Knot Homology Groups from Instantons

Total Page:16

File Type:pdf, Size:1020Kb

Knot Homology Groups from Instantons Knot homology groups from instantons P. B. Kronheimer and T. S. Mrowka Harvard University, Cambridge MA 02138 Massachusetts Institute of Technology, Cambridge MA 02139 1 Introduction 1.1 An observation of some coincidences For a knot or link K in S 3, the Khovanov homology Kh.K/ is a bigraded abelian group whose construction can be described in entirely combinatorial terms [15]. If we forget the bigrading, then as abelian groups we have, for example, Kh.unknot/ Z2 D and Kh.trefoil/ Z4 Z=2: D ˚ The second equality holds for both the right- and left-handed trefoils, though the bigrading would distinguish these two cases. The present paper was motivated in large part by the observation that the 4 group Z Z=2 arises in a different context. Pick a basepoint y0 in the com- ˚ plement of the knot or link, and consider the space of all homomorphisms 3 1 S K; y0 SU.2/ W n ! satisfying the additional constraint that  i 0à .m/ is conjugate to (1) 0 i for every m in the conjugacy class of a meridian of the link. (There is one such conjugacy class for each component of K, once the components are oriented. The orientation does not matter here, because the above element of SU.2/ is conjugate to its inverse.) Let us write 3 R.K/ Hom 1 S K; y0 ; SU.2/ n 2 for the set of these homomorphisms. Note that we are not defining R.K/ as a set of equivalence classes of such homomorphisms under the action of conju- gation by SU.2/. The observation, then, is the following: Observation 1.1. In the case that K is either the unknot or the trefoil, the Kho- vanov homology of K is isomorphic to the ordinary homology of R.K/, as an abelian group. That is, Kh.K/ H .R.K//: Š This observation extends to all the torus knots of type .2; p/. To understand this observation, we can begin with the case of the unknot, where the fundamental group of the complement is Z. After choosing a gen- erator, we have a correspondence between R.unknot/ and the conjugacy class of the distinguished element of SU.2/ in (1) above. This conjugacy class is a 2-sphere in SU.2/, so we can write R.unknot/ S 2: D For a non-trivial knot K, we always have homomorphisms which factor 3 through the abelianization H1.S K/ Z, and these are again parametrized n D by S 2. Every other homomorphism has stabilizer 1 SU.2/ under f˙ g the action by conjugation, so its equivalence class contributes a copy of SU.2/= 1 RP3 to R.K/. In the case of the trefoil, for example, there f˙ g D is exactly one such conjugacy class, and so R.trefoil/ S 2 RP3 D q I and the homology of this space is indeed Z4 Z=2, just like the Khovanov ˚ homology. This explains why the observation holds for the trefoil, and the case of the .2; p/ torus knots is much the same: for larger odd p, there are .p 1/=2 copies of RP3 in the R.K/. In unpublished work, the above observation has been shown to extend to all 2-bridge knots by Sam Lewallen [25]. The homology of the space R.K/, while it is certainly an invariant of the knot or link, should not be expected to behave well or share any of the more in- teresting properties of Khovanov homology; no should the coincidence noted above be expected to hold. A better way to proceed is instead to imitate the construction of Floer’s instanton homology for 3-manifolds, by constructing a framework in which R.K/ appears as the set of critical points of a Chern- Simons functional on a space of SU.2/ connections on the complement of the link. One should then construct the Morse homology of this Chern-Simons 3 invariant. In this way, one should associate a finitely-generated abelian group to K that would coincide with the ordinary homology of R.K/ in the very sim- plest cases. The main purpose of the present paper is to carry through this construction. The invariant that comes out of this construction is certainly not isomorphic to Khovanov homology for all knots; but it does share some of its formal properties. The definition that we propose is a variant of the orbifold Floer homology considered by Collin and Steer in [5]. In some generality, given a knot or link K in a 3-manifold Y , we will produce an “instanton Floer homology group” that is an invariant of .Y; K/. These groups will be functorial for oriented cobordisms of pairs. Rather than work only with SU.2/, we will work of much of this paper with a more general compact Lie group G, though in the end it is only for the case of SU.N / that we are able to construct these invariants. 