Calmodulin-Dependent Protein Kinase II–Protein Phosphatase 1 Switch Facilitates Specificity in Postsynaptic Calcium Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Calmodulin-Dependent Protein Kinase II–Protein Phosphatase 1 Switch Facilitates Specificity in Postsynaptic Calcium Signaling An ultrasensitive Ca2؉͞calmodulin-dependent protein kinase II–protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling J. Michael Bradshaw*†‡, Yoshi Kubota*, Tobias Meyer†, and Howard Schulman* Departments of *Neurobiology and †Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305 Edited by Roger A. Nicoll, University of California, San Francisco, CA, and approved July 21, 2003 (received for review May 7, 2003) The strength of hippocampal synapses can be persistently in- hence would provide a distinct Ca2ϩ activation region for creased by signals that activate Ca2؉͞calmodulin-dependent pro- CaMKII compared with other Ca2ϩ-activated enzymes at the tein kinase II (CaMKII). This CaMKII-dependent long-term potenti- synapse. In fact, it has been hypothesized that the signaling ation is important for hippocampal learning and memory. In this network controlling CaMKII autophosphorylation is a bistable work we show that CaMKII exhibits an intriguing switch-like type of switch that allows CaMKII to remain autophosphory- activation that likely is important for changes in synaptic strength. lated long after Ca2ϩ returns to a basal level (16). We found that autophosphorylation of CaMKII by itself showed a In this work we demonstrate experimentally that CaMKII 2؉ Ϸ ϩ steep dependence on Ca concentration [Hill coefficient (nH) 5]. responds in a switch-like fashion to Ca2 : CaMKII transitions 2؉ Ϸ However, an even steeper Ca dependence (nH 8) was observed rapidly from little to near-total autophosphorylation over a when autophosphorylation is balanced by the dephosphorylation narrow range of Ca2ϩ. Interestingly, this switch-like response was activity of protein phosphatase 1 (PP1). This autophosphorylation– enhanced by the presence of protein phosphatase 1 (PP1). dephosphorylation switch was found to be reversible because PP1 Together, CaMKII and PP1 allow CaMKII to remain dephos- ؉ dephosphorylates CaMKII when Ca2 is lowered to a basal level. phorylated in response to subthreshold Ca2ϩ signals (such as The switch-like response of a CaMKII-PP1 system suggests that those that cause LTD) but fully activate in response to strong CaMKII and PP1 may function together as a simple molecular device signals (such as those that cause LTP). This provides a mecha- 2؉ that specifically translates only strong Ca signals into all-or-none nism to help explain how modestly different Ca2ϩ levels can potentiation of individual hippocampal synapses. selectively activate different signaling pathways at the synapse. Furthermore, a CaMKII-PP1 molecular switch may provide a ϩ n the CA1 region of the hippocampus, postsynaptic Ca2 influx biochemical basis for the observed all-or-none potentiation of Ican elicit different effects on synaptic plasticity including individual hippocampal synapses. long-term potentiation (LTP), long-term depression (LTD), or no change in synaptic strength (1). Different biochemical sig- Materials and Methods naling pathways are responsible for these diverse changes, with Protein Purification. ␣CaMKII and CaM were purified as de- ϩ the magnitude of Ca2 stimulus largely determining the pathway scribed (17, 18). Purified, unstimulated CaMKII shows no that becomes activated (2). However, the dynamic range of evidence of basal Thr-286 autophosphorylation as evaluated by ϩ [Ca2 ] within dendritic spines is modest compared with other both a lack of autonomous activity and a failure to be recognized systems, varying from Ϸ100 nM under basal conditions to Ϸ10 by a Thr-286 phospho-specific antibody. ␮M on strong stimulation (3). How different pathways are ␣ ϩ The His-tagged PP1 catalytic subunit in the vector pDR540 activated with specificity over this relatively small range of Ca2 (Pharmacia) was a gift of Angus Nairn (Yale University, New is not well understood. ϩ Haven, CT). Escherichia coli cells were grown at room temper- The primary effector of Ca2 signals that elicit LTP is ature in 0.5 liters of LB with ampicillin (50 ␮g͞ml) and 100 ␮M 2ϩ͞ Ca calmodulin (CaM)-dependent protein kinase II (CaMKII) CoCl until OD ϭ 0.4 nm, induced overnight with 0.5 mM ͞ 2 (4–6). CaMKII is a multifunctional serine threonine kinase that isopropyl ␤-D-thiogalactoside, and harvested. Cells were resus- is highly abundant in neurons, particularly dendritic spines (7, 8). pended in 10 mM Tris⅐HCl, pH 8.0͞30 mM imidazole͞10% 2ϩ͞ Binding of Ca CaM both activates CaMKII toward down- glycerol͞300 mM NaCl͞1 mM CoCl (resuspension buffer), ␣ 2 stream effectors such as the -amino-3-hydroxy-5-methyl-4- disintegrated by French press, and centrifuged at 30,000 ϫ g for isoxazolepropionate receptor (9) and recruits it to the synapse 30 min. The supernatant was loaded onto a 5-ml nickel- (10). In addition, CaM binding facilitates autophosphorylation nitrilotriacetic acid agarose column (Qiagen, Valencia, CA) ␣ of CaMKII at Thr-286 (in CaMKII). This autophosphorylation equilibrated in resuspension buffer. The column was washed in has the important consequence of allowing CaMKII to retain 20 mM Hepes, pH 7.4͞200 mM KCl͞2mMMg2ϩ͞10% glycerol enzymatic activity in the absence of Ca2ϩ (autonomy), thus 2ϩ (wash buffer) and eluted with wash buffer plus 400 mM imida- sustaining CaMKII activity after diminution of the initial Ca zole. Fractions were pooled to 95% purity at 16.6 ␮M PP1 and signal (11). The biological significance of CaMKII autophos- immediately snap-frozen. phorylation at Thr-286 has been demonstrated by using a PP1 catalytic subunit purified from E. coli has been shown to CaMKII ‘‘knock-in’’ mouse that cannot autophosphorylate (12). have properties that differ from PP1 purified from tissue (19). This mouse does not display hippocampal LTP and is deficient However, the PP1 purified here in CoCl resulted in decreased in spatial learning. 2 2ϩ p-nitrophenyl phosphate activity compared with PP1 purified in In contrast to LTP, Ca influx elicited by LTD-inducing the absence of CoCl , suggesting that CoCl -purified PP1 is stimuli seems not to activate CaMKII but rather the Ca2ϩ- 2 2 sensitive phosphatase calcineurin (13). How might multiple 2ϩ pathways at the synapse share Ca as their activator yet achieve This paper was submitted directly (Track II) to the PNAS office. nearly opposite responses? One mechanism for amplitude-based Abbreviations: LTP, long-term potentiation; LTD, long-term depression; CaM, calmodulin; response specificity is for CaMKII to respond in a switch-like CaMKII, Ca2ϩ͞CaM-dependent protein kinase II; PP1, protein phosphatase 1; PSD, postsyn- ϩ fashion to Ca2 signals (14, 15). This type of response would aptic density. ϩ narrow the range of Ca2 where CaMKII becomes activated and ‡To whom correspondence should be addressed. E-mail: [email protected]. 10512–10517 ͉ PNAS ͉ September 2, 2003 ͉ vol. 100 ͉ no. 18 www.pnas.org͞cgi͞doi͞10.1073͞pnas.1932759100 Downloaded by guest on September 24, 2021 enzymatically more similar to tissue-purified PP1 than PP1 purified from E. coli in the absence of CoCl2. CaMKII Autophosphorylation and the CaMKII-PP1 Signaling System. CaMKII phosphorylation experiments were performed in 40 ␮l of wash buffer plus 50 ␮M CaM, 2 mM ATP, and varying Ca2ϩ at 0°C. Eight microliters of a 5ϫ solution of CaM, Mg2ϩ, and ATP was first added to 4 ␮lofa10ϫ solution of Ca2ϩ stock buffer. Solutions of wash buffer and, if applicable, PP1 then were added to 20 ␮l. Twenty microliters of 2ϫ CaMKII solution was added to initiate the reaction. Experiments were performed at 0°C to avoid the time-dependent decrease in enzyme activity during autophosphorylation that CaMKII exhibits at higher Fig. 1. CaMKII autophosphorylation is cooperative to Ca2ϩ. Plotted is the temperatures. Performing experiments at 0°C prevents auto- CaMKII autophosphorylation level (indicated by the maximum CaMKII auton- 2ϩ Ϯ phosphorylation from occurring