Wilder Penfield, the Frontal Lobes and Psychosurgery

Total Page:16

File Type:pdf, Size:1020Kb

Wilder Penfield, the Frontal Lobes and Psychosurgery HISTORICAL REVIEW COPYRIGHT © 2019 THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES INC. Against the Current: Wilder Penfield, the Frontal Lobes and Psychosurgery Richard Leblanc ABSTRACT: Psychosurgery refers to the surgical interruption of the white matter fibres joining the frontal cortex to the remainder of the cortical mantle and to the thalamus, in an attempt to mitigate the manifestations of psychosis. It reached its heyday following World War Two and was abandoned with the introduction of major tranquilisers such as chlorpromazine. Wilder Penfield, unlike most of his contemporaries, had a jaundiced view of psychosurgery. This paper addresses Penfield’s early experience with experimental, penetrating brain trauma and with the surgical resection of frontal, epileptogenic lesions, which explain his antagonism towards psychosurgery. RÉSUMÉ: À contre-courant : Wilder Penfield, les lobes frontaux et la psychochirurgie. La psychochirurgie consiste notamment en l’interruption chirurgicale des fibres de la substance blanche reliant le cortex frontal au reste du manteau cortical et au thalamus, et ce, pour tenter d’atténuer les manifestations de la psychose. Cette technique a atteint son apogée à la suite de la Deuxième Guerre mondiale pour être ensuite délaissée avec l’introduction des principaux tranquillisants, par exemple la chlorpromazine. À la différence de la plupart de ses contemporains, Wilder Penfield ne voyait pas d’un très bon œil la psychochirurgie. Cet article entend aborder les premiers travaux expérimentaux de Penfield portant sur les traumatismes cérébraux par pénétration et sur la résection chirurgicale de lésions frontales épileptogènes, ce qui expliquerait son opposition à l’égard de la psychochirurgie. Keywords: Penfield, Frontal lobes, Psychosurgery, Lobotomy doi:10.1017/cjn.2019.48 Can J Neurol Sci. 2019; 46: 585–590 INTRODUCTION Penfield arrived in Montreal in November 1928 to head In a series of experiments that began in 1924 at Columbia Neurosurgery at the Royal Victoria Hospital of McGill University. One of his first patients was his own sister, who had suffered from University in New York, and which ended in the laboratory of Pio 4 del Río-Hortega in Madrid in 1927, Wilder Penfield discovered headaches and focal motor seizures of the left arm for many years. that penetrating trauma to the brain results in the formation of a These had worsened and her left hand had weakened, as her complex scar, to which he referred as the meningocerebral headaches became more severe and she began to have bouts of ’ cicatrix.1,2 This lesion is composed of reactive astrocytes and vomiting. Colin Russel, the Royal Victoria s Neurologist-in-Chief, astrocytic fibrils, collagen fibres and a newly created vascular examined her when she was 43 years old. He found that she had fl plexus that anastomoses with arteries supplying the cortex around bilateral papilledema and hyperactive, left deep tendon re exes. A fi the scar. The meningocerebral cicatrix, Penfield believed, was the skull x-ray revealed calci cations within the right frontal lobe, and fi cause of post-traumatic epilepsy. He also discovered that the the diagnosis of a partially calci ed brain tumour was made. fi clean, meticulously atraumatic resection of such a lesion resulted Pen eld performed a right frontal craniotomy under local in a simple gliotic reaction at the resection margin, which was not anaesthesia in December 1928 and found a hypervascular epileptogenic. These discoveries provided the rationale for the tumour. Electrocortical stimulation around the tumour produced ’ fi surgical treatment of focal, post-traumatic seizures. the patient s usual seizure, and this allowed Pen eld to identify Penfield’s earliest experiences with the surgical treatment of the motor strip, which had been displaced posteriorly by the mass post-traumatic epilepsy revealed that scars sometimes involved effect of the lesion. He performed an extensive resection of the most of a lobe. In such cases, he observed, “cerebral lobectomies tumour and of the cerebral tissue behind it. The resection thus even though involving large amounts of brain substance was extended from just anterior to the motor strip to the frontal pole, fl followed by surprisingly little disturbance of function.”3 One from the lateral cortex to the midline and to the oor of the fi exception, however, was the extensive resection of a lesion anterior fossa (Figure 1). This resection completed, Pen eld “ within a frontal lobe, which sometimes produced placidity, the observed that the neoplasm had passed into the opposite hemi- ”4 inability to organise one’s activities and lack of initiative. I sphere. Removal of this portion was not attempted. Thus, the propose that this experience, early in his career, was at the origin of Penfield’s antagonism towards psychosurgery. From the Department of Neurology and Neurosurgery, Montreal Neurological Institute – and McGill University, Montreal, Canada Frontal Lobectomy, 1928 1935 RECEIVED JANUARY 24, 2019. FINAL REVISIONS SUBMITTED APRIL 6, 2019. DATE OF – It may be urged that to destroy a delicate instrument is not ACCEPTANCE APRIL 8, 2019. 