1.2 Summary of results The basic construction. Let Y be a closed oriented 3-manifold, let K Y be an oriented link, and let P Y be a principal U.2/-bundle. Let K1;:::;Kr be ! the components of K. We will say that .Y; K/ and P satisfies the non-integrality condition if none of the 2r rational cohomology classes 1 1 1 c1.P / P:D:ŒK1 P:D:ŒKr (2) 2 ˙ 4 ˙ ˙ 4 is an integer class. When the non-integrality condition holds, we will define a finitely-generated abelian group I .Y; K; P /. This group has a canonical Z=2 grading, and a relative grading byZ=4. In the case that K is empty, the group I .Y; P / coincides with the familiar variant of Floer’s instanton homology arising from a U.2/ bundle P Y with ! odd first Chern class [8]. We recall, in outline, how this group is constructed. One considers the space C.Y; P / of all connections in the SO.3/ bundle ad.P /. This affine space is acted on by the “determinant-1 gauge group”: the group G .Y; P / of automorphisms of P that have determinant 1 everywhere. Inside C.Y; P / one has the flat connections: these can be characterized as critical points of the Chern-Simons functional, CS C.Y; P / R: W ! The Chern-Simons functional descends to a circle-valued function on the quo- tient space B.Y; P / C.Y; P /=G .Y; P /: D 4 The image of the set of critical points in B.Y; P / is compact, and after per- turbing CS carefully by a term that is invariant under G .Y; P /, one obtains a function whose set of critical points has finite image in this quotient. If .1=2/c1.P / is not an integral class and the perturbation is small, then the crit- ical points in C.Y; P / are all irreducible connections. One can arrange also a Morse-type non-degeneracy condition: the Hessian if CS can be assumed to be non-degenerate in the directions normal to the gauge orbits. The group I .Y; P / is then constructed as the Morse homology of the circle-valued Morse function on B.Y; P /. In the case that K is non-empty, the construction of I .Y; K; P / mimics the standard construction very closely. The difference is that we start not with the space C of all smooth connections in ad.P /, but with a space C.Y; K; P / of connections in the restriction of ad.P / to Y K which have a singularity along n K. This space is acted on by a group G .Y; K; P / of determinant-one gauge transformations, and we have a quotient space B.Y; K; P / C.Y; K; P /=G .Y; K; P /: D In the case that c1.P / 0, the singularity is such that the flat connections in D the quotient space B.Y; K; P / correspond to conjugacy classes of homomor- phisms from the fundamental group of Y K to SU.2/ which have the behavior n (1) for meridians of the link. Thus, if we write C.Y; K; P / B.Y; K; P / for this set of critical points of the Chern-Simons functional, then we have C.Y; K; P / R.Y; K/= SU.2/ (3) D where R.Y; K/ is the set of homomorphisms 1.Y K/ SU.2/ satisfying W n ! (1) and SU.2/ is acting by conjugation. The non-integrality of the classes (2) is required in order to ensure that there will be no reducible flat connections. Application to classical knots. Because of the non-integrality requirement, the construction of I cannot be applied directly when the 3-manifold Y has first Betti number zero. In particular, we cannot apply this construction to “classi- cal knots” (knots in S 3). However, there is a simple device we can apply. Pick 3 a point y0 in Y K, and form the connected sum at y0 of Y and T , to obtain n 3 a new pair .Y #T ;K/. Let P0 be the trivial U.2/ bundle on Y , and let Q be the U.2/ bundle on T 3 S 1 T 2 whose first Chern class is Poincare´ dual to 1 D 3 S point . We can form a bundle P0#Q over Y #T . This bundle satisfies f g the non-integral condition, so we define 3 FI .Y; K/ I .Y #T ; K; P0#Q/: D 5 and call this the framed instanton homology of the pair .Y; K/.
Recommended publications
  • FLOER HOMOLOGY and MIRROR SYMMETRY I Kenji FUKAYA 0
    FLOER HOMOLOGY AND MIRROR SYMMETRY I Kenji FUKAYA Abstract. In this survey article, we explain how the Floer homology of Lagrangian submanifold [Fl1],[Oh1] is related to (homological) mirror symmetry [Ko1],[Ko2]. Our discussion is based mainly on [FKO3]. 0. Introduction. This is the first of the two articles, describing a project in progress to study mirror symmetry and D-brane using Floer homology of Lagrangian submanifold. The tentative goal, which we are far away to achiev, is to prove homological mirror symmetry conjecture by M. Kontsevich (see 3.) The final goal, which is yet very § very far away from us, is to find a new concept of spaces, which is expected in various branches of mathematics and in theoretical physics. Together with several joint authors, I wrote several papers on this project [Fu1], [Fu2], [Fu4], [Fu5], [Fu6], [Fu7], [FKO3], [FOh]. The purpose of this article and part II, is to provide an accesible way to see the present stage of our project. The interested readers may find the detail and rigorous proofs of some of the statements, in those papers. The main purose of Part I is to discribe an outline of our joint paper [FKO3] which is devoted to the obstruction theory to the well-definedness of Floer ho- mology of Lagrangian submanifold. Our emphasis in this article is its relation to mirror symmetry. So we skip most of its application to the geometry of Lagrangian submanifolds. In 1, we review Floer homology of Lagrangian submanifold in the form intro- § duced by Floer and Oh. They assumed various conditions on Lagrangian subman- ifold and symplectic manifold, to define Floer homology.
