, together with Albert Einstein, Bertrand bombing of Hiroshima, which was a catastrophic event Russell, and others, a series of conferences concerned in his life that eventually made him leave nuclear phy- with reducing the danger of armed conflict and seeking sics (Lanouette 1992). In the postwar years, Szilard cooperative solutions for global problems (http://www. spent a major portion of his time working to place the pugwash.org/). In 1962, he helped found the Council for a Livable World, a Washington, D.C.-based lobby 1Corresponding author: Institute of Neuroscience and Physiology, De- organization for nuclear arms control, still active with the partment of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-431 80 Mo¨lndal, Sweden. goal of providing the U.S. Congress with accurate E-mail: [email protected] technical and scientific information to facilitate bal- Genetics 182: 3–9 (May 2009) 4 H. Zetterberg et al. anced decisions about weapons of mass destruction functioning when either both chromosomes in a chro- (http://www.clw.org/). mosome pair have suffered aging hits or one of the Leo Szilard lived a nomadic life and usually had no chromosomes carries an inherited fault and the other permanent job or address (Maas and Crow 2004). one suffers an aging hit (the possibility that both chro- However, he had an enormous capacity to grasp novel mosomes in a pair carry inherited faults is neglected). For fields and erect hypotheses for others to test experimen- the female, using a single-hit, multitarget (n ¼ 2) model tally and was often acknowledged in scientific communi- for chromosome pairs without inherited faults and a cations from research groups around the world (Klein single-hit, single-target model for chromosome pairs with 1990; Lanouette 1992). After World War II, he left an inherited fault, Szilard describes the surviving fraction, nuclear physics for good and turned himself to molecular f, of somatic cells as biology, a field that had developed rapidly in the United Âà Àj 2 mÀr Àrj States under the lead of Salvador Luria, Max Delbru¨ck, f ¼ 1 ð1 À e Þ Áe ; ð1Þ and others (Klein 1990). In 1946, he accepted an where m is the number of chromosome pairs, r is the appointment as professor of biophysics at the University number of inherited faults, and j is the average number of Chicago. One of his first accomplishments was the of aging hits that have been suffered by a somatic cell at development of the Chemostat, an instrument that a given age: allows for the maintenance of bacterial populations in growth phase over an indefinite period of time by age j ¼ : ð2Þ regulating dissolved oxygen, nutrient concentrations, 2mt and pH (Novick and Szilard 1950). Experiments in the Chemostat revealed, among other things, that the t induction of the lac operon was an all-or-none phenom- In Equation 2, is the ‘‘basictime interval of the aging enon (Novick and Weiner 1957), a result fundamental process,’’ i.e., the average time interval between two to the interpretation of the data by Monod and subsequent aging hits in a somatic cell. It is assumed that t colleagues, defining the concept of negative control of is a characteristic for the species and does not vary gene expression by repressors (Pardee et al. 1958). In appreciably from individual to individual. hisNobellectureof1965(http://nobelprize.org/nobel_ Szilard continues to assume that an individual will die prizes/medicine/laureates/1965/monod-lecture.pdf), within the year in which the surviving fraction has Monod acknowledged a significant part of his Nobel reached a certain critical value, f *. The maximum life Prize to discussions with Szilard, himself never a Nobel span of a species is therefore given by the age at which an laureate. Later in life, Szilard became interested in the individual without inherited faults reaches a surviving biology of aging (Szilard 1959) and higher brain fraction of f *. To include a variation in the model, a functions (Szilard 1964). genetic scattering (stemming from an individual varia- Fifty years ago, Szilard published an article describing tion in the number of inherited faults) and a non- a mathematical target-hit model for the aging process genetic scattering (estimated from the mean age (Szilard 1959). Szilard’s model enables the calculation difference at death between identical twins) are in- of the average and maximum life span of a species, as cluded. Szilard begins by using a Poisson distribution to well as the influence of increased exposure to DNA- describe the fluctuation in the number of inherited damaging factors on the aging process. Here, we re- faults, but to simplify the mathematics he motivates the assess this largely forgotten article, scrutinize the basic use of a Gaussian distribution. Using also a Gaussian assumptions and calculations being made, describe how distribution to describe the nongenetic scattering, the model influenced the thinking about accumulated comparing the result with the actually observed distri- genetic damage as a cause of aging, and update the bution of the ages of death of the U.S. population in the mid-20th century, and assuming that the critical surviv- model on some of its most outdated assumptions. 1 ing fraction of somatic cells (f *) is 6 , Szilard ends up with an average value of r ¼ 2.5 and a value of t ¼ 6 years for humankind. Thus, using m ¼ 23, all parameters in SZILARD’S MODEL Equation 1 are known. Szilard then continues to use this Szilard’s aging model is based on a number of result to discuss various subjects such as the ‘‘physiolog- assumptions, enabling a mathematical description of ical age,’’ the effect of changing the load of inherited the aging process. The elementary step in the process is faults, and the life-shortening effect of ionizing the ‘‘aging hit’’of a chromosome, which renders all genes radiation. carried by that chromosome inactive. These aging hits are random events that have a constant probability of SZILARD’S ASSUMPTIONS occurring per unit time throughout life for a chromo- some. A chromosome may also carry an inherited fault, Szilard used the best estimates and assumptions making all its genes inactive from birth. A cell will cease from knowledge accumulated until 1958 to build his Perspectives 5 model of aging. Some of these assumptions are of a causal relation between DNA damage and aging are surprisingly close to present views, while others suffer the role of DNA as the primary informational bio- fromthefactthatlittleofthebiologyoftheDNAand molecule (Vijg 2000) and the fact that all other macro- protein machinery of the cell was known at that time.
Recommended publications
  • Qualitative Modeling in Computational Systems Biology