3 Correspondence to: Richard Leblanc, MD, Montreal Neurological Institute, 3801 the best way to study its function University Street. Montreal, QC, H3A 2B4, Canada. Email: [email protected] THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES 585 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.19, on 29 Sep 2021 at 01:35:27, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/cjn.2019.48 THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES been, and which cured W.B.’s seizures. His clinical examination upon follow-up did not reveal any indication of “ abnormality,” and he had “no complaints to make regarding his ability to live and behave in a normal way.”3 W.B. felt “much more controlled” when facing situations for which he had been “very antagonistic” in the past. Nonetheless, his father, who had been his sole employer, asserted that since the cranio-cerebral trauma his son “never had a job that I didn’t get for him.” Penfield concluded from this that W.B. “has lost initiative: not all of it, but much of it.”3 It was also noted that W.B. had difficulty with simple mental arithmetic, which Penfield attributed to difficulty thinking. Penfield also reported the cases of two other patients who had undergone frontal resections with no apparent cognitive or behavioural consequences. Penfield concluded from these four cases that extensive frontal Figure 1: Drawing of the right frontal resection that Penfield performed lobectomies “are followed by surprisingly little disturbance of on his sister. The convolution at the posterior margin of the resection is function, and that those that do occur are limited to “thinking and the motor strip. The left cingulate gyrus, the pericalossal branch of the initiative.” One might also add placidity, exemplified by W.B.’s left anterior cerebral artery and the genu of the corpus callosum are seen 3 at the medial aspect of the resection cavity. Note that the tumour had post-operative behaviour, to the effects of frontal lobe resection. invaded the corpus callosum. Source: Penfield archives, Osler Library of Placidity and lack of initiative would later be appreciated as the the History of Medicine, McGill University. hallmarks of frontal lobotomy.6 Penfield published three of these cases in a paper entitled “The tumour had invaded both frontal lobes, a fact which Penfield did frontal lobe in man: a clinical study of maximum removals,” in not mention in subsequent presentations of this case. Brain in March 1935.7 The paper brought the physiology of the Despite the length of the procedure – 6 hours – and a near fatal frontal lobe to the attention of an international audience, and it is intraoperative haemorrhage, the patient quickly recovered from considered a milestone of neurophysiology by no less an author- surgery, and her convalescence was uneventful. She had no ity than Donald Hebb.8 neurological deficits when she left the hospital and, as Penfield noted, she “discharged her duties as mother and wife.” There were The Second International Neurological Congress, 1935 no “immediate mental symptoms.” Penfield first presented her The Brain paper was published four months before the Second case in 1930 and attributed the absence of any frontal lobe deficits International Neurological Congress, held in London, England, to “the fact that other portions of the brain had taken over the from 29 July to 2 August 1935. Two special sessions are still function of this lobe during the very slow growth of the tumour.”4 relevant today: one on “The Epilepsies: Their Aetiology, Patho- Penfield returned to her case in 1932, in an address entitled genesis and Treatment,” and the other on “The Functions of the “Functional Effects Produced by Cerebral Lobectomies.”3 Penfield Frontal Lobe.” Penfield was invited to speak on “Epilepsy and now reported that since he had first presented her case, his sister Surgical Therapy,” but despite his previous reports on the physi- had undergone post-operative x-ray treatments, but to no avail: the ology of the frontal lobes, he was not asked to participate in the tumour had progressed. She had been referred to Harvey Cushing session addressing these structures.9 Nonetheless, most of his in Boston, who resected more of the tumour, but she died some two paper discussed the resection of epileptogenic lesions of the years after Penfield had first operated upon her. In the interval, frontal lobes. Its purpose was to illustrate the effectiveness of Penfield had come to realise that his sister had not been “mentally surgery in arresting epileptic attacks and the safety of this form of up to her own standard in looking after household arrangements,” treatment when performed under local anaesthesia with the aid due to “a lack of capacity for planned administration.” Penfield of cortical mapping.
