The Development of Life in the Oceans During Silurian and Devonian Periods

Total Page:16

File Type:pdf, Size:1020Kb

The Development of Life in the Oceans During Silurian and Devonian Periods The development of life in the Oceans during Silurian and Devonian Periods (443-354 MY) Silurian and Devonian development of life in the Ocean • A rapid spread of jawless fish, and the appear- ances of both the first known freshwater fish as well as the first fish with jaws. Fishes and ammo- nites develop very rapidly during the Devonian. • Coral reefs appear and expand; a widespread radiation of crinoids (sæliljur) and a continuation of the expansion of the brachiopods (armfætlur). Aquatic recovery after the Ordovician mass extinction Most of the marine taxa re-diversified quickly after the Ordovician mass ex- tinction, with the exception of the trilobates. They never recovered fully, and drifted slowly towards extinction. Great expansion of tropical reefs Biodiversity is commonly compared between different environments. This diagram shows that Silurian reefs contain more species than Silurian non- reef environments http://www.mpm.edu/reef/intro.html The reefs as ecosystems Reefs are built in warm shallow seawater in the tropics and subtropics. Reefs occur only in waters that are relatively free of suspended, land-derived sediment, which allows sunlight to penetrate to the reef surface, permitting photosynthetic organisms to live. Both geological and living reefs are characterised by three main groups of animals and plants: Framework builders build the resistant framework of calcium carbonate. In living coral reefs, corals and sponges are most important. In earlier geological periods, stromatoporoids (strýtuþörungar), bryozoans, and corals have functioned as framework builders. The reef as ecosystem Reef bafflers (rifstilkir) have upright fronds or stick-like growth forms that interfere with currents and trap sediment on the reef surface Reef binders, like white-colored algae, grow over and around loose sediment and skeletons of reef organisms and literally bind them together. Reef dwellers consist of a variety of species that live in and among the constructors and binders, but they do not directly build the reef framework. The reef as ecosystem Reef destroyers bore into or scrape away parts of the reef surface, converting hard reef framework into loose particles of sediment. These photos show holes in a coral produced by the bivalve at the far left. The reef community is characterized by complex interactions among these types of organisms. Corals, which are common reef constructors, form a rigid framework that offers habitats for reef- dwelling bivalves, which may cement to coral heads or nestle in cavities between them. Certain sponges, worms and other bivalves act as reef-destroyers by boring into the coral framework and producing loose particles of broken coral. Baffling organisms may concentrate these sediment particles on particular parts of the reef, where organisms such as calcareous algae can bind them to create a new type of rigid surface. Silurian-Devonian reefscape A Silurian-Devonian sea floor, with numerous corals, large Stromatoporoids (strýtuþörundur), the "sunflower coral" (possibly a green algae). Crawling among the coral and stromatoporoids are trilobates and gastropods. In the background are crinoids and orthocerid (réttskélja) nautiloids (kuggar). Devonian reefs were enormous During the Devonian, reefs grew to proportions never experienced before. The largest reefs grew near the Equator, in the tropical seas close to Gondwana as well as in Canada Geology of reefs Within and around the huge Devonian Reefs, the remains of economical of various plants and animals importance... thatlivedintheseaoronthe reef accumulated layer upon layer. As these layers accumu- lated, the organic materials transformed into oil and natural gas due to pressure, heat and other geological factors. These layers managed to seal the corals (due to the porous rock's tiny holes) into A Devonian reef in Canada; large pockets of pressurized >800 m long oil and natural gas waiting to be tapped. Numerous reef extinctions Reefs are particularily sensitive to sea level changes Ammonites develop rapidly during the Devonian Ammonites radiated and developed rapidly during the upper Paleozoic; they were prominent until the K/T boundary, when the went extinct. Silurian fishes This fauna is dominated by jawless fishes, but jawed fishes are evolving (10). All Silurian fishes lived in a marine environment. The development of the fishes The Devonian has been called the "Age of the Fishes" because of the tremendous diversity of fish groups that evolved during this period of geologic time. Small, jawless, and finless ostracoderms (brynfiskar) were among the earliest vertebrates. They were filter feeders. Although extant jawless fishes lack protection, many early jawless fishes had large defensive head shields. Development of fishes Shield: a defense against other predators Sea scorpions were common in Silurian and Devonian time The • The eurypterids were among the largest marine predators of Eurypterids the Paleozoic, some reached more than 2 m in length. • They arose