at the inhibitory sites on omy) after 5 min versus [Ca ] [error bars are SD; the number of autonomous activity values determined (n) was 2]. The solid line is the best fit to the Hill CaMKII (Thr-305 and Thr-306); this simplifies the CaMKII equation (Eq. 1). Here, [CaMKII] ϭ 0.2 ␮M. All shown Ca2ϩ titration data are activation process but does not explore the role of Thr-305 and representative data obtained from at least two, and often three or more, data 2ϩ Thr-306 in the Ca -dependent activation of CaMKII. sets collected at each condition. For pairs of experiments where CaMKII was initially either dephosphorylated or phosphorylated, two stock Ca2ϩ buffers (‘‘high’’ and ‘‘low’’) were used. It was calculated that the alone or along with 5 mM EGTA. The autonomy of CaMKII was combination of these two Ca2ϩ solutions would give the final assessed at 2, 5, 15, and 30 min. desired [Ca2ϩ]. For experiments where CaMKII was initially ϩ -dephosphorylated, 2 ␮l of both Ca2ϩ stocks was added to 8 ␮lof Ca2؉͞EGTA Buffer. In all experiments [Ca2 ] was controlled pre ϫ ͞ ͞ 2ϩ͞ the 5 solution of ATP MgCl2 CaM; the additional solution cisely by using a 10-fold concentrated system of Ca EGTA ϩ components then were added to initiate the reaction. However, buffer (Molecular Probes). The volume of K ͞EGTA and ϩ for experiments where CaMKII was initially phosphorylated, Ca2 ͞EGTA stock solutions to be combined was calculated ϩ only the 2-␮l high Ca2ϩ stock was initially added to 8 ␮lof based on the determined dissociation constant of Ca2 for ͞ ͞ ATP MgCl2 CaM. Twenty microliters of CaMKII then was EGTA of 60 nM under the used experimental conditions (20). ϩ added to allow CaMKII autophosphorylation. Subsequently, the To confirm the [Ca2 ], a fluorescence titration with Fluo-4 2-␮l low Ca2ϩ stock, the buffer, and PP1 were added to bring the (Molecular Probes) was performed (Fig. 6, which is published as solution to the final condition. supporting information on the PNAS web site, www.pnas.org). Autophosphorylation reactions were stopped by dilution of CaMKII to 100 nM into 20 mM Hepes, pH 7.4͞200 mM KCl͞50 Computational Models.
Recommended publications
  • (PDE 1 B 1) Correlates with Brain Regions Having Extensive Dopaminergic Innervation
    The Journal of Neuroscience, March 1994, 14(3): 1251-l 261 Expression of a Calmodulin-dependent Phosphodiesterase lsoform (PDE 1 B 1) Correlates with Brain Regions Having Extensive Dopaminergic Innervation Joseph W. Polli and Randall L. Kincaid Section on Immunology, Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852 Cyclic nucleotide-dependent protein phosphorylation plays PDE implies an important physiological role for Ca2+-regu- a central role in neuronal signal transduction. Neurotrans- lated attenuation of CAMP-dependent signaling pathways mitter-elicited increases in cAMP/cGMP brought about by following dopaminergic stimulation. activation of adenylyl and guanylyl cyclases are downre- [Key words: CAMP, cyclase, striatum, dopamine, basal gulated by multiple phosphodiesterase (PDE) enzymes. In ganglia, DARPP-321 brain, the calmodulin (CaM)-dependent isozymes are the major degradative activities and represent a unique point of Cyclic nucleotides, acting as “second messengers”or via direct intersection between the cyclic nucleotide- and calcium effects, regulate a diverse array of neuronal functions, from ion (Ca*+)-mediated second messenger systems. Here we de- channel conductance to gene expression. Hydrolysis of 3’,5’- scribe the distribution of the PDEl Bl (63 kDa) CaM-depen- cyclic nucleotidesto 5’-nucleosidemonophosphates is the major dent PDE in mouse brain. An anti-peptide antiserum to this mechanismfor decreasingintracellular cyclic nucleotide levels. isoform immunoprecipitated -3O-40% of cytosolic PDE ac- This reaction is catalyzed by cyclic nucleotide phosphodiester- tivity, whereas antiserum to PDElA2 (61 kDa isoform) re- ase (PDE) enzymes that constitute a large superfamily (Beavo moved 60-70%, demonstrating that these isoforms are the and Reifsynder, 1990).
