Einstein and Conformally Einstein Bi-Invariant Semi-Riemannian Metrics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Arthur Cayley Via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and Superstrings to Cantorian Space–Time
Available online at www.sciencedirect.com Chaos, Solitons and Fractals 37 (2008) 1279–1288 www.elsevier.com/locate/chaos From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time L. Marek-Crnjac Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, P.O. Box 2964, SI-1001 Ljubljana, Slovenia Abstract In this work we present a historical overview of mathematical discoveries which lead to fundamental developments in super string theory, super gravity and finally to E-infinity Cantorian space–time theory. Cantorian space–time is a hierarchical fractal-like semi manifold with formally infinity many dimensions but a finite expectation number for these dimensions. The idea of hierarchy and self-similarity in science was first entertain by Right in the 18th century, later on the idea was repeated by Swedenborg and Charlier. Interestingly, the work of Mohamed El Naschie and his two contra parts Ord and Nottale was done independently without any knowledge of the above starting from non- linear dynamics and fractals. Ó 2008 Published by Elsevier Ltd. 1. Introduction Many of the profound mathematical discovery and dare I say also inventions which were made by the mathemati- cians Arthur Cayley, Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan and Emmy Noether [1] are extremely important for high energy particles in general [2] as well as in the development of E-infinity, Cantorian space–time the- ory [3,4]. The present paper is dedicated to the historical background of this subject. 2. Arthur Cayley – beginner of the group theory in the modern way Arthur Cayley was a great British mathematician. -
Matrix Lie Groups
Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2). -
Lie Group and Geometry on the Lie Group SL2(R)
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear -
Oldandnewonthe Exceptionalgroupg2 Ilka Agricola
OldandNewonthe ExceptionalGroupG2 Ilka Agricola n a talk delivered in Leipzig (Germany) on product, the Lie bracket [ , ]; as a purely algebraic June 11, 1900, Friedrich Engel gave the object it is more accessible than the original Lie first public account of his newly discovered group G. If G happens to be a group of matrices, its description of the smallest exceptional Lie Lie algebra g is easily realized by matrices too, and group G2, and he wrote in the corresponding the Lie bracket coincides with the usual commuta- Inote to the Royal Saxonian Academy of Sciences: tor of matrices. In Killing’s and Lie’s time, no clear Moreover, we hereby obtain a direct defi- distinction was made between the Lie group and nition of our 14-dimensional simple group its Lie algebra. For his classification, Killing chose [G2] which is as elegant as one can wish for. a maximal set h of linearly independent, pairwise 1 [En00, p. 73] commuting elements of g and constructed base Indeed, Engel’s definition of G2 as the isotropy vectors Xα of g (indexed over a finite subset R of group of a generic 3-form in 7 dimensions is at elements α ∈ h∗, the roots) on which all elements the basis of a rich geometry that exists only on of h act diagonally through [ , ]: 7-dimensional manifolds, whose full beauty has been unveiled in the last thirty years. [H,Xα] = α(H)Xα for all H ∈ h. This article is devoted to a detailed historical In order to avoid problems when doing so he chose and mathematical account of G ’s first years, in 2 the complex numbers C as the ground field. -
Contents 1 Root Systems
Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations. -
Lie Group, Lie Algebra, Exponential Mapping, Linearization Killing Form, Cartan's Criteria
American Journal of Computational and Applied Mathematics 2016, 6(5): 182-186 DOI: 10.5923/j.ajcam.20160605.02 On Extracting Properties of Lie Groups from Their Lie Algebras M-Alamin A. H. Ahmed1,2 1Department of Mathematics, Faculty of Science and Arts – Khulais, University of Jeddah, Saudi Arabia 2Department of Mathematics, Faculty of Education, Alzaeim Alazhari University (AAU), Khartoum, Sudan Abstract The study of Lie groups and Lie algebras is very useful, for its wider applications in various scientific fields. In this paper, we introduce a thorough study of properties of Lie groups via their lie algebras, this is because by using linearization of a Lie group or other methods, we can obtain its Lie algebra, and using the exponential mapping again, we can convey properties and operations from the Lie algebra to its Lie group. These relations helpin extracting most of the properties of Lie groups by using their Lie algebras. We explain this extraction of properties, which helps in introducing more properties of Lie groups and leads to some important results and useful applications. Also we gave some properties due to Cartan’s first and second criteria. Keywords Lie group, Lie algebra, Exponential mapping, Linearization Killing form, Cartan’s criteria 1. Introduction 2. Lie Group The Properties and applications of Lie groups and their 2.1. Definition (Lie group) Lie algebras are too great to overview in a small paper. Lie groups were greatly studied by Marius Sophus Lie (1842 – A Lie group G is an abstract group and a smooth 1899), who intended to solve or at least to simplify ordinary n-dimensional manifold so that multiplication differential equations, and since then the research continues G×→ G G:,( a b) → ab and inverse G→→ Ga: a−1 to disclose their properties and applications in various are smooth. -
Introduction to Lie Algebras and Representation Theory (Following Humphreys)
INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY (FOLLOWING HUMPHREYS) Ulrich Thiel Abstract. These are my (personal and incomplete!) notes on the excellent book Introduction to Lie Algebras and Representation Theory by Jim Humphreys [1]. Almost everything is basically copied word for word from the book, so please do not share this document. What is the point of writing these notes then? Well, first of all, they are my personal notes and I can write whatever I want. On the more serious side, despite what I just said, I actually tried to spell out most things in my own words, and when I felt I need to give more details (sometimes I really felt it is necessary), I have added more details. My actual motivation is that eventually I want to see what I can shuffle around and add/remove to reflect my personal thoughts on the subject and teach it more effectively in the future. To be honest, I do not want you to read these notes at all. The book is excellent already, and when you come across something you do not understand, it is much better to struggle with it and try to figure it out by yourself, than coming here and see what I have to say about it (if I have to say anything additionally). Also, these notes are not complete yet, will contain mistakes, and I will not keep it up to date with the current course schedule. It is just my notebook for the future. Document compiled on June 6, 2020 Ulrich Thiel, University of Kaiserslautern. -
Finite Order Automorphisms on Real Simple Lie Algebras
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 364, Number 7, July 2012, Pages 3715–3749 S 0002-9947(2012)05604-2 Article electronically published on February 15, 2012 FINITE ORDER AUTOMORPHISMS ON REAL SIMPLE LIE ALGEBRAS MENG-KIAT CHUAH Abstract. We add extra data to the affine Dynkin diagrams to classify all the finite order automorphisms on real simple Lie algebras. As applications, we study the extensions of automorphisms on the maximal compact subalgebras and also study the fixed point sets of automorphisms. 1. Introduction Let g be a complex simple Lie algebra with Dynkin diagram D. A diagram automorphism on D of order r leads to the affine Dynkin diagram Dr. By assigning integers to the vertices, Kac [6] uses Dr to represent finite order g-automorphisms. This paper extends Kac’s result. It uses Dr to represent finite order automorphisms on the real forms g0 ⊂ g. As applications, it studies the extensions of finite order automorphisms on the maximal compact subalgebras of g0 and studies their fixed point sets. The special case of g0-involutions (i.e. automorphisms of order 2) is discussed in [2]. In general, Gothic letters denote complex Lie algebras or spaces, and adding the subscript 0 denotes real forms. The finite order automorphisms on compact or complex simple Lie algebras have been classified by Kac, so we ignore these cases. Thus we always assume that g0 is a noncompact real form of the complex simple Lie algebra g (this automatically rules out complex g0, since in this case g has two simple factors). 1 2 2 2 3 The affine Dynkin diagrams are D for all D, as well as An,Dn, E6 and D4.By 3 r Definition 1.1 below, we ignore D4. -
Killing Forms, W-Invariants, and the Tensor Product Map
Killing Forms, W-Invariants, and the Tensor Product Map Cameron Ruether Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Science in Mathematics1 Department of Mathematics and Statistics Faculty of Science University of Ottawa c Cameron Ruether, Ottawa, Canada, 2017 1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa- Carleton Institute of Mathematics and Statistics Abstract Associated to a split, semisimple linear algebraic group G is a group of invariant quadratic forms, which we denote Q(G). Namely, Q(G) is the group of quadratic forms in characters of a maximal torus which are fixed with respect to the action of the Weyl group of G. We compute Q(G) for various examples of products of the special linear, special orthogonal, and symplectic groups as well as for quotients of those examples by central subgroups. Homomorphisms between these linear algebraic groups induce homomorphisms between their groups of invariant quadratic forms. Since the linear algebraic groups are semisimple, Q(G) is isomorphic to Zn for some n, and so the induced maps can be described by a set of integers called Rost multipliers. We consider various cases of the Kronecker tensor product map between copies of the special linear, special orthogonal, and symplectic groups. We compute the Rost multipliers of the induced map in these examples, ultimately concluding that the Rost multipliers depend only on the dimensions of the underlying vector spaces. ii Dedications To root systems - You made it all worth Weyl. -
Math 222 Notes for Apr. 1
Math 222 notes for Apr. 1 Alison Miller 1 Real lie algebras and compact Lie groups, continued Last time we showed that if G is a compact Lie group with Z(G) finite and g = Lie(G), then the Killing form of g is negative definite, hence g is semisimple. Now we’ll do a converse. Proposition 1.1. Let g be a real lie algebra such that Bg is negative definite. Then there is a compact Lie group G with Lie algebra Lie(G) =∼ g. Proof. Pick any connected Lie group G0 with Lie algebra g. Since g is semisimple, the center Z(g) = 0, and so the center Z(G0) of G0 must be discrete in G0. Let G = G0/Z(G)0; then Lie(G) =∼ Lie(G0) =∼ g. We’ll show that G is compact. Now G0 has an adjoint action Ad : G0 GL(g), with kernel ker Ad = Z(G). Hence 0 ∼ G = Im(Ad). However, the Killing form Bg on g is Ad-invariant, so Im(Ad) is contained in the subgroup of GL(g) preserving the Killing! form. Since Bg is negative definite, this subgroup is isomorphic to O(n) (where n = dim(g). Since O(n) is compact, its closed subgroup Im(Ad) is also compact, and so G is compact. Note: I found a gap in this argument while writing it up; it assumes that Im(Ad) is closed in GL(g). This is in fact true, because Im(Ad) = Aut(g) is the group of automorphisms of the Lie algebra g, which is closed in GL(g); but proving this fact takes a bit of work. -
Chapter 18 Metrics, Connections, and Curvature on Lie Groups
Chapter 18 Metrics, Connections, and Curvature on Lie Groups 18.1 Left (resp. Right) Invariant Metrics Since a Lie group G is a smooth manifold, we can endow G with a Riemannian metric. Among all the Riemannian metrics on a Lie groups, those for which the left translations (or the right translations) are isometries are of particular interest because they take the group structure of G into account. This chapter makes extensive use of results from a beau- tiful paper of Milnor [38]. 831 832 CHAPTER 18. METRICS, CONNECTIONS, AND CURVATURE ON LIE GROUPS Definition 18.1. Ametric , on a Lie group G is called left-invariant (resp. right-invarianth i )i↵ u, v = (dL ) u, (dL ) v h ib h a b a b iab (resp. u, v = (dR ) u, (dR ) v ), h ib h a b a b iba for all a, b G and all u, v T G. 2 2 b ARiemannianmetricthatisbothleftandright-invariant is called a bi-invariant metric. In the sequel, the identity element of the Lie group, G, will be denoted by e or 1. 18.1. LEFT (RESP. RIGHT) INVARIANT METRICS 833 Proposition 18.1. There is a bijective correspondence between left-invariant (resp. right invariant) metrics on a Lie group G, and inner products on the Lie al- gebra g of G. If , be an inner product on g,andset h i u, v g = (dL 1)gu, (dL 1)gv , h i h g− g− i for all u, v TgG and all g G.Itisfairlyeasytocheck that the above2 induces a left-invariant2 metric on G. -
Lie Groups and Lie Algebras
version 1.6d — 24.11.2008 Lie Groups and Lie Algebras Lecture notes for 7CCMMS01/CMMS01/CM424Z Ingo Runkel j j Contents 1 Preamble 3 2 Symmetry in Physics 4 2.1 Definitionofagroup ......................... 4 2.2 RotationsandtheEuclideangroup . 6 2.3 Lorentzand Poincar´etransformations . 8 2.4 (*)Symmetriesinquantummechanics . 9 2.5 (*)Angularmomentuminquantummechanics . 11 3 MatrixLieGroupsandtheirLieAlgebras 12 3.1 MatrixLiegroups .......................... 12 3.2 Theexponentialmap......................... 14 3.3 TheLiealgebraofamatrixLiegroup . 15 3.4 A little zoo of matrix Lie groups and their Lie algebras . 17 3.5 Examples: SO(3) and SU(2) .................... 19 3.6 Example: Lorentz group and Poincar´egroup . 21 3.7 Final comments: Baker-Campbell-Hausdorff formula . 23 4 Lie algebras 24 4.1 RepresentationsofLiealgebras . 24 4.2 Irreducible representations of sl(2, C)................ 27 4.3 Directsumsandtensorproducts . 29 4.4 Ideals ................................. 32 4.5 TheKillingform ........................... 34 5 Classification of finite-dimensional, semi-simple, complex Lie algebras 37 5.1 Workinginabasis .......................... 37 5.2 Cartansubalgebras. 38 5.3 Cartan-Weylbasis .......................... 42 5.4 Examples: sl(2, C) and sl(n, C)................... 47 5.5 TheWeylgroup............................ 49 5.6 SimpleLiealgebrasofrank1and2. 50 5.7 Dynkindiagrams ........................... 53 5.8 ComplexificationofrealLiealgebras . 56 6 Epilogue 62 A Appendix: Collected exercises 63 2 Exercise 0.1 : I certainly did not manage to remove all errors from this script. So the first exercise is to find all errors and tell them to me. 1 Preamble The topic of this course is Lie groups and Lie algebras, and their representations. As a preamble, let us have a quick look at the definitions. These can then again be forgotten, for they will be restated further on in the course.