in the Ordovician, and went extinct in the Permian. Most have been found in rocks that were laid down in brackish water or freshwater; the earliest groups may have lived in the sea, and some eurypterids may have spent at least short intervals on land. • The eurypterids have been called sea-scorpions. And in fact they are closely related to scorpions. The agnaths (kjálkalausir fiskar; Agnatha= vankjálkar) Early jawed fishes The evolution of jaws is an example of evolutionary modi- fication of existing structures to perform new functions. Jaws are modified gill arches, and allowed the exploitation of new roles in the habitats: predators with powerful jaws. The Plachoderms (brynháfar) The first jawed fish were the Placoderms, an extinct group of Devonian-aged jawed fishes. Placoderms were armored with heavy plates and had strong jaws and paired pectoral and pelvic fins. Paired fins allow fish to balance and to maneuver well in water, which facilitate both predation and escape. The Plachoderms... Unlike all other jawed vertebrates, plachoderms never had teeth, and did not descend from toothed ancestors. Instead, bony plates associated with the jaws performed the function of teeth, sometimes forming razor-like, literally self-sharpening edges (Dunkleosteus above). A Dunkleosteus Dunkleosteus was the biggest member of the family Dinichthyidae ("terrible fishes"). It was a heavily armored primitive fish, up to 8-10 m (!) long, from the Late Devonian period, living about 370 million years ago. A monster for our imagination A remarkable fish... Dunkleosteus looked like the violent brute it was: power- fully built and armour-plated round its head. Pigment cells suggest Dunkleosteus had dark colours on its back and was silvery on its belly. Dunkleostus ate fish, sharks and even its own kind. And it seems that Dunkleosteus suffered from indigestion as a result: its fossils are often associated with regurgitated, semi-digested remains of fish. Dunkleosteus may have been one of the earliest animals to exist as male or female meaning that pairs of fish had to mate More on the Plachoderms In 1997, a plachoderm fossil from Antarctica was found to contain preserved pigment cells: iridescent silver on the ventral side (belly) and red on the dorsal side (back). Placoderms are the oldest vertebrates for which we know something about their color in life. This further implies that placoderms may have had color vision. The Plachoderms lasted for 50 MY • The Plachoderms were a highly successful and diverse taxon, but they lasted only about 50 MY. Contrast this with the history of sharks, which appeared at about the same time as placoderms - but which have survived for over 400 million years! In a sense, plachoderms repre- sent "early experiment" in the evolution of jawed fish. • A number of Devonian plachoderms have been found in freshwater habitats: placoderms included some of the first vertebrates to colonize fresh water. They also included the earliest vertebrates to colonize the open ocean. • Plachoderms survived until the very end of the Devonian, and their extinction appears to have been quite sudden, but its causes are still unknown. The spiny fishes (háfiskar, gadduggar) Acanthodians (háfiskar) are among the earliest jawed vertebrates known. Frag-mentary remains have been recovered from as early as the Upper Ordovician of North America and Lower Silurian of China. Their record extends about 160 million years to the Lower Permian. Diversity is greatest from the Upper Silurian through the Devonian. The Acanthodians (háfiskar) Acanthodians are a poorly understood group of extinct jawed fishes that are distinguished by the bony spines projecting in front of their fins. Most of them also have relatively large eyes set near the front of their short blunt heads. Like most early fishes, acanthodians had heterocercal caudal fins (tail fins with the top longer that the bottom). A view of a spiny fish... Side and bottom views of Gyracanthides murrayi . They ranged in size between 0.2-1.2 m Evolution of the sharks... Tracing the evolution of sharks is frustrated by the nature of the beast. Due to their characteristic cartilaginous skeleton, ancient sharks have left behind precious few clues to enable us to figure out what they were like. The oldest undisputed shark remains are about 420 MY scales, from early Silurian deposits in Siberia. The earliest complete Cladoselache fossil shark, from the mid-Devonian. It had 3- pointed teeth with a large central point and smaller cusps flanking it. It was 0.5-2 m long and had large spines in front of each of the 2 dorsal fins. It had neither an anal fin nor claspers. There were 5 gill slits on each side of the head. Fossils found in the Cleveland shales including fossilized stomach contents reveal that it ate fish. The Cladoselache The early shark Cladoselache hunted in the warm seas of North America 375 million years ago. It had a markedly weaker jaw joint than present-day sharks, but it compensated with impressive jaw-closing muscles that are frequently fossilized. Caldoselache had a deep, forked tail and was probably a fast swimmer, which is just as well since it may have been preyed upon by the giant 3.5 m Dunkleosteus.