    [Show full text]
  • Compartment-Specific Phosphorylation of Phosducin In
    Faculty Scholarship 2007 Compartment-specific hoP sphorylation of Phosducin in Rods Underlies Adaptation to Various Levels of Illumination Hongman Song Marycharmain Belcastro E. J. Young Maxim Sokolov Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Song, Hongman; Belcastro, Marycharmain; Young, E. J.; and Sokolov, Maxim, "Compartment-specific hospP horylation of Phosducin in Rods Underlies Adaptation to Various Levels of Illumination" (2007). Faculty Scholarship. 92. https://researchrepository.wvu.edu/faculty_publications/92 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 282, NO. 32, pp. 23613–23621, August 10, 2007 © 2007 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Compartment-specific Phosphorylation of Phosducin in Rods Underlies Adaptation to Various Levels of Illumination* Received for publication, March 7, 2007, and in revised form, June 11, 2007 Published, JBC Papers in Press, June 14, 2007, DOI 10.1074/jbc.M701974200 Hongman Song, Marycharmain Belcastro, E. J. Young, and Maxim Sokolov1 From the Departments of Ophthalmology and Biochemistry, West Virginia University School of Medicine and West Virginia University Eye Institute, Morgantown, West Virginia 26506 Phosducin is a major phosphoprotein of rod photoreceptors specific complex with the ␤␥ subunits of visual heterotrimeric that interacts with the G␤␥ subunits of heterotrimeric G pro- G protein, transducin (4, 5), and other heterotrimeric G pro- teins in its dephosphorylated state.
    [Show full text]
  • Regulation of Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase (PDE1): Review
    95-105 5/6/06 13:44 Page 95 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 18: 95-105, 2006 95 Regulation of calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1): Review RAJENDRA K. SHARMA, SHANKAR B. DAS, ASHAKUMARY LAKSHMIKUTTYAMMA, PONNIAH SELVAKUMAR and ANURAAG SHRIVASTAV Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Cancer Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon SK S7N 4H4, Canada Received January 16, 2006; Accepted March 13, 2006 Abstract. The response of living cells to change in cell 6. Differential inhibition of PDE1 isozymes and its environment depends on the action of second messenger therapeutic applications molecules. The two second messenger molecules cAMP and 7. Role of proteolysis in regulating PDE1A2 Ca2+ regulate a large number of eukaryotic cellular events. 8. Role of PDE1A1 in ischemic-reperfused heart Calmodulin-stimulated cyclic nucleotide phosphodiesterase 9. Conclusion (PDE1) is one of the key enzymes involved in the complex interaction between cAMP and Ca2+ second messenger systems. Some PDE1 isozymes have similar kinetic and 1. Introduction immunological properties but are differentially regulated by Ca2+ and calmodulin. Accumulating evidence suggests that the A variety of cellular activities are regulated through mech- activity of PDE1 is selectively regulated by cross-talk between anisms controlling the level of cyclic nucleotides. These Ca2+ and cAMP signalling pathways. These isozymes are mechanisms include synthesis, degradation, efflux and seque- also further distinguished by various pharmacological agents. stration of cyclic adenosine 3':5'-monophosphate (cAMP) and We have demonstrated a potentially novel regulation of PDE1 cyclic guanosine 3':5'- monophosphate (cGMP) within the by calpain.