    [Show full text]
  • Heegaard Floer Homology
    Heegaard Floer Homology Joshua Evan Greene Low-dimensional topology encompasses the study of man- This is a story about Heegaard Floer homology: how it ifolds in dimension four and lower. These are the shapes developed, how it has evolved, what it has taught us, and and dimensions closest to our observable experience in where it may lead. spacetime, and one of the great lessons in topology during the 20th century is that these dimensions exhibit unique Heegaard... phenomena that render them dramatically different from To set the stage, we return to the beginning of the 20th higher ones. Many outlooks and techniques have arisen in century, when Poincar´eforged topology as an area of in- shaping the area, each with its own particular strengths: hy- dependent interest. In 1901, he famously and erroneously perbolic geometry, quantum algebra, foliations, geometric asserted that, as is the case for 1- and 2-manifolds, any 3- analysis,... manifold with the same ordinary homology groups as the Heegaard Floer homology, defined at the turn of the 3-dimensional sphere 푆3 is, in fact, homeomorphic to 푆3. 21st century by Peter Ozsv´ath and Zolt´an Szab´o, sits By 1905, he had vanquished his earlier claim by way of amongst these varied approaches. It consists of a power- an example that now bears his name: the Poincar´ehomol- ful collection of invariants that fit into the framework ofa ogy sphere 푃3. We will describe this remarkable space in (3 + 1)-dimensional topological quantum field theory. It a moment and re-encounter it in many guises.
    [Show full text]
  • Fall 2017 MATH 70330 “Intermediate Geometry and Topology” Pavel Mnev Detailed Plan. I. Characteristic Classes. (A) Fiber/Vec
    Fall 2017 MATH 70330 \Intermediate Geometry and Topology" Pavel Mnev Detailed plan. I. Characteristic classes. (a) Fiber/vector/principal bundles. Examples. Connections, curvature. Rie- mannian case. Ref: [MT97]. (b) (2 classes.) Stiefel-Whitney, Chern and Pontryagin classes { properties, axiomatic definition. Classifying map and classifying bundle. RP 1; CP 1, infinite Grassmanians Gr(n; 1), CW structure, cohomology ring (univer- sal characteristic classes). Characteristic classes as obstructions (e.g. for embeddability of projective spaces). Euler class. Also: Chern character, splitting principle, Chern roots. Also: BG for a finite group/Lie group, group cohomology. Ref: [MS74]; also: [BT82, Hat98, LM98, May99]. (c) Chern-Weil homomorphism. Example: Chern-Gauss-Bonnet formula. Chern- Simons forms. Ref: Appendix C in [MS74]; [AM05, Dup78, MT97]. (d) Equivariant cohomology. Borel model (homotopy quotient), algebraic ver- sion { Cartan and Weil models. Ref: [GS99, Mei06, Tu13]. II. Bits of symplectic geometry. (a) Symplectic linear algebra, Lagrangian Grassmanian, Maslov class. Ref: [BW97, Ran, MS17]. (b) Symplectic manifolds, Darboux theorem (proof via Moser's trick). Dis- tinguished submanifolds (isotropic, coisotropic, Lagrangian). Examples. Constructions of Lagrangians in T ∗M (graph, conormal bundle). Ref: [DS00]. (c) Hamiltonian group actions, moment maps, symplectic reduction. Ref: [Jef] (lectures 2{4,7), [DS00]. (d) (Optional) Convexity theorem (Atyiah-Guillemin-Sternberg) for the mo- ment map of a Hamiltonian torus action. Toric varieties as symplectic re- ductions, their moment polytopes, Delzant's theorem. Ref: [Pra99, Sch], Part XI in [DS00], lectures 5,6 in [Jef]. (e) Localization theorems: Duistermaat-Heckman and Atiyah-Bott. Ref: [Mei06, Tu13], [Jef] (lecture 10). (f) (Optional) Classical field theory via Lagrangian correspondences.