Recommended publications
  • Memoirs of the National Museum, Melbourne January 1906
    Memoirs of the National Museum, Melbourne January 1906 https://doi.org/10.24199/j.mmv.1906.1.01 ON A CARBONIFEROUS FISH-FAUNA FROM THE MANSFIELD DISTRICT, VICTORIA. f BY AWL'HUR SJnTu T oomYARD, LL.D., F.U..S. I.-IN'l1RODUC'I1ION. The fossil fish-remains colloctocl by 1fr. George Sweet, F.G.S., from the reel rncks of the Mansfield District, are in a very imperfect state of presern1tion. 'J1lic·y vary considerably in appea1·a11co according to the Hature of the stratum whence they were obtained. 'l'he specimens in the harder ealcm-oous layers retain their original bony ot· ealcifiocl tissue, which ndhores to tbe rock ancl cannot readily ho exposed without fractnre. 'l'he remains hnriecl in the more fcrruginous ancl sanely layers have left only hollmv moulds of their outm1rd shape, or arc much doeayod and thus Yeq difficult to recognise. MoreQvor, the larger fishes arc repr0sontNl only hy senttcrocl fragments, while the smaller fishes, eYon when approximately whole, arc more or less distorted and disintcgrato(l. Under these circumstancPs, with few materials for comparison, it is not Rnrprising that the latt: Sil' Broderick McCoy should haYe failed to pnbJii.,h a sntisfactory a(•eount of the Mansfield eollection. \Yith great skill, ho sPlcctcd nearly all the more important specimens to be drawn in the series of plates accom­ panying the present memoir. II0 also instructed ancl snp0rvif-ecl the artist, so thnt moRt of' tbc pl'ineipnl foaturcs of the fossils "\Yore duly 0111phasisc•cl. IIis preliminary determinations, however, published in 1800, 1 arc now shown to have been for the most part erroneous; while his main conelusions as to the affinities of 1 F.
    [Show full text]
  • Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Holocephalan Embryos Provide Evidence for Gill Arch Appendage Reduction and Opercular Evolution in Cartilaginous fishes
    Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes J. Andrew Gillisa,1, Kate A. Rawlinsonb, Justin Bellc, Warrick S. Lyond, Clare V. H. Bakera, and Neil H. Shubine,1 aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom; bDepartment of Genetics, Evolution and Environment, University College London, London, WC1E 6BT United Kingdom; cDepartment of Primary Industries, Marine and Freshwater Fisheries Resource Institute, Queenscliff, Victoria 3225, Australia; dNational Institute of Water and Atmospheric Research, Hataitai, Wellington 6021, New Zealand; and eDepartment of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved December 15, 2010 (received for review August 31, 2010) Chondrichthyans possess endoskeletal appendages called branchial extensive analyses, including exceptionally complete material of the rays that extend laterally from their hyoid and gill-bearing (bran- stethacanthid Akmonistion zangerli (11), however, suggest an al- chial) arches. Branchial ray outgrowth, like tetrapod limb out- ternative placement of key ray-bearing taxa. These analyses resolve growth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, Cladoselache and the symmoriids (including the hyoid plus gill arch distal endoskeletal elements fail to form in the absence of normal ray-bearing Akmonistion) as paraphyletic stem-group