    [Show full text]
  • The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions
    International Journal of Molecular Sciences Review The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions Csaba Máthé *, Márta M-Hamvas, Csongor Freytag and Tamás Garda Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] (M.M.-H.); [email protected] (C.F.); [email protected] (T.G.) * Correspondence: [email protected] Abstract: The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP–GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole Citation: Máthé, C.; M-Hamvas, M.; plant development.
    [Show full text]
  • G Protein Regulation of MAPK Networks
    Oncogene (2007) 26, 3122–3142 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW G Protein regulation of MAPK networks ZG Goldsmith and DN Dhanasekaran Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA G proteins provide signal-coupling mechanisms to hepta- the a-subunits has been used as a basis for the helical cell surface receptors and are criticallyinvolved classification of G proteins into Gs,Gi,Gq and G12 in the regulation of different mitogen-activated protein families in which the a-subunits that show more than kinase (MAPK) networks. The four classes of G proteins, 50% homology are grouped together (Simon et al., defined bythe G s,Gi,Gq and G12 families, regulate 1991). In G-protein-coupled receptor (GPCR)-mediated ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by signaling pathways, ligand-activated receptors catalyse different mechanisms. The a- as well as bc-subunits are the exchange of the bound GDP to GTP in the a-subunit involved in the regulation of these MAPK modules in a following which the GTP-bound a-subunit disassociate context-specific manner. While the a- and bc-subunits from the receptor as well as the bg-subunit. The GTP- primarilyregulate the MAPK pathwaysvia their respec- bound a-subunit and the bg-subunit stimulate distinct tive effector-mediated signaling pathways, recent studies downstream effectors including enzymes, ion channels have unraveled several novel signaling intermediates and small GTPase, thus regulating multiple signaling including receptor tyrosine kinases and small GTPases pathways including those involved in the activation of through which these G-protein subunits positivelyas well mitogen-activated protein kinase (MAPK) modules as negativelyregulate specific MAPK modules.
    [Show full text]
  • Protein Phosphatases and Calcium/Calmodulin-Dependent Protein Kinase II-Dependent Synaptic Plasticity
    8404 • The Journal of Neuroscience, September 29, 2004 • 24(39):8404–8409 Mini-Review Protein Phosphatases and Calcium/Calmodulin-Dependent Protein Kinase II-Dependent Synaptic Plasticity Roger J. Colbran Department of Molecular Physiology and Biophysics, The Center for Molecular Neuroscience and The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 Key words: calcium; calmodulin; learning; localization; LTP; NMDA; phosphatase; protein kinase; postsynaptic density Synaptic plasticity in hippocampal CA1 pyramidal cells requires a of the catalytic (C) subunits (two genes) with structural (A) sub- delicate balance of protein kinase and protein phosphatase activ- units (two genes) and regulatory (B) subunits (four known un- ities. Long-term potentiation (LTP) after intense synaptic stim- related gene families), and these can additionally associate with ulation often results from postsynaptic Ca 2ϩ influx via NMDA- other cellular proteins (Virshup, 2000). Similarly, four PP1 cata- ␣ ␤ ␥ ␥ type glutamate receptors and activation of multiple protein lytic subunit isoforms ( , , 1, and 2) differentially interact kinases. In contrast, weaker synaptic stimulation paradigms can with Ͼ40 known regulatory and/or targeting subunits (Ceule- induce long-term depression (LTD) (or depotentiation of previ- mans and Bollen, 2004). Thus, to understand how phosphatases ous LTP) via NMDA receptor-dependent activation of protein modulate processes such as synaptic plasticity, it is critical to serine/threonine phosphatases. Autophosphorylations at Thr 286, identify both the type of phosphatase that dephosphorylates a Thr 305, and Thr 306 regulate the activity and subcellular local- physiologically relevant substrate and the molecular nature of ization of calcium/calmodulin-dependent protein kinase II relevant protein phosphatase complex(es).