    [Show full text]
  • [Math.SG] 22 Mar 2004
    A SURVEY OF FLOER HOMOLOGY FOR MANIFOLDS WITH CONTACT TYPE BOUNDARY OR SYMPLECTIC HOMOLOGY ALEXANDRU OANCEA Abstract. The purpose of this paper is to give a survey of the various versions of Floer homology for manifolds with contact type boundary that have so far appeared in the literature. Under the name of “Symplectic homology” or “Floer homology for manifolds with boundary” they bear in fact common features and we shall try to underline the principles that unite them. Once this will be accomplished we shall proceed to describe the peculiarity of each of the constructions and the specific applications that unfold out of it: classification of ellipsoids and polydiscs in Cn, stability of the action spectrum for contact type boundaries of symplectic manifolds, existence of closed characteristics on contact type hypersurfaces and obstructions to exact Lagrange embeddings. The computation of the Floer cohomology for balls in Cn is carried by explicitly perturbing the nondegenerate Morse-Bott spheres of closed characteristics. Contents 1. Constructions of Floer homological invariants 2 1.1. Morse homology 2 1.2. Floer homology for closed manifolds 3 1.3. Floer homology for manifolds with contact type boundary or Symplectic homology 6 2. Comments and further properties 15 2.1. C0 bounds. 15 2.2. Relations between different symplectic homologies. 15 2.3. Invariance through isotopies. 16 3. A computation: balls in Cn 17 3.1. Recollections on the Robbin-Salamon index 18 3.2. Direct computation of the cohomology of a ball. 19 3.3. Alternative point of view: perturbation of critical Morse-Bott manifolds. 20 4.
    [Show full text]
  • AN INTRODUCTION to INSTANTON KNOT FLOER HOMOLOGY These
    AN INTRODUCTION TO INSTANTON KNOT FLOER HOMOLOGY NIKOLAI SAVELIEV These notes are intended to serve as an informal introduction to instan- ton Floer homology of knots. We begin by developing a version of instanton Floer homology for closed 3-manifolds [2], [5] associated with admissible SO(3) bundles, and then briefly review three instanton knot homology the- ories due to Floer [5] and to Kronheimer and Mrowka [6], [7]. 1. Stiefel–Whithey classes Let Y be a finite CW-complex of dimension at most three and P → Y an SO(3) bundle. Associated with P are its Stiefel–Whitney classes wi(P ) ∈ Hi(Y ; Z/2), i = 1, 2, 3. Only one of them, namely, 2 w2(P ) ∈ H (Y ; Z/2), will be of importance to us, for the reason that w1(P ) = 0 since P is ori- 1 entable, and w3(P )=Sq (w2(P )) by the Wu formula. The class w2(P ) can be defined as follows. Let { Uα } be a trivializing cover for the bundle P then the gluing functions ϕαβ : Uα ∩ Uβ −→ SO(3) (1) define a class [P ] ∈ H1(Y ; SO(3)) in Cechˇ cohomology. Conversely, a co- homology class in H1(Y ; SO(3)) defines a unique SO(3) bundle up to an isomorphism. The short exact sequence of Lie groups 1 −−−−→ Z/2 −−−−→ SU(2) −−−−→Ad SO(3) −−−−→ 1, where Z/2 = {±1} is the center of SU(2), gives rise to the exact sequence in Cechˇ cohomology, . → H1(Y ; SU(2)) −−−−→ H1(Y ; SO(3)) −−−−→δ H2(Y ; Z/2) → . 1 1 The class w2(P ) is the image of [P ] ∈ H (Y ; SO(3)) under the connecting homomorphism δ.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Contents 1 Root Systems
    Stefan Dawydiak February 19, 2021 Marginalia about roots These notes are an attempt to maintain a overview collection of facts about and relationships between some situations in which root systems and root data appear. They also serve to track some common identifications and choices. The references include some helpful lecture notes with more examples. The author of these notes learned this material from courses taught by Zinovy Reichstein, Joel Kam- nitzer, James Arthur, and Florian Herzig, as well as many student talks, and lecture notes by Ivan Loseu. These notes are simply collected marginalia for those references. Any errors introduced, especially of viewpoint, are the author's own. The author of these notes would be grateful for their communication to [email protected]. Contents 1 Root systems 1 1.1 Root space decomposition . .2 1.2 Roots, coroots, and reflections . .3 1.2.1 Abstract root systems . .7 1.2.2 Coroots, fundamental weights and Cartan matrices . .7 1.2.3 Roots vs weights . .9 1.2.4 Roots at the group level . .9 1.3 The Weyl group . 10 1.3.1 Weyl Chambers . 11 1.3.2 The Weyl group as a subquotient for compact Lie groups . 13 1.3.3 The Weyl group as a subquotient for noncompact Lie groups . 13 2 Root data 16 2.1 Root data . 16 2.2 The Langlands dual group . 17 2.3 The flag variety . 18 2.3.1 Bruhat decomposition revisited . 18 2.3.2 Schubert cells . 19 3 Adelic groups 20 3.1 Weyl sets . 20 References 21 1 Root systems The following examples are taken mostly from [8] where they are stated without most of the calculations.