    [Show full text]
  • Devonian Daniel Childress Parkland College
    Parkland College A with Honors Projects Honors Program 2019 Did You Know: Devonian Daniel Childress Parkland College Recommended Citation Childress, Daniel, "Did You Know: Devonian" (2019). A with Honors Projects. 252. https://spark.parkland.edu/ah/252 Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact [email protected]. GENUS PHYLUM CLASS ORDER SIZE ENVIROMENT DIET: DIET: DIET: OTHER D&D 5E “PERSONAL NOTES” # CARNIVORE HERBIVORE SIZE ACANTHOSTEGA Chordata Amphibia Ichthyostegalia 58‐62 cm Marine (Neritic) Y ‐ ‐ small 24in amphibian 1 ACICULOPODA Arthropoda Malacostraca Decopoda 6‐8 cm Marine (Neritic) Y ‐ ‐ tiny Giant Prawn 2 ADELOPHTHALMUS Arthropoda Arachnida Eurypterida 4‐32 cm Marine (Neritic) Y ‐ ‐ small “Swimmer” Scorpion 3 AKMONISTION Chordata Chondrichthyes Symmoriida 47‐50 cm Marine (Neritic) Y ‐ ‐ small ratfish 4 ALKENOPTERUS Arthropoda Arachnida Eurypterida 2‐4 cm Marine (Transitional) Y ‐ ‐ small Sea scorpion 5 ANGUSTIDONTUS Arthropoda Malacostraca Angustidontida 6‐9 cm Marine (Pelagic) Y ‐ ‐ small Primitive shrimp 6 ASTEROLEPIS Chordata Placodermi Antiarchi 32‐35 cm Marine (Transitional) Y ‐ Y small Placo bottom feeder 7 ATTERCOPUS Arthropoda Arachnida Uraraneida 1‐2 cm Marine (Transitional) Y ‐ ‐ tiny Proto‐Spider 8 AUSTROPTYCTODUS Chordata Placodermi Ptyctodontida 10‐12 cm Marine (Neritic) Y ‐ ‐ tiny Half‐Plate 9 BOTHRIOLEPIS Chordata Placodermi Antiarchia 28‐32 cm Marine (Neritic) ‐ ‐ Y tiny Jawed Placoderm 10
    [Show full text]
  • Morphology and Histology of Acanthodian Fin Spines from the Late Silurian Ramsasa E Locality, Skane, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E
    Morphology and histology of acanthodian fin spines from the late Silurian Ramsasa E locality, Skane, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E. Ahlberg To cite this version: Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E. Ahlberg. Morphology and histology of acanthodian fin spines from the late Silurian Ramsasa E locality, Skane, Sweden. Palaeontologia Electronica, Coquina Press, 2017, 20 (3), pp.20.3.56A-1-20.3.56A-19. 10.26879/749. hal-02976007 HAL Id: hal-02976007 https://hal.archives-ouvertes.fr/hal-02976007 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeontologia Electronica palaeo-electronica.org Morphology and histology of acanthodian fin spines from the late Silurian Ramsåsa E locality, Skåne, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, and Per E. Ahlberg ABSTRACT Comparisons of acanthodians to extant gnathostomes are often hampered by the paucity of mineralized structures in their endoskeleton, which limits the potential pres- ervation of phylogenetically informative traits. Fin spines, mineralized dermal struc- tures that sit anterior to fins, are found on both stem- and crown-group gnathostomes, and represent an additional potential source of comparative data for studying acantho- dian relationships with the other groups of early gnathostomes.