    [Show full text]
  • PDE6) by the Glutamic Acid- Rich Protein-2 (GARP2)
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2013 Regulation of the catalytic and allosteric properties of photoreceptor phosphodiesterase (PDE6) by the glutamic acid- rich protein-2 (GARP2) Wei Yao Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Yao, Wei, "Regulation of the catalytic and allosteric properties of photoreceptor phosphodiesterase (PDE6) by the glutamic acid-rich protein-2 (GARP2)" (2013). Doctoral Dissertations. 747. https://scholars.unh.edu/dissertation/747 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. REGULATION OF THE CATALYTIC AND ALLOSTERIC PROPERTIES OF PHOTORECEPTOR PHOSPHODIESTERASE (PDE6) BY THE GLUTAMIC ACID-RICH PROTEIN-2 (GARP2) BY WEI YAO B.S., Jinan University, 2007 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry September, 2013 UMI Number: 3575987 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss0?t&iori Piiblist’Mlg UMI 3575987 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
    [Show full text]
  • Biased Signaling of G Protein Coupled Receptors (Gpcrs): Molecular Determinants of GPCR/Transducer Selectivity and Therapeutic Potential
    Pharmacology & Therapeutics 200 (2019) 148–178 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential Mohammad Seyedabadi a,b, Mohammad Hossein Ghahremani c, Paul R. Albert d,⁎ a Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran b Education Development Center, Bushehr University of Medical Sciences, Iran c Department of Toxicology–Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran d Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada article info abstract Available online 8 May 2019 G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Origi- nally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins Keywords: that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCR GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between Gprotein cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein trans- β-arrestin ducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Selectivity Biased Signaling Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral fac- Therapeutic Potential tors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated ‘biased signaling’. In this regard, receptor sequence alignment and mutagenesis have helped to iden- tify key receptor domains for receptor/transducer specificity.
    [Show full text]
  • The Role of Protein Tyrosine Phosphatases in Inflammasome
    International Journal of Molecular Sciences Review The Role of Protein Tyrosine Phosphatases in Inflammasome Activation Marianne R. Spalinger 1,* , Marlene Schwarzfischer 1 and Michael Scharl 1,2 1 Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; Marlene.Schwarzfi[email protected] (M.S.); [email protected] (M.S.) 2 Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41-44-255-3794 Received: 16 July 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1β and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1β/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1β/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity.
    [Show full text]
  • A Versatile Spectrophotometric Protein Tyrosine Phosphatase Assay Based on 3-Nitrophosphotyrosine Containing Substrates
    Analytical Biochemistry 448 (2014) 9–13 Contents lists available at ScienceDirect Analytical Biochemistry journal homepage: www.elsevier.com/locate/yabio A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates Jeroen van Ameijde a,b, John Overvoorde c, Stefan Knapp d, Jeroen den Hertog c,e, Rob Ruijtenbeek f, ⇑ Rob M.J. Liskamp a,g, a Medicinal Chemistry and Chemical Biology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands b Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands c Hubrecht Institute, Uppsalalaan 8, P.O. Box 85164, 3508 AD Utrecht, The Netherlands d Structural Genomics Consortium, Oxford University, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK e Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands f Pamgene International Ltd., Wolvenhoek 10, P.O. Box 1345, 5200 BJ Den Bosch, The Netherlands g School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK article info abstract Article history: A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing Received 4 October 2013 peptidic substrates is described. These therapeutically important phosphatases feature in signal trans- Received in revised form 14 November 2013 duction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production from Accepted 22 November 2013 3-nitrophosphotyrosine containing peptidic substrates, which are accepted by many PTPs. Compared Available online 3 December 2013 to conventional chromogenic phosphate derivatives, the more realistic peptidic substrates allow evaluat- ing substrate specificity. The assay’s applicability is demonstrated by determining kinetic parameters for Keywords: several PTP-substrate combinations and inhibitor evaluation, as well as detection of PTP activity in Phosphatases lysates.