Recommended publications
  • Surgical Management of Parkinson's Disease
    SEMINAR PAPER DTM Chan Surgical management of Parkinson’s VCT Mok WS Poon disease: a critical review KN Hung XL Zhu ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ !"#$%&'()*+, Parkinson’s disease is a progressive disabling movement disorder that is characterised by three cardinal symptoms: resting tremor, rigidity, and bradykinesia. Before the availability of effective medical treatment with levodopa and stereotactic neurosurgery, the objective of surgical management was to alleviate symptoms such as tremor at the expense of motor deficits. Levodopa was the first effective medical treatment for Parkinson’s disease, and surgical treatment such as stereotactic thalamo- tomy became obsolete. After one decade of levodopa therapy, however, drug-induced dyskinesia had become a source of additional disability not amenable to medical treatment. Renewed interest in stereotactic functional neurosurgery to manage Parkinson’s disease has been seen since the 1980s. Local experience of deep-brain stimulation is presented and discussed in this paper. Deep-brain stimulation of the subthalamic nucleus is an effective treatment for advanced Parkinson’s disease, although evidence from randomised control trials is lacking. !"#$%&'()*+,-!./01$23456789:; Key words: !"#$%&'()*+,-./01'23456789:;< Electric stimulation; !"#$%&'()*+,-./01(23#45+6789: Globus pallidus/surgery; Parkinson disease; !"#$%&'()*+,-./012345678'9:;< Stereotactic techniques; !"#$%&'()*%+,-./0123)456789:; Subthalamic nuclei/surgery; !"#$%&'()*+,-.1980 !"#$%&'()* Thalamus/surgery !"#$%&'()*+,-./0123456789:;<=
    [Show full text]
  • Decompressive Craniectomy Following Severe Traumatic Brain Injury with an Initial Glasgow Coma Scale Score of 3 Or 4
    Case Report Clinics in Surgery Published: 03 Jul, 2019 Decompressive Craniectomy Following Severe Traumatic Brain Injury with an Initial Glasgow Coma Scale Score of 3 or 4 Afif AFIF* Department of Neurosurgery and Anatomy, Pierre Wertheimer Hospital, France Abstract Background: Decompressive craniectomy is a surgical management option for severe Traumatic Brain Injury (TBI). However, few studies have followed patients with TBI who have a Glasgow Coma Scale (GCS) score of 3 or 4 (out of 15). Decompressive craniectomy has been avoided in such patients owing to poor outcomes and poor functional recoveries in previous cases of treatment using this method. Clinical Presentation: Two patients are presented in our case series. The first suffered severe TBI following an aggression, with a GCS score of 3 and bilaterally dilated unreactive pupils. Brains CT scan showed right frontal fracture, bifrontal hematoma contusion, a fronto-temporo-parietal acute Subdural Hematoma (SDH) with a thickness of 14 mm on the right side, traumatic subarachnoid hemorrhage, with 20 mm of midline shift to the left side, and diffuses brain edema. The second presented with severe TBI following an automobile accident, with a GCS score of 4 and iso- reactive pupils. A brain CT scan showed bilateral fronto-temporal fracture, diffuse brain hematoma contusion, traumatic subarachnoid hemorrhage, right Extradural Hematoma (EDH) and bilateral fronto-temporo-parietal acute SDH that was more pronounced on the right side. Conclusion: Follow-up after the operations showed an Extended Glasgow Outcome Scale (EGOS) score of 8 and a very good functional recovery for both patients. Our case series suggests that in patients with severe TBI and a GCS score of 3 or 4; decompressive craniectomy can be performed OPEN ACCESS with good long-term neurological outcomes.