    [Show full text]
  • Marine Vertebrate Remains from Middle-Late Devonian Bone Beds at Little Hardwick Creek in Vaughns Mill, Kentucky and at the East Liberty Quarry in Logan County, Ohio
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2011 Marine Vertebrate Remains from Middle-late Devonian Bone Beds at Little Hardwick Creek in Vaughns Mill, Kentucky and at The East Liberty Quarry in Logan County, Ohio John M. James Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Earth Sciences Commons, and the Environmental Sciences Commons Repository Citation James, John M., "Marine Vertebrate Remains from Middle-late Devonian Bone Beds at Little Hardwick Creek in Vaughns Mill, Kentucky and at The East Liberty Quarry in Logan County, Ohio" (2011). Browse all Theses and Dissertations. 1066. https://corescholar.libraries.wright.edu/etd_all/1066 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. MARINE VERTEBRATE REMAINS FROM MIDDLE-LATE DEVONIAN BONE BEDS AT LITTLE HARDWICK CREEK IN VAUGHNS MILL, KENTUCKY AND AT THE EAST LIBERTY QUARRY IN LOGAN COUNTY, OHIO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By John M. James B.A., Wright State University, 2006 2011 Wright State University COPYRIGHT BY JOHN M. JAMES 2011 WRIGHT STATE UNIVERSITY GRADUATE SCHOOL August 22, 2011 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY John M. James ENTITLED Marine Vertebrate Remains from Middle-Late Devonian Bone Beds at Little Hardwick Creek in Vaughns Mill, Kentucky and at the East Liberty Quarry in Logan County, Ohio BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science.
    [Show full text]
  • Scientific Classification
    1/12/2015 seaworld.org/en/animal-info/animal-infobooks/sharks-and-rays/scientific-classification/ PARKS KIDS SHOP ANIMALS CARE LANGUAGE Scientific Classification → Scientific Sharks & Rays Classification Scientific Classification Habitat & Distribution Physical Characteristics Anatomy & Physiology Senses Adaptations Class - Chondrichthyes Behavior Diet & Eating Habits 1. Chondrichthyes are fish with the following characteristics: a skeleton made of cartilage, jaws, paired fins, and paired nostrils. Granules of calcium carbonate on the outside of the cartilage add strength. Reproduction The mosaic granule pattern is unique to chondrichthyan fishes. These fishes also lack a swim bladder found in most bony fishes. Birth & Care of Young Longevity & Causes of Death Conservation & Research Appendix Books for Young Readers Bibliography Unlike these lookdown fish (Selene vomer), sharks lack hard bones. Red blood cells in sharks are therefore produced in the kidneys and a special organ called an epigonal. White blood cells are created in the spleen and spiral valve within the intestine. 2. Chondrichthyes are further divided into two subclasses: Holocephali and Elasmobrachii. The subclass Holocephali includes fishes known as chimaeras. They are characterized by the fusion of the upper jaw to the cranium (the upper part of the skull that encloses the brain), one pair of external gill openings, and no scales. The subclass Elasmobranchii includes sharks and batoids. Elasmobranchs are characterized by cylindrical or flattened bodies, five to seven pairs of gill slits, an upper jaw not fused to the cranium, and placoid scales. Superorders Elasmobranchs are grouped into two superorders: Batoidea (rays and their relatives) and Selachii (sharks). Batoids include stingrays, electric rays, skates, guitarfish, and sawfish.
    [Show full text]
  • Dental Diversity in Early Chondrichthyans
    1 Supplementary information 2 3 Dental diversity in early chondrichthyans 4 and the multiple origins of shedding teeth 5 6 Dearden and Giles 7 8 9 This PDF file includes: 10 Supplementary figures 1-5 11 Supplementary text 12 Supplementary references 13 Links to supplementary data 14 15 16 Supplementary Figure 1. Taemasacanthus erroli left lower jaw NHMUK PV 17 P33706 in (a) medial; (b) dorsal; (c) lateral; (d) ventral; (e) posterior; and (f) 18 dorsal and (g) dorso-medial views with tooth growth series coloured. Colours: 19 blue, gnathal plate; grey, Meckel’s cartilage. 20 21 Supplementary Figure 2. Atopacanthus sp. right lower or left upper gnathal 22 plate NHMUK PV P.10978 in (a) medial; (b) dorsal;, (c) lateral; (d) ventral; and 23 (e) dorso-medial view with tooth growth series coloured. Colours: blue, 24 gnathal plate. 25 26 Supplementary Figure 3. Ischnacanthus sp. left lower jaw NHMUK PV 27 P.40124 (a,b) in lateral view superimposed on digital mould of matrix surface 28 with Meckel’s cartilage removed in (b); (c) in lateral view; and (d) in medial 29 view. Colours: blue, gnathal plate; grey, Meckel’s cartilage. 30 Supplementary Figure 4. Acanthodopsis sp. right lower jaw NHMUK PV 31 P.10383 in (a,b) lateral view with (b) mandibular splint removed; (c) medial 32 view; (d) dorsal view; (e) antero-medial view, and (f) posterior view. Colours: 33 blue, teeth; grey, Meckel’s cartilage; green, mandibular splint. 34 35 Supplementary Figure 5. Acanthodes sp. Left and right lower jaws in 36 NHMUK PV P.8065 (a) viewed in the matrix, in dorsal view; (b) superimposed 37 on the digital mould of the matrix’s surface, in ventral view; and (c,d) the left 38 lower jaw isolated in (c) medial, and (d) lateral view.
