Lepidoptera: Lycaenidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Butterflies (Lepidoptera: Hesperioidea, Papilionoidea) of the Kampinos National Park and Its Buffer Zone
Fr a g m e n t a Fa u n ist ic a 51 (2): 107-118, 2008 PL ISSN 0015-9301 O M u seu m a n d I n s t i t u t e o f Z o o l o g y PAS Butterflies (Lepidoptera: Hesperioidea, Papilionoidea) of the Kampinos National Park and its buffer zone Izabela DZIEKAŃSKA* and M arcin SlELEZNlEW** * Department o f Applied Entomology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warszawa, Poland; e-mail: e-mail: [email protected] **Department o f Invertebrate Zoology, Institute o f Biology, University o f Białystok, Świerkowa 2OB, 15-950 Białystok, Poland; e-mail: [email protected] Abstract: Kampinos National Park is the second largest protected area in Poland and therefore a potentially important stronghold for biodiversity in the Mazovia region. However it has been abandoned as an area of lepidopterological studies for a long time. A total number of 80 butterfly species were recorded during inventory studies (2005-2008), which proved the occurrence of 80 species (81.6% of species recorded in the Mazovia voivodeship and about half of Polish fauna), including 7 from the European Red Data Book and 15 from the national red list (8 protected by law). Several xerothermophilous species have probably become extinct in the last few decadesColias ( myrmidone, Pseudophilotes vicrama, Melitaea aurelia, Hipparchia statilinus, H. alcyone), or are endangered in the KNP and in the region (e.g. Maculinea arion, Melitaea didyma), due to afforestation and spontaneous succession. Higrophilous butterflies have generally suffered less from recent changes in land use, but action to stop the deterioration of their habitats is urgently needed. -
Specimen Records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895
Catalog: Oregon State Arthropod Collection 2019 Vol 3(2) Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. S, P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895. Catalog: Oregon State Arthropod Collection 3(2). (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4594 Introduction These records were generated using funds from the LepNet project (Seltmann) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Lycaenidae and Riodinidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed by Jon Shepard and Paul Hammond prior to digitization. Nomenclature follows that of (Pelham 2008). Results The holdings in these two families are extensive. Combined, they make up 25,743 specimens (24,598 Lycanidae and 1145 Riodinidae). -
Papilio (New Series) # 25 2016 Issn 2372-9449
PAPILIO (NEW SERIES) # 25 2016 ISSN 2372-9449 ERNEST J. OSLAR, 1858-1944: HIS TRAVEL AND COLLECTION ITINERARY, AND HIS BUTTERFLIES by James A. Scott, Ph.D. in entomology University of California Berkeley, 1972 (e-mail: [email protected]) Abstract. Ernest John Oslar collected more than 50,000 butterflies and moths and other insects and sold them to many taxonomists and museums throughout the world. This paper attempts to determine his travels in America to collect those specimens, by using data from labeled specimens (most in his remaining collection but some from published papers) plus information from correspondence etc. and a few small field diaries preserved by his descendants. The butterfly specimens and their localities/dates in his collection in the C. P. Gillette Museum (Colorado State University, Fort Collins, Colorado) are detailed. This information will help determine the possible collection locations of Oslar specimens that lack accurate collection data. Many more biographical details of Oslar are revealed, and the 26 insects named for Oslar are detailed. Introduction The last collection of Ernest J. Oslar, ~2159 papered butterfly specimens and several moths, was found in the C. P. Gillette Museum, Colorado State University, Fort Collins, Colorado by Paul A. Opler, providing the opportunity to study his travels and collections. Scott & Fisher (2014) documented specimens sent by Ernest J. Oslar of about 100 Argynnis (Speyeria) nokomis nokomis Edwards labeled from the San Juan Mts. and Hall Valley of Colorado, which were collected by Wilmatte Cockerell at Beulah New Mexico, and documented Oslar’s specimens of Oeneis alberta oslari Skinner labeled from Deer Creek Canyon, [Jefferson County] Colorado, September 25, 1909, which were collected in South Park, Park Co. -
Preliminary Insect (Butterfly) Survey at Griffith Park, Los Angeles, California