    [Show full text]
  • Awake Craniotomy for Left Insular Low-Grade Glioma Removal on a Patient with Learning Disabilities
    THIEME Techniques in Neurosurgery 41 Awake Craniotomy for Left Insular Low-Grade Glioma Removal on a Patient with Learning Disabilities Andrej Vranic1 Blaz Koritnik2 Jasmina Markovic-Bozic3 1 Department of Neurosurgery, Fondation Ophtalmologique A. de Address for correspondence Andrej Vranic, MD, PhD, Department of Rothschild, Paris, France Neurosurgery, Fondation Ophtalmologique Adolphe de Rothschild, 2 Department of Neurophysiology, University Medical Centre, 29, Rue Manin, 75019 Paris, France (e-mail: [email protected]). Ljubljana, Slovenia 3 Department of Anesthesiology, University Medical Centre, Ljubljana, Slovenia Indian J Neurosurg 2017;6:41–43. Abstract Introduction Low-grade gliomas (LGG) are slow-growing primary brain tumors in adults, with high tropism for eloquent areas. Standard approach in treatment of LGG is awake craniotomy with intraoperative cortical mapping — a method which is usually used on adult and fully cooperative patients. Case Report We present the case of a patient with learning disabilities (PLD) who Keywords was operated for left insular LGG awake craniotomy, and intraoperative cortical ► low-grade glioma mapping were performed and the tumor was gross totally removed. ► awake craniotomy Conclusion Awake surgery for left insular LGG removal is challenging; however, it ► learning disability can be performed safely and successfully on PLD. Introduction been shown that awake brain tumor surgery can be safely performed with extremely low complication and failure rates Low-grade gliomas (LGG) are slow-growing primary brain regardless of American Society of Anesthesiologists tumors in adults. For many decades, these tumors were classification, body mass index, smoking status, psychiatric or considered inoperable because of their high tropism for emotional history, seizure frequency and duration, tumor site, eloquent areas and white matter pathways.
    [Show full text]
  • Neurocognitive and Psychosocial Correlates of Ventroposterolateral Pallidotomy Surgery in Parkinson's Disease
    Neurocognitive and psychosocial correlates of ventroposterolateral pallidotomy surgery in Parkinson's disease Henry J. Riordan, Ph.D., Laura A. Flashman, Ph.D., and David W. Roberts, M.D. Department of Psychiatry and Section of Neurosurgery, Dartmouth Medical School, Dartmouth­Hitchcock Medical Center, Lebanon, New Hampshire The purpose of this study was to characterize the neuropsychological and psychosocial profile of patients with Parkinson's disease before and after they underwent unilateral left or right pallidotomy, to assess specific cognitive and personality changes caused by lesioning the globus pallidus, and to predict favorable surgical outcome based on these measures. Eighteen patients underwent comprehensive neuropsychological assessment before and after left-sided pallidotomy (10 patients) or right-sided pallidotomy (eight patients). The findings support the presence of frontosubcortical cognitive dysfunction in all patients at baseline and a specific pattern of cognitive impairment following surgery, with side of lesion being an important predictor of pattern and degree of decline. Specifically, patients who underwent left-sided pallidotomy experienced a mild decline on measures of verbal learning and memory, phonemic and semantic verbal fluency, and cognitive flexibility. Patients who underwent right-sided pallidotomy exhibited a similar decline in verbal learning and cognitive flexibility, as well as a decline in visuospatial construction abilities; however, this group also exhibited enhanced performance on a delayed facial memory measure. Lesioning the globus pallidus may interfere with larger cognitive circuits needed for processing executive information with disruption of the dominant hemisphere circuit, resulting in greater deficits in verbal information processing. The left-sided pallidotomy group also reported fewer symptoms of depression and anxiety following surgery.