    [Show full text]
  • Simple, Sensitive Detection of Protein Phosphodiesterase Activity Measure Real-Time Signal Differences in the Picomole Range with the Phosphate Sensor Method
    APPLICATION NOTE Phosphodiesterase Activity: A Phophate Sensor Application Simple, Sensitive Detection of Protein Phosphodiesterase Activity Measure real-time signal differences in the picomole range with the Phosphate Sensor method Described in this application is a method utilizing the Life Technologies Phosphate Sensor, a simple tool to interrogate the activity of phosphate-releasing enzymes. The assays described detect the increase of fluorescence intensity when free inorganic phosphate binds to a bacterially derived phosphate-binding protein modified with a fluorophore.To evaluate the Phosphate Sensor methods, we compared detection by coupling to an alkaline phosphatase against a commonly used coupled luciferase assay, examined responses for human phosphodiesterase A (PTE5A) in a titration, in real-time kinetic mode, and with a sildenafil citrate inhibitor. Phosphate Sensor is orders of magnitude more sensitive than the coupled luciferase method, faster and simpler to use than other competitor methods, and uniquely qualified for determining enzymatic rates. Second messenger systems that involve an increase or decrease of cyclic nucleotides (cAMP or cGMP) mediate intracellular signal trans- duction. Nucleotide degradation regulates this process and is mediated through the action of phosphodiesterase (PDE) enzymes, which also play an integral role in a number of disorders including erectile dysfunction [1], asthma [2], and chronic obstructive pulmonary disease [2], as well as schizophrenia, bipolar disorder, and major depression [3]. As research identifies additional potential drug targets, methodologies for measur- ing activity become vital. Figure 1. Phosphate Sensor assay principle. The protein ribbon diagram illustrates the modified We describe here the use and optimization of a simple, flexible reagent phosphate-binding protein with the MDCC fluoro- for measurement of phosphodiesterase activity through coupling it with phore (shown in blue).
    [Show full text]
  • Specific Inhibitors of the Protein Tyrosine Phosphatase Shp2 Identified by High-Throughput Docking
    Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking Klaus Hellmuth*, Stefanie Grosskopf†, Ching Tung Lum*, Martin Wu¨ rtele*‡, Nadine Ro¨ der*§, Jens Peter von Kries†, Marta Rosario*, Jo¨ rg Rademann†¶, and Walter Birchmeier*ʈ *Max Delbru¨ck Center for Molecular Medicine, Robert Ro¨ssle Strasse 10, D-13125 Berlin, Germany; †Leibniz Institute for Molecular Pharmacology, Robert Ro¨ssle Strasse 10, D-13125 Berlin, Germany; and ¶Institute for Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, D-14195 Berlin, Germany Edited by Axel Ullrich, Max Planck Institute, Martinsried, Germany, and accepted by the Editorial Board February 20, 2008 (received for review November 2, 2007) The protein tyrosine phosphatase Shp2 is a positive regulator of and is both essential and sufficient for Met function (18, 19). growth factor signaling. Gain-of-function mutations in several types Signaling through Met and its ligand, HGF/SF, has been implicated of leukemia define Shp2 as a bona fide oncogene. We performed a in high frequency in human cancer. Dysregulated Met signaling, high-throughput in silico screen for small-molecular-weight com- through mutation or up-regulation of Met, has been associated with pounds that bind the catalytic site of Shp2. We have identified the tumor progression, metastasis, and poor prognosis of survival (20). phenylhydrazonopyrazolone sulfonate PHPS1 as a potent and cell- Inhibitors of Shp2 may thus be useful for the treatment of these permeable inhibitor, which is specific for Shp2 over the closely human cancers and in limiting metastasis. related tyrosine phosphatases Shp1 and PTP1B. PHPS1 inhibits Shp2- The identification of specific small-molecular-weight inhibi- dependent cellular events such as hepatocyte growth factor/scatter tors of tyrosine phosphatases is a challenging endeavor, because factor (HGF/SF)-induced epithelial cell scattering and branching mor- the base of the catalytic cleft, the signature motif, is highly phogenesis.
    [Show full text]