    [Show full text]
  • Math 283 - Instanton Floer Homology
    Math 283 - Instanton Floer Homology Taught by Peter B. Kronheimer Notes by Dongryul Kim Spring 2018 The course was taught by Peter Kronheimer, on Mondays, Wednesdays, and Fridays from 11am to 12pm. There were three assignements throughout the course. Contents 1 January 22, 2018 5 1.1 Topology of smooth 4-manifolds . .5 1.2 Connections . .7 2 January 24, 2018 8 2.1 Curvature . .8 3 January 26, 2018 11 3.1 Moduli spaces of connections . 11 3.2 Elliptic operators . 11 3.3 Linear gauge-fixing . 12 4 January 29, 2018 14 4.1 Sobolev embeddings . 14 4.2 Moduli space of anti-self-dual connections . 15 5 January 31, 2018 17 5.1 Reducibles on M ........................... 18 6 February 2, 2018 19 6.1 Uhlenbeck's compactness theorem . 19 7 February 5, 2018 22 7.1 Uhlenbeck compactification . 22 7.2 Three-manifolds and the Chern{Simons functional . 23 1 Last Update: August 27, 2018 8 February 7, 2018 25 8.1 Chern{Simons functional under gauge transformations . 25 8.2 Representation variety . 26 9 February 9, 2018 28 9.1 Gradient flows and PDE . 28 10 February 12, 2018 30 10.1 SO(3)-bundle as a SU(2)-bundle . 30 10.2 Morse theory . 31 11 February 14, 2018 33 11.1 Operator on a cylinder . 33 12 February 16, 2018 35 12.1 Spectral flow . 35 12.2 Negative gradient flow . 35 13 February 21, 2018 37 13.1 Morse homology . 37 13.2 Morse theory on the space of connections . 38 14 February 23, 2018 40 14.1 Instanton Floer homology .
    [Show full text]
  • Lie Group, Lie Algebra, Exponential Mapping, Linearization Killing Form, Cartan's Criteria
    American Journal of Computational and Applied Mathematics 2016, 6(5): 182-186 DOI: 10.5923/j.ajcam.20160605.02 On Extracting Properties of Lie Groups from Their Lie Algebras M-Alamin A. H. Ahmed1,2 1Department of Mathematics, Faculty of Science and Arts – Khulais, University of Jeddah, Saudi Arabia 2Department of Mathematics, Faculty of Education, Alzaeim Alazhari University (AAU), Khartoum, Sudan Abstract The study of Lie groups and Lie algebras is very useful, for its wider applications in various scientific fields. In this paper, we introduce a thorough study of properties of Lie groups via their lie algebras, this is because by using linearization of a Lie group or other methods, we can obtain its Lie algebra, and using the exponential mapping again, we can convey properties and operations from the Lie algebra to its Lie group. These relations helpin extracting most of the properties of Lie groups by using their Lie algebras. We explain this extraction of properties, which helps in introducing more properties of Lie groups and leads to some important results and useful applications. Also we gave some properties due to Cartan’s first and second criteria. Keywords Lie group, Lie algebra, Exponential mapping, Linearization Killing form, Cartan’s criteria 1. Introduction 2. Lie Group The Properties and applications of Lie groups and their 2.1. Definition (Lie group) Lie algebras are too great to overview in a small paper. Lie groups were greatly studied by Marius Sophus Lie (1842 – A Lie group G is an abstract group and a smooth 1899), who intended to solve or at least to simplify ordinary n-dimensional manifold so that multiplication differential equations, and since then the research continues G×→ G G:,( a b) → ab and inverse G→→ Ga: a−1 to disclose their properties and applications in various are smooth.