    Qualitative Modeling in Computational Systems Biology

    Qualitative modeling in computational systems biology Citation for published version (APA): Musters, M. W. J. M. (2007). Qualitative modeling in computational systems biology. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR629275 DOI: 10.6100/IR629275 Document status and date: Published: 01/01/2007 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
  • Aging in Bacteria Thomas Nyström

    Aging in Bacteria Thomas Nyström

    596 Aging in bacteria Thomas Nyström Analysis of senescent Escherichia coli cells reveals a link E. coli cells highlights that there may be lessons to learn between protein oxidation and the fidelity of the translational from this model system also in the context of free radical apparatus. This model system has also provided a mechanistic biology and aging. molecular explanation for a trade-off between reproduction and survival activities, which may inspire proponents of the disposable Trade–off between reproduction and maintenance soma theory and antagonistic pleiotropy hypothesis of aging. Genes induced early upon cellular growth arrest have been recognized as the most important ones in the bacterial Addresses fight against stasis-induced senescence (see, for example, Department of Cell and Molecular Biology — Microbiology, [5–7]). Many of these genes encode proteins with specific Göteborg University Medicinaregatan 9C, 413 90 Göteborg, Sweden; roles in protecting the cell against external stresses, such as e-mail: [email protected] heat, oxidants and osmotic challenge. As a consequence, Current Opinion in Microbiology 2002, 5:596–601 growth-arrested cells are highly resistant to a variety of secondary stresses, a phenomenon known as stasis-induced 1369-5274/02/$ — see front matter © 2002 Elsevier Science Ltd. All rights reserved. crossprotection [5]. This crossprotection relies, to a large extent, on one single regulator, the sigma factor σS (see, Published online 3 October 2002 for example, [6]). The σS transcription factor accumulates, binds and directs the RNA polymerase to more than Introduction 50 specific genes upon conditions of cellular starvation and Cytokinesis in bacteria such as Escherichia coli proceeds in stress [6].
  • What Is Ageing? Can We Delay

    What Is Ageing? Can We Delay

    What is Ageing? Can we delay it? 1 Introduction By Dame Karen Dunnell The Longevity Science Panel has changed its name from Longevity Science Advisory Panel to reflect its wider role in monitoring trends, generating discussion and forming views on issues related to the UK population’s longevity trend. The Panel independently monitors scientific evidence that could potentially explain changes and differences in life expectancy in the UK. It aims to cover changing epidemiological, biological and socio-demographic factors as well as the impact of developments in health care. Its conclusions will be openly disseminated, with the intention of promoting public interest in the factors that influence life expectancy. the extension of human lifespan in the future. The Panel has produced two previous reports, which have looked at the impact From this research we have been able to that socio-economic factors and gender build up a picture of the latest differences have on lifespan, at both an developments in this area. The experts individual and population level. This third tended to agree on which possible factors report focuses on the biology of ageing, are important in understanding the biology looking in particular at the key advances of ageing. However, they did not that have been made in scientific necessarily agree on which are the most understanding about this complex topic; important components of the ageing what the potential might be for new process, or on which interventions might developments, such as drug treatments have the greatest potential for extending and other interventions, to increase lifespan. lifespan and when we might expect to see any substantial changes in lifespan from Our goal for this project was to produce a these new developments.
  • Chapter 9. Integrative Genomics of Aging

    Chapter 9. Integrative Genomics of Aging

    CHAPTER 9 Integrative Genomics of Aging João Pedro de Magalhães and Robi Tacutu Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK OUTLINE Introduction 263 Finding Needles in Haystacks: Network Approaches and Multi-Dimensional Post-Genome Technologies and Data Integration 272 Biogerontology 264 Construction of Longevity Networks 273 Genome-Wide Approaches and the Topological Features 274 Genetics of Aging and Longevity 264 Network Modularity 276 Surveying the Aging Phenotype on a Multi-Dimensional Data Integration 276 Grand Scale 267 Predictive Methods and Models 278 Challenges in Data Analysis 270 Concluding Remarks 279 Data Integration 271 Acknowledgments 280 Data and Databases 271 References 280 INTRODUCTION processes are complex in the sense that they involve the interplay of multiple genes and The sequencing of genomes has revolution- proteins with each other and with the environ- ized biological and biomedical research. Thanks ment, surveying systems as a whole is impera- to various technologies and approaches that tive to fully comprehending them, and more take advantage of genome sequence knowl- accurately pinpointing how to intervene in edge, researchers can now focus on whole bio- them. Recent breakthroughs in developing logical systems rather than being limited to cheaper and quicker sequencing technolo- studying isolated parts. Because most biological gies have given further power to our capacity M. Kaeberlein & G.M. Martin (Eds) DOI: http://dx.doi.org/10.1016/B978-0-12-411596-5.00009-5 Handbook of the Biology of Aging, Eighth edition. 263 © 2016 Elsevier Inc. All rights reserved. 264 9. IntegratiVE GENOMICS OF AGING to survey biological systems in a holistic way sources, as this is one of the major challenges with multiple applications in aging research of the post-genome era, and also one of the (reviewed in de Magalhães et al., 2010).
  • Antioxidants

    Antioxidants

    Antioxidants 2015, 4, 793-810; doi:10.3390/antiox4040793 OPEN ACCESS antioxidants ISSN 2076-3921 www.mdpi.com/journal/antioxidants Review Which Is the Most Significant Cause of Aging? Stefan I. Liochev 8 Foxlair Court, Durham, NC 27712, USA; E-Mail: [email protected]; Tel.: +1-919-382-8713 Academic Editor: Adam Salmon Received: 21 October 2015 / Accepted: 2 December 2015 / Published: 17 December 2015 Abstract: It becomes clearer and clearer that aging is a result of a significant number of causes and it would seem that counteracting one or several of them should not make a significant difference. Taken at face value, this suggests, for example, that free radicals and reactive oxygen species do not play a significant role in aging and that the lifespan of organisms cannot be significantly extended. In this review, I point to the fact that the causes of aging synergize with each other and discuss the implications involved. One implication is that when two or more synergizing causes increase over time, the result of their action increases dramatically; I discuss a simple model demonstrating this. It is reasonable to conclude that this might explain the acceleration of aging and mortality with age. In this regard, the analysis of results and mortality patterns described in studies involving yeasts and Drosophila provides support for this view. Since the causes of aging are synergizing, it is also concluded that none of them is the major one but many including free radicals, etc. play significant roles. It follows that health/lifespan might be significantly extended if we eliminate or even attenuate the increase of a few or even just one of the causes of aging.
  • Cellular Networks and the Aging Process

    Cellular Networks and the Aging Process

    Archives of Physiology and Biochemistry, April 2006; 112(2): 60 – 64 REVIEW ARTICLE Cellular networks and the aging process PETER CSERMELY & CSABA SOTI} Department of Medical Chemistry, Semmelweis University, Budapest, Hungary Abstract The most important interactions between cellular molecules have a high affinity, are unique and specific, and require a network approach for a detailed description. After a brief introduction to cellular networks (protein – protein interaction networks, metabolic networks, gene regulatory networks, signalling networks and membrane – organelle networks) an overview is given on the network aspects of the theories on aging. The most important part of the review summarizes our knowledge on the aging of networks. The effects of aging on the general network models are described, as well as the initial findings on the effects of aging on the cellular networks. Finally we suggest a ‘weak link theory of aging’ linking the random damage of the network constituents to the overwhelming majority of the low affinity, transient interactions (weak links) in the cellular networks. We show that random damage of weak links may lead to an increase of noise and an increased vulnerability of cellular networks, and make a comparison between these predictions and the observed behaviour of the emergent properties of cellular networks in aged organisms. Key words: Aging, network integrity, protein – protein interaction network, signalling network, transcriptional regulatory network. membrane – organelle network various membrane Cellular networks segments (membrane vesicles, domains, rafts of The tremendous increase of our knowledge on cellular membranes) and cellular organelles (mito- the cross-reacting pathways of our cells requires the chondria, lysosomes, segments of the endoplasmic integration of the analytical description of the reticulum, etc.) are the elements and usually protein individual interactions.
  • The Scientific Basis for Healthy Aging and Antiaging Processes

    The Scientific Basis for Healthy Aging and Antiaging Processes

    The Scientific Basis for Healthy Aging and Antiaging Processes New York, 2011 Russian_English_book.indd 1 16/12/11 4:25 PM Editors A. ShArmAn and Z. ZhumAdilov Almaz Sharman—MD, PhD, D.M.Sc., Professor of Medicine, Deputy Chairman, Executive Committee, Nazarbayev University; Zhaxybay Zhumadilov—MD, PhD, D.M.Sc. Professor of Medicine, General Director, Center for Life Sciences, Nazarbayev University Russian_English_book.indd 2 16/12/11 4:25 PM The Scientific Basis for Healthy Aging and Antiaging Processes Editors Almaz Sharman and Zhaxybay Zhumadilov New York 2011 liebertpub.com Russian_English_book.indd 3 16/12/11 4:25 PM ISBN: 978-1-934854-xx-x Copyright © 2011 Mary Ann Liebert, Inc. Mary Ann Liebert, Inc. 140 Huguenot Street New Rochelle, NY 10801 All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of both the copyright owner and Mry Ann Liebert, Inc., the publisher of this work. Published in the United States of America. Russian_English_book.indd 4 16/12/11 4:25 PM Contents List of Abbreviations and Definitions ix Foreword xii Preface xii Chapter I Demographic Transformations, Perspectives on Longevity, and Challenges for Health (A. Sharman) 1 1.1. Demographic Changes in the Twenty-first Century 1 1.2. Increases in Life Expectancy 4 1.3. Longevity and Challenges for Health 6 1.4. Healthy Behavior and the Horizons of Longevity 7 1.5.
  • Aging and Health a Systems Biology Perspective

    Aging and Health a Systems Biology Perspective

    Interdisciplinary Topics in Gerontology Editor: T. Fulop Vol. 40 Aging and Health A Systems Biology Perspective Editors A.I. Yashin S.M. Jazwinski Inflammation Mitochondrial DNA damage/ dysfunction genomic instability ROS Senescence Sources of homeostatic Proteostasis stress Growth signaling Epigenetic factors IGF mTOR Genetic NFκ-B FOXO regulators of longevity Nrf2 Mitohormesis Metabolic Cancer disease Obesity Aging and Senescence age-related Frailty Tissue disease Neurodegeneration degeneration Inflammation Atherosclerosis Aging and Health – A Systems Biology Perspective Interdisciplinary Topics in Gerontology Vol. 40 Series Editor Tamas Fulop Sherbrooke, Que. Aging and Health – A Systems Biology Perspective Volume Editors Anatoliy I. Yashin Durham, N.C. S. Michal Jazwinski New Orleans, La. 36 figures, 8 in color, and 9 tables, 2015 Basel · Freiburg · Paris · London · New York · Chennai · New Delhi · Bangkok · Beijing · Shanghai · Tokyo · Kuala Lumpur · Singapore · Sydney Dr. Anatoliy I. Yashin Dr. S. Michal Jazwinski Duke Center for Population Health and Aging Tulane Center for Aging Erwin Mill Building Department of Medicine 2024 West Main Street 1430 Tulane Ave., SL-12 Box 90420 New Orleans, LA 70112 Durham, NC 27705 USA USA Library of Congress Cataloging-in-Publication Data Aging and health (Yashin) Aging and health : a systems biology perspective / volume editors, Anatoliy I. Yashin, S. Michal Jazwinski. p. ; cm. -- (Interdisciplinary topics in gerontology, ISSN 0074-1132 ; vol. 40) Includes bibliographical references and indexes. ISBN 978-3-318-02729-7 (hardcover : alk. paper) -- ISBN 978-3-318-02730-3 (e-ISBN) I. Yashin, Anatoli I., editor. II. Jazwinski, S. Michal, editor. III. Title. IV. Series: Interdisciplinary topics in gerontology ; v. 40. 0074-1132 [DNLM: 1.
  • Application of Shortest-Path Network Analysis to Identify Genes That Modulate Longevity in Saccharomyces Cerevisiae

    Application of Shortest-Path Network Analysis to Identify Genes That Modulate Longevity in Saccharomyces Cerevisiae

    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2008 Application of Shortest-Path Network Analysis to Identify Genes that Modulate Longevity in Saccharomyces cerevisiae JR Managbanag Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1613 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Life Sciences Virginia Commonwealth University This is to certify that the dissertation prepared by Jim Ray J. Managbanag entitled Application of Shortest-Path Network Analysis to Identify Genes that Modulate Longevity in Saccharomyces cerevisiae has been approved by his or her committee as satisfactory completion of dissertation requirement for the degree of Doctor of Philosophy (Ph.D.) in Integrative Life Sciences (ILS) Tarynn M. Witten (Chairperson), Ph.D., FGSA, Center for the Study of Biological Complexity (CSBC), School of Life Sciences, Emergency Medicine (MCV) _______________________________________________________________________ Danail G. Bonchev, Ph.D., CSBC, Department of Mathematics Lemont B. Kier, Ph.D., Department of Medicinal Chemistry Fang-Sheng Wu, Ph.D., Department of Biology Ping Xu, Ph.D., School of Dentistry Thomas F. Huff, Ph.D., Vice Provost of Life Sciences Dr. F. Douglas Boudinot, Dean of the School of Graduate Studies September 3, 2008 © Jim Ray J. Managbanag 2008 All Rights Reserved APPLICATION OF SHORTEST-PATH NETWORK ANALYSIS TO IDENTIFY GENES THAT MODULATE LONGEVITY IN SACCHAROMYCES CEREVISIAE A Dissertation submitted in partial fulfillment of the requirements for the degree Ph.D.
  • The Aging Process and Potential Interventions to Extend Life Expectancy

    The Aging Process and Potential Interventions to Extend Life Expectancy

    ORIGINAL RESEARCHREVIEW TheCoronary aging process artery diseaseand potential in women: interventions a review toon extendprevention, life expectancy pathophysiology, diagnosis, and treatment Author copy only Matteo Tosato1 Abstract: Aging is commonly defi ned as the accumulation of diverse deleterious changes Valentina Zamboni1 occurring in cells and tissues with advancing age that are responsible for the increased risk of Leila Fernandes Araujo Abstract: Despite numerous studies on women’s cardiac health throughout the past decade, the 1 disease and death. The major theories of aging are all specifi c of a particular cause of aging, pro- AlessandroAlexandre deFerrini Matos Soeiro number of female deaths caused by cardiovascular disease still rises and remains the leading cause 1,2 viding useful and important insights for the understanding of age-related physiological changes. Matteo Cesari of death in women in most areas of the world. Novel studies have demonstrated that cardiovascular Juliano Lara Fernandes However, a global view of them is needed when debating of a process which is still obscure 1Department of Gerontology, disease, and more specifically coronary artery disease presentations in women, are different than Antônio Eduardo Pesaro in some of its aspects. In this context, the search for a single cause of aging has recently been Geriatrics and Physiatry; Catholic those in men. In addition, pathology and pathophysiology of the disease present significant UniversityCarlos V of SerranoSacred Heart, Jr Rome, replaced by the view of aging as an extremely complex, multifactorial process. Therefore, the gender differences, which leads to difficulties concerning diagnosis, treatment and outcome of the Italy; 2Department of Aging and different theories of aging should not be considered as mutually exclusive, but complementary GeriatricHeart Institute Research, (InCor), College University of female population.
  • Defining Aging Formatted

    Defining Aging Formatted

    Accepted for publication in Biology and Philosophy (2020) Defining Aging Maël Lemoine1 Abstract Aging is an elusive property of life, and many important questions about aging depend on its definition. This article proposes to draw a definition from the scientific literature on aging. First, a broad review reveals five features commonly used to define aging: structural damage, functional decline, depletion, typical phenotypic changes or their cause, and increasing probability of death. Anything that can be called ‘aging’ must present one of these features. Then, although many conditions are not consensual instances of aging, aging is consensually described as a process of loss characterized by a rate and resulting from the counteraction of protective mechanisms against mechanisms that limit lifespan. Beyond such an abstract definition, no one has yet succeeded in defining aging by a specific mechanism of aging because of an explanatory gap between such a mechanism and lifespan, a consensual explanandum of a theory of aging. By contrast, a sound theoretical definition can be obtained by revisiting the evolutionary theory of aging. Based on this theory, aging evolves thanks to the impossibility that natural selection eliminates late traits that are neutral mainly due to decreasing selective pressure. Yet, the results of physiological research suggest that this theory should be revised to also account for the small number of different aging pathways and for the existence of mechanisms counteracting these pathways, that must, on the contrary, have been selected. A synthetic, but temporary definition of aging can finally be proposed. Keywords Aging, disease, evolution, death 1 Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33000 Bordeaux, France ✑[email protected] 1 Accepted for publication in Biology and Philosophy (2020) 1.
  • Review Article an Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment

    Review Article an Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment

    Hindawi Publishing Corporation Journal of Immunology Research Volume 2016, Article ID 8426874, 12 pages http://dx.doi.org/10.1155/2016/8426874 Review Article An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment Shijin Xia,1 Xinyan Zhang,2 Songbai Zheng,1 Ramin Khanabdali,3 Bill Kalionis,3 Junzhen Wu,1 Wenbin Wan,4 and Xiantao Tai5 1 Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China 2Department of Information, Chengdu Military General Hospital, Chengdu 610083, China 3Department of Maternal-Fetal Medicine Pregnancy Research Centre and Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3052, Australia 4Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China 5School of Acupuncture, Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China Correspondence should be addressed to Shijin Xia; [email protected], Songbai Zheng; [email protected], and Xiantao Tai; [email protected] Received 2 March 2016; Revised 16 May 2016; Accepted 14 June 2016 Academic Editor: Lenin Pavon´ Copyright © 2016 Shijin Xia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Inflamm-aging is a challenging and promising new branch of aging-related research fields that includes areas such as immunose- nescence. Increasing evidence indicates that inflamm-aging is intensively associated with many aging diseases, such as Alzheimer’s disease, atherosclerosis, heart disease, type II diabetes, and cancer. Mounting studies have focused on the role of inflamm-aging in disease progression and many advances have been made in the last decade.