Kathy Keane October 30, 2003 Keane Biological Consulting 5546 Parkcrest Street Long Beach, CA 90808 Subject: Preliminary Insect (Butterfly) Survey at Griffith Park, Los Angeles, California. Dear Kathy: Introduction At the request of Keane Biological Consulting (KBC), Guy P. Bruyea (GPB) conducted a reconnaissance-level survey for the butterfly and insect inhabitants of Griffith Park in northwestern Los Angeles County, California. This report presents findings of our survey conducted to assess butterfly and other insect diversity within Griffith Park, and briefly describes the vegetation, topography, and present land use throughout the survey area in an effort to assess the overall quality of the habitat currently present. Additionally, this report describes the butterfly species observed or detected, and identifies butterfly species with potential for occurrence that were not detected during the present survey. All observations were made by GPB during two visits to Griffith Park in June and July 2003. Site Description Griffith Park is generally located at the east end of the Santa Monica Mountains northwest of the City of Los Angeles within Los Angeles County, California. The ± 4100-acre Griffith Park is situated within extensive commercial and residential developments associated with the City of Los Angeles and surrounding areas, and is the largest municipal park and urban wilderness area within the United States. Specifically, Griffith Park is bounded as follows: to the east by the Golden State Freeway (Interstate Highway 5) and the -
Nevada Butterflies and Their Biology to Forward Such for Inclusion in the Larger Study
Journal of the Lepidopterists' Society 39(2). 1985. 95-118 NEV ADA BUTTERFLIES: PRELIMINARY CHECKLIST AND DISTRIBUTION GEORGE T. AUSTIN Nevada State Museum and Historical Society, 700 Twin Lakes Drive, Las Vegas, Nevada 89107 ABSTRACT. The distribution by county of the 189 species (over 300 taxa) of but terflies occurring in Nevada is presented along with a list of species incorrectly recorded for the state. There are still large areas which are poorly or not collected. Nevada continues as one of the remaining unknown areas in our knowledge of butterfly distribution in North America. Although a com prehensive work on the state's butterflies is in preparation, there is sufficient demand for a preliminary checklist to justify the following. It is hoped this will stimulate those who have any data on Nevada butterflies and their biology to forward such for inclusion in the larger study. Studies of Nevada butterflies are hampered by a paucity of resident collectors, a large number of mountain and valley systems and vast areas with little or no access. Non-resident collectors usually funnel into known and well worked areas, and, although their data are valu able, large areas of the state remain uncollected. Intensive collecting, with emphasis on poorly known areas, over the past seven years by Nevada State Museum personnel and associates has gone far to clarify butterfly distribution within the state. The gaps in knowledge are now more narrowly identifiable and will be filled during the next few sea sons. There is no all encompassing treatment of Nevada's butterfly fauna. The only state list is an informal recent checklist of species (Harjes, 1980). -
How Much Biodiversity Is in Natura 2000?
Alterra Wageningen UR Alterra Wageningen UR is the research institute for our green living environment. P.O. Box 47 We off er a combination of practical and scientifi c research in a multitude of How much Biodiversity is in Natura 2000? 6700 AA Wageningen disciplines related to the green world around us and the sustainable use of our living The Netherlands environment, such as fl ora and fauna, soil, water, the environment, geo-information The “Umbrella Eff ect” of the European Natura 2000 protected area network T +31 (0) 317 48 07 00 and remote sensing, landscape and spatial planning, man and society. www.wageningenUR.nl/en/alterra The mission of Wageningen UR (University & Research centre) is ‘To explore Technical report Alterra Report 2730B the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 1566-7197 nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the Theo van der Sluis, Ruud Foppen, Simon Gillings, Thomas Groen, René Henkens, Stephan Hennekens, domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading Kim Huskens, David Noble, Fabrice Ottburg, Luca Santini, Henk Sierdsema, Andre van Kleunen, organisations in its domain worldwide. The integral approach to problems and Joop Schaminee, Chris van Swaay, Bert Toxopeus, Michiel Wallis de Vries and Lawrence Jones-Walters the cooperation between the various disciplines -