    [Show full text]
  • SPECULATIONS on HOMOLOGICAL MIRROR SYMMETRY for HYPERSURFACES in (C∗)N
    SPECULATIONS ON HOMOLOGICAL MIRROR SYMMETRY FOR HYPERSURFACES IN (C∗)n DENIS AUROUX Abstract. Given an algebraic hypersurface H = f −1(0) in (C∗)n, homological mirror symmetry relates the wrapped Fukaya category of H to the derived category of singularities of the mirror Landau-Ginzburg model. We propose an enriched version of this picture which also features the wrapped Fukaya category of the complement (C∗)n \ H and the Fukaya-Seidel category of the Landau-Ginzburg model ((C∗)n,f). We illustrate our speculations on simple examples, and sketch a proof of homological mirror symmetry for higher-dimensional pairs of pants. 1. Introduction Let H = f −1(0) ⊂ (C∗)n be a smooth algebraic hypersurface (close to a maximal degeneration limit), whose defining equation is a Laurent polynomial of the form ρ(α) α1 αn (1.1) f(x1,...,xn)= cατ x1 ...xn , α∈A n ∗X where A is a finite subset of Z , cα ∈ C , τ ∈ R+ is assumed to be sufficiently small, and ρ : A → R is a convex function. More precisely, we require that ρ is the restriction to A of a convex piecewise linear functionρ ˆ defined on the convex hull Conv(A) ⊂ Rn. The maximal domains of linearity ofρ ˆ define a polyhedral decomposition P of Conv(A), whose set of vertices is required to be exactly A. We further assume that all the cells of P are congruent under the action of GL(n, Z) to standard simplices; this ensures that the limit τ → 0 corresponds to a maximal degeneration, and that the mirror is smooth.
    [Show full text]
  • Introduction to Lie Algebras and Representation Theory (Following Humphreys)
    INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY (FOLLOWING HUMPHREYS) Ulrich Thiel Abstract. These are my (personal and incomplete!) notes on the excellent book Introduction to Lie Algebras and Representation Theory by Jim Humphreys [1]. Almost everything is basically copied word for word from the book, so please do not share this document. What is the point of writing these notes then? Well, first of all, they are my personal notes and I can write whatever I want. On the more serious side, despite what I just said, I actually tried to spell out most things in my own words, and when I felt I need to give more details (sometimes I really felt it is necessary), I have added more details. My actual motivation is that eventually I want to see what I can shuffle around and add/remove to reflect my personal thoughts on the subject and teach it more effectively in the future. To be honest, I do not want you to read these notes at all. The book is excellent already, and when you come across something you do not understand, it is much better to struggle with it and try to figure it out by yourself, than coming here and see what I have to say about it (if I have to say anything additionally). Also, these notes are not complete yet, will contain mistakes, and I will not keep it up to date with the current course schedule. It is just my notebook for the future. Document compiled on June 6, 2020 Ulrich Thiel, University of Kaiserslautern.
    [Show full text]
  • FLOER THEORY and ITS TOPOLOGICAL APPLICATIONS 1. Introduction in Finite Dimensions, One Way to Compute the Homology of a Compact
    FLOER THEORY AND ITS TOPOLOGICAL APPLICATIONS CIPRIAN MANOLESCU Abstract. We survey the different versions of Floer homology that can be associated to three-manifolds. We also discuss their applications, particularly to questions about surgery, homology cobordism, and four-manifolds with boundary. We then describe Floer stable homotopy types, the related Pin(2)-equivariant Seiberg-Witten Floer homology, and its application to the triangulation conjecture. 1. Introduction In finite dimensions, one way to compute the homology of a compact, smooth manifold is by Morse theory. Specifically, we start with a a smooth function f : X ! R and a Riemannian metric g on X. Under certain hypotheses (the Morse and Morse-Smale conditions), we can form a complex C∗(X; f; g) as follows: The generators of C∗(X; f; g) are the critical points of f, and the differential is given by X (1) @x = nxy · y; fyjind(x)−ind(y)=1g where nxy 2 Z is a signed count of the downward gradient flow lines of f connecting x to y. The quantity ind denotes the index of a critical point, that is, the number of negative eigenvalues of the Hessian (the matrix of second derivatives of f) at that point. The homology H∗(X; f; g) is called Morse homology, and it turns out to be isomorphic to the singular homology of X [Wit82, Flo89b, Bot88]. Floer homology is an adaptation of Morse homology to infinite dimensions. It applies to certain classes of infinite dimensional manifolds X and functions f : X ! R, where at critical points of f the Hessian has infinitely many positive and infinitely many negative eigenvalues.
    [Show full text]