    [Show full text]
  • Low Pressure Headache, Intracranial Hypotension Last Updated: May 8, 2019 ETIOPATHOPHYSIOLOGY
    INTRACRANIAL HYPOTENSION S58 (1) Low Pressure Headache, Intracranial Hypotension Last updated: May 8, 2019 ETIOPATHOPHYSIOLOGY ......................................................................................................................... 1 CLINICAL FEATURES ............................................................................................................................... 1 DIAGNOSIS................................................................................................................................................ 2 TREATMENT ............................................................................................................................................. 2 ETIOPATHOPHYSIOLOGY Causes of CSF hypotension: 1. Lumbar puncture (CSF leakage through dural puncture site) - most common cause. 2. Dural tear or avulsion of nerve root (head or back trauma, craniotomy, spinal surgery, spontaneous dural tears, pituitary tumor*). *can cause CSF rhinorrhea craniotomy and trauma also decrease CSF formation. 3. CSF shunts 4. Spontaneous intracranial hypotension: a) CSF hyperabsorption (no evidence of CSF leak) - radionuclide cisternogram shows rapid transport of isotope and rapid uptake in kidneys and bladder. b) decreased CSF production - radionuclide cisternogram shows slow isotope flow; leads to brain sagging with compression of pituitary-hypothalamic axis and further reduction in CSF production. c) TARLOV cysts - arachnoid perineural cyst found in proximal radicles of lower spinal cord; rupture of cysts can
    [Show full text]
  • Care of Patient Post Craniectomy-(No Bone Flap)
    Care of Patient Post- Craniectomy (no bone flap) The Neurosurgery and Education Outreach Network (NEON) • The Neurosurgery Education and Outreach Network (NEON) is comprised of Neurosurgical Nurse Educators (NNEs), Clinical Outreach Specialists/Advanced Practice Nurses, and hospital Administrators dedicated to the neurosurgical nursing program implementation and on-going educational and clinical support of nursing staff in the neurosurgical centers and the non-neurosurgical referral centers. • As a neurosurgical educational support program, NEON reports directly to and works in conjunction with Critical Care Services Ontario (CCSO) and the Provincial Neurosurgery Advisory Committee who support system wide improvements for Ontario’s neurosurgical services. 2 Disclosure Statement • The Neurosurgery Education and Outreach Network (NEON) and Critical Care Services Ontario (CCSO) have no financial interest or affiliation concerning material discussed in this presentation. • This presentation provides direction for how to provide nursing care to adult and paediatric patients post- craniectomy to ensure consistency within and across organizations. It was developed by a sub-group of clinical neurosurgical nurses and neurosurgical educators for Registered Nurses (RN) across Ontario. This presentation is not meant to be exhaustive and its contents are recommended but not mandated for use. RNs should use their clinical judgment and utilize other assessment parameters if determined necessary. 3 Learning Objectives • The learner will be able to: – explain the difference between craniotomy and craniectomy – describe the implications for a craniectomy – summarize the risks and complications related to craniectomy – understand the nursing intervention related to caring for a patient with a craniectomy 4 Definitions • Craniotomy defines a procedure where the cranial cavity is accessed through removal of bone to perform a variety of brain surgeries.