Biodiversity of Butterflies (Rhopalocera, Hesperiidae and Zygaenidae) Into the Future Biosphere Reserve in Val Müstair (Graubünden) – the Populations of Val Mora
School of Biology Biodiversity of butterflies (Rhopalocera, Hesperiidae and Zygaenidae) into the future biosphere reserve in Val Müstair (Graubünden) – the populations of Val Mora Master Thesis of Science in Behaviour, Evolution and Conservation by Angélique DUVOISIN Direction: Prof. Daniel Cherix and Dr Yves Gonseth Department of Ecology and Evolution Swiss Center of Cartography of the Fauna, Neuchâtel January 2010 Abstract I. Introduction p.4 II. Material and methods p.5 II.1. General – Study area p.5 II.2. Localisation and choice of the sites p.7 II.3. Sites description p.8 II.4. Floristic approach p.11 II.5. Sampling method p.12 II.6. Data treatment p.13 II.6.1. Simpson’s diversity index p.13 II.6.2. Correspondences Factorial Analysis (CFA) p.13 III. Results p.14 III.1. Global results p.14 III.2. Results by station p.18 III.3. Simpson’s diversity index p.21 III.4. CFA p.21 IV. Discussion p.22 IV.1. Generalities p.22 IV.2. CFA and detailed discussion p.24 IV.3. Comparison with the Swiss National Park p.26 IV.4. Livestock and Rhopalocera p.27 V. Conclusive remarks p.27 VI. Acknowledgments p.28 VII. Bibliography p.29 Annexes p.31 2 Abstract The aim of this study is to give a first description of the Rhopalocera communities of a region of the future Biosphere reserve Val Müstair-Swiss National Park: Val Mora. The methodology applied here is based on two complementary approaches. The first qualitative approach consists in identifying every species on a 1ha wide surface and gives information about the specific diversity. -
Cumulative Index of the Bulletin of the Oregon Entomological Society
Cumulative Index of the Bulletin of the Oregon Entomological Society PDF available at http://odonata.bogfoot.net/oes/OES_Bulletin_Index.pdf Last updated: January 4, 2021 At this point, the Index is only for the issues available electronically. Production of electronic issues in the form of PDF files began with the Spring 2011 issue. The Bulletin was printed between 1939 and 2003. It is our intent to index the printed issues as time permits, and add them to this listing. All but the most recent five printed issues are available in the Valley Library of the OSU Campus in Corvallis, Oregon. It is hoped that this index will make the Bulletin more useful to its readers. Note: The online version of the Bulletin of the Oregon Entomological Society ran for 10 years, from Spring 2011 until Winter 2020. Ron Lyons and Jim Johnson were the editors throughout the period. No new editor was available to take over for the Spring 2021 issue so publication was suspended indefinitely. —The Editors Spring 2011 From the Editors 1 The OES Logo 2 On the Need for a Bibliography of Oregon Insects and Their Relatives Ron Lyons 2 Life in Winter Ponds Along the Coast Ron Lyons 3 NPPNW, Spring 2011 Meeting [announcement, * text says 2001] 3 The 2011 North American Forest Insect Work Conference (NAFIWIC) [meeting announcement] 3 Lepidoptera News 4 New Population of Tailed Copper (Lycaena arota) Dana Ross 4 33rd Annual Pacific Northwest Lepidopterists’ Workshop: 29–30 October 2011 [meeting 4 announcement] Some moths new to Oregon Dana Ross 4 In Progress: Pacific Northwest -
Phylogeny of European Butterflies V1.0
bioRxiv preprint doi: https://doi.org/10.1101/844175; this version posted November 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A complete time-calibrated multi-gene phylogeny of the European butterflies Martin Wiemers1,2*, Nicolas Chazot3,4,5, Christopher W. Wheat6, Oliver Schweiger2, Niklas Wahlberg3 1Senckenberg Deutsches Entomologisches Institut, Eberswalder Straße 90, 15374 Müncheberg, Germany 2UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor- Lieser-Str. 4, 06120 Halle, Germany 3Department of Biology, Lund University, 22362 Lund, Sweden 4Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden. 5Gothenburg Global Biodiversity Centre, Box 461, 405 30 Gothenburg, Sweden. 6Department of Zoology, Stockholm University, 10691 Stockholm, Sweden *corresponding author: e-mail: [email protected] Abstract With the aim of supporting ecological analyses in butterflies, the third most species-rich superfamily of Lepidoptera, this paper presents the first time-calibrated phylogeny of all 496 extant butterfly species in Europe, including 18 very localized endemics for which no public DNA sequences had been available previously. It is based on a concatenated alignment of the mitochondrial gene COI and up to 11 nuclear gene fragments, using Bayesian inference of phylogeny. To avoid analytical biases that could result from our region-focus sampling, our European tree was grafted upon a global genus- level backbone butterfly phylogeny for analyses. In addition to a consensus tree, we provide the posterior distribution of trees and the fully-concatenated alignment for future analyses. -