    [Show full text]
  • Fish and Tetrapod Communities Across a Marine to Brackish
    Palaeontology Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographic implications Journal: Palaeontology Manuscript ID PALA-06-16-3834-OA.R1 Manuscript Type: Original Article Date Submitted by the Author: 27-Jun-2016 Complete List of Authors: Ó Gogáin, Aodhán; Earth Sciences Falcon-Lang, Howard; Royal Holloway, University of London, Department of Earth Science Carpenter, David; University of Bristol, Earth Sciences Miller, Randall; New Brunswick Museum, Curator of Geology and Palaeontology Benton, Michael; Univeristy of Bristol, Earth Sciences Pufahl, Peir; Acadia University, Earth and Environmental Science Ruta, Marcello; University of Lincoln, Life Sciences; Davies, Thoams Hinds, Steven Stimson, Matthew Pennsylvanian, Fish communities, Salinity gradient, Euryhaline, Key words: Cosmopolitan, New Brunswick Palaeontology Page 1 of 121 Palaeontology 1 2 3 4 1 5 6 7 1 Fish and tetrapod communities across a marine to brackish salinity gradient in the 8 9 2 Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and 10 3 their palaeoecological and palaeogeographic al implications 11 12 4 13 14 5 by AODHÁN Ó GOGÁIN 1, 2 , HOWARD J. FALCON-LANG 3, DAVID K. CARPENTER 4, 15 16 6 RANDALL F. MILLER 5, MICHAEL J. BENTON 1, PEIR K. PUFAHL 6, MARCELLO 17 18 7 RUTA 7, THOMAS G. DAVIES 1, STEVEN J. HINDS 8 and MATTHEW R. STIMSON 5, 8 19 20 8 21 22 9 1 School of Earth Sciences, University
    [Show full text]
  • 194631199.Pdf
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Callorhinchus Milii
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1382 Development and three- dimensional histology of vertebrate dermal fin spines ANNA JERVE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9596-1 UPPSALA urn:nbn:se:uu:diva-286863 2016 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, Evolutionary Biology Center, Norbyvägen 18A, Uppsala, Monday, 13 June 2016 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Philippe Janvier (Muséum National d'Histoire Naturelle, Paris, France). Abstract Jerve, A. 2016. Development and three-dimensional histology of vertebrate dermal fin spines. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1382. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9596-1. Jawed vertebrates (gnathostomes) consist of two clades with living representatives, the chondricthyans (cartilaginous fish including sharks, rays, and chimaeras) and the osteichthyans (bony fish and tetrapods), and two fossil groups, the "placoderms" and "acanthodians". These extinct forms were thought to be monophyletic, but are now considered to be paraphyletic partly due to the discovery of early chondrichthyans and osteichthyans with characters that had been previously used to define them. Among these are fin spines, large dermal structures that, when present, sit anterior to both median and/or paired fins in many extant and fossil jawed vertebrates. Making comparisons among early gnathostomes is difficult since the early chondrichthyans and "acanthodians", which have less mineralized skeleton, do not have large dermal bones on their skulls. As a result, fossil fin spines are potential sources for phylogenetic characters that could help in the study of the gnathostome evolutionary history.
    [Show full text]