    [Show full text]
  • The Intraoperative Use of the High-Density-Ecog During Awake Craniotomy Karim Refaey; William Tatum DO; Anteneh M
    The Intraoperative use of the High-Density-ECoG During Awake Craniotomy Karim ReFaey; William Tatum DO; Anteneh M. Feyissa M.D.; Alfredo Quinones-Hinoja MD Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida Department of Neurology, Mayo Clinic, Jacksonville, Florida Introduction Learning Objectives Electrocorticography (ECoG) and electrical cortical stimulation (ECS) are To determine if HD-grid ECoG electrodes can facilitate the extent of often used in tandem during awake craniotomies for mapping the eloquent resection during intraoperative ECS during real-time functional brain cortex, which facilitate tumor resection at the functional margins. mapping of eloquent cortex. To establish if ECoG composed of a 64-channel Intraoperative seizures are of a concern during awake craniotomy, which high-density grid can reveal a higher yield in detecting the epileptiform local lead to limitation of the extent of resection and a significant increase in the field potentials. length of hospitalizations. Due to the manifestation of seizures with brain lesions, epileptiform discharges are of interest. To investigate the frequency References Chatrian GE, Shaw CM, Leffman H. The significance of periodic lateralized epileptiform discharges in of epileptiform discharges we evaluated high-density ECoG (HD-ECoG) EEG: an electrographic, clinical and pathological study. Electroencephalogr. Clin. Neurophysiol. during ECS to assess epileptiform abnormalities and post-surgical 1964;17:177–193. Gurer G, Yemisci M, Saygi S, Ciger A. Structural lesions in periodic lateralized epileptiform outcomes. discharges (PLEDs). Clin. EEG Neurosci. 2004;35:88–93 Snodgrass SM, Tsuburaya K, Ajmone-Marsan C. Clinical significance of periodic lateralized epileptiform discharges: relationship with status epilepticus. J Clin Neurophysiol 1989;6:159–172.
    [Show full text]
  • Intraoperative Electrocorticography
    Conference Proceeding Intraoperative electrocorticography Gabriela Alcaraz, Pirjo Manninen Abstract Intraoperative electrocorticography (ECoG) is the recording of electrophysiological activity from electrodes placed directly on the exposed surface of brain, during surgery for epilepsy and tumor resection. The ECoG is helpful in defining the seizure onset and spread within the cortical surface and delineation of the interface between epileptogenic zones and functional cortex substance of the brain. Intraoperative ECoG is an invasive procedure, it is performed during surgery mostly commonly during awake craniotomy but at times during general anaesthesia. As most anesthetic agents will affect ECoG, they should be minimized or stopped prior to any recording. Activation of intraoperative epileptiform activity may also be required if there are no spontaneous discharges. The appropriate management of the anesthetic during the time of ECoG is critical for its success. There are limitations and some controversies to all the uses of intraoperative ECoG, thus each center will set their own indications, criteria, and protocols. Key words: Electrocorticography, epilepsy, neuroanaesthesia INTRODUCTION localisation and complete removal of the epileptogenic zone.[3,4] The epileptogenic zone includes all the areas Intraoperative electrocorticography (ECoG) is the of brain that generate spontaneous epileptic seizures. recording of electrophysiological activity from Though there is some controversy, ECoG, an invasive electrodes placed directly on the exposed surface of a technique, still plays an important role in the surgical brain, most commonly during the surgical treatment treatment of patients with epilepsy. The effects of [1-4] of epilepsy. The first use of intraoperative ECoG anaesthetic agents on intraoperative ECoG is an recordings was performed by Foerster and Alternberger important consideration for the anaesthesiologist in in 1935.
    [Show full text]
  • Transcranial Doppler Ultrasonography in Neurological Surgery and Neurocritical Care
    NEUROSURGICAL FOCUS Neurosurg Focus 47 (6):E2, 2019 Transcranial Doppler ultrasonography in neurological surgery and neurocritical care Robert H. Bonow, MD,1 Christopher C. Young, MD, PhD,1 David I. Bass, MD, PhD,1 Anne Moore, BSN, RVT,1 and Michael R. Levitt, MD1–4 Departments of 1Neurological Surgery, 2Radiology, 3Mechanical Engineering, and 4Stroke and Applied Neuroscience Center, University of Washington, Seattle, Washington Transcranial Doppler (TCD) ultrasonography is an inexpensive, noninvasive means of measuring blood flow within the arteries of the brain. In this review, the authors outline the technology underlying TCD ultrasonography and describe its uses in patients with neurosurgical diseases. One of the most common uses of TCD ultrasonography is monitoring for vasospasm following subarachnoid hemorrhage. In this setting, elevated blood flow velocities serve as a proxy for vaso- spasm and can herald the onset of ischemia. TCD ultrasonography is also useful in the evaluation and management of occlusive cerebrovascular disease. Monitoring for microembolic signals enables stratification of stroke risk due to carotid stenosis and can also be used to clarify stroke etiology. TCD ultrasonography can identify patients with exhausted cerebrovascular reserve, and after extracranial-intracranial bypass procedures it can be used to assess adequacy of flow through the graft. Finally, assessment of cerebral autoregulation can be performed using TCD ultrasonography, providing data important to the management of patients with severe traumatic
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • Neurosurgery for Mental Disorders: a Review
    REVIEW Afr J Psychiatry 2013;16:177-181 Neurosurgery for mental disorders: a review A Heeramun-Aubeeluck 1, Z Lu 2 1Tongji Hospital, affiliated to Tongji University, Shanghai, China 2Shanghai Mental Health Center, affiliated to Jiao Tong University, Shanghai, China Abstract Neurosurgical interventions date back to ancient civilization, 5100 BC through a practice known as trephination. Due to past abuse and ethical considerations, neurosurgical interventions in psychiatry remain a controversial issue. This article aims to review the different surgical techniques and their current application in the treatment of psychiatric disorders. The U.S Food and Drug Administration (FDA) gave its approval for vagal nerve stimulation (VNS) for the management of treatment-resistant depression in 2005 and deep brain stimulation (DBS) for refractory obsessive-compulsive disorders (OCD) in 2009. These invasive but non destructive techniques represent the future of neurosurgery for mental disorder. Keywords: Psychosurgery; Functional neurosurgery; Neurosurgery for mental disorder Received: 22-02-2012 Accepted: 24-06-2012 doi: http://dx.doi.org/10.4314/ajpsy.v16i3.23 Introduction described subcaudate tractotomy. 5,6 Anterior cingulotomy was The term “psychosurgery” was coined by Egas Moniz in proposed by Lars Leksell in 1972. 7 One year later Kelley 1937. 1 However, the first reported surgical intervention for reported findings from combined techniques form subcaudate psychiatric diseases was by Burkhardt in 1891. The latter tractotomy and cingulotomy and
    [Show full text]
  • Final Addenda Fy 1999 Icd-9-Cm Volume 3, Procedures
    FINAL ADDENDA FY 1999 ICD-9-CM VOLUME 3, PROCEDURES Tabular List 36 Operations of vessels of heart Add code also Code also any injection or infusion of platelet inhibitor (99.20) 36.04 Intracoronary artery thrombolytic infusion Revise exclusion term Excludes: infusion of platelet inhibitor (99.20) infusion of thrombolytic agent (99.10) New category 36.3 Other heart revascularization Delete inclusion term Abrasion of epicardium Delete inclusion term Cardio-omentopexy Delete inclusion term Intrapericardial poudrage Delete inclusion term Myocardial graft: Delete inclusion term mediastinal fat Delete inclusion term omentum Delete inclusion term pectoral muscles New code 36.31 Open chest transmyocardial revascularization New code 36.32 Other transmyocardial revascularization Percutaneous transmyocardial revascularization Thoracoscopic transmyocardial revascularization New code 36.39 Other heart revascularization Abrasion of epicardium Cardio-omentopexy Intrapericardial poudrage Myocardial graft: mediastinal fat omentum pectoral muscles 37 Other operations on heart and pericardium Add code also Code also any injection or infusion of platelet inhibitor (99.20) 37.32 Excision of aneurysm of heart Add inclusion term Repair of aneurysm of heart New code 37.67 Implantation of cardiomyostimulation system Note: Two-step open procedure consisting of transfer of one end of the latissimus dorsi muscle; wrapping it around the heart; rib resection; implantation of epicardial cardiac pacing leads into the right ventricle; tunneling and pocket creation for
    [Show full text]