USGS DDS-43, Status of Butterflies
ARTHUR M. SHAPIRO Center for Population Biology University of California Davis, California 27 Status of Butterflies ABSTRACT alpine fell fields). Most of the Sierra is forested, yet most of its butterfly diversity is not found in the forest—a fact first noted The Sierra Nevada has an unusually rich butterfly fauna that, how- by Emmel and Emmel (1963b). ever, is distinguished by little endemism at either species or subspe- Butterflies are important for biodiversity and conservation cies levels. This may change soon, as more taxonomic subspecies biology because they are diverse enough that patterns in dis- are named. The fauna is structured altitudinally, latitudinally, and be- tribution and diversity are demonstrable; their taxonomy is tween east and west slopes. Maximum species richness occurs at in relatively good shape, at least compared with that of most middle elevations on the west slope and around lower passes. En- other invertebrates; they include both ecological generalists demism and relictualism are concentrated at high elevation (subal- and specialists, with some of these specialists tied to unusual pine and alpine) and on unusual soils at lower elevations. Some patterns and/or endangered habitats; they often have close and poten- of endemism and relictualism suggest a very dynamic biogeography tially coevolved relationships with larval host plants and some- in the Quaternary period, further supported by phylogeographic (ge- times with adult nectar sources; they are relatively easy to study netic) studies. The historic butterfly record is so poor that the effects of and are large enough to be marked individually (and are iden- land use and management on the fauna can only be guessed at. -
Volume 44 2011
the journal Research ON T LEPIDOPTERA VOLUME 44 2011 ISSN 0022 4324 (PRINT) 2156 5457 (ONLINE) THE LEPIDOPTERA RESEARCH FOUNDATION The Journal of Research on the Lepidoptera www.lepidopteraresearchfoundation.org ISSN 0022 4324 (print) 2156 5457 (online) Published by: The Lepidoptera Research Foundation, Inc. 9620 Heather Road Beverly Hills, California 90210-1757 TEL (310) 274 1052 E-mail: Editorial: [email protected] Technical: [email protected] Founder: William Hovanitz (1915-1977) Editorial Staff: Konrad Fiedler, University of Vienna, Editor [email protected] Nancy R. Vannucci, info manager [email protected] Associate Editors: Annette Aiello, Smithsonian Institution [email protected] Joaquin Baixeras, Universitat de Valencia [email protected] Marcelo Duarte, Universidade de Sao Paulo [email protected] Klaus Fischer, University of Greifswald [email protected] Krushnamegh Kunte, Natl. Center for Biol. Sci, India [email protected] Gerardo Lamas, Universidad Mayor de San Marcos [email protected] Rudi Mattoni [email protected] Soren Nylin, Stockholm University [email protected] Naomi Pierce, Harvard University [email protected] Robert Robbins, Smithsonian Institution [email protected] Daniel Rubinoff, University of Hawaii [email protected] Josef Settele, Helmholtz Cntr. for Environ. Research-UFZ [email protected] Arthur M. Shapiro, University of California - Davis [email protected] Felix Sperling, University of Alberta [email protected] Niklas Wahlberg, University of Turku [email protected] Shen Horn Yen, National Sun Yat-Sen University [email protected] Manuscripts and notices material must be sent to the editor, Konrad Fiedler [email protected]. Please note the instructions to authors on the back inside cover of this Journal and online at www.lepidopteraresearchfoundation.org. -
U·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road
Factors determining host plant range in two lycaenid butterflies. Item Type text; Dissertation-Reproduction (electronic) Authors Carey, David Brennan. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 04:37:00 Link to Item http://hdl.handle.net/10150/185907 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs~ print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy.