Going Into Resonance

Total Page:16

File Type:pdf, Size:1020Kb

Going Into Resonance thesis Going into resonance The notion of ‘resonance’ is among the most of the two frequencies, concluding that the to realize wireless communications. But familiar ideas in science. Two pendulum amplitude of the oscillation would increase all of this, it turns out, took place before clocks in resonance synchronize themselves, linearly in time, and potentially without bound. engineers really began appreciating the role sound waves of the right frequency drive One might expect this breakthrough in of resonance in more tangible mechanical strong vibrations in a drum, and photons mechanics to have propelled the resonance systems. The gradual acceptance of tuned to atomic transitions put atoms into phenomenon into the centre of physics and resonance as a mechanical phenomenon only excited states. Particle physicists often detect engineering, and yet it didn’t. Perhaps, as Bleck- took place as dramatic failures in bridges and new particles through the appearance of Neuhaus notes, that’s because Euler himself machines made engineers painfully aware of resonances in scattering data. And we all, only considered the problem as a mathematical the inadequacy of the static analysis of forces, of course, rely on resonance in our use of curiosity lacking any practical import. Euler’s and the need to consider the surprising wireless communications. results were then ignored for well over a century, effects of interactions at similar frequencies. In 1965, in his famous Lectures on Physics, until derived again independently in the Working mostly from original sources in Richard Feynman suggested that the resonance nineteenth century by Thomas Young. Oddly, Germany, Bleck-Neuhaus readily admits that concept had become so influential that every however, Young only considered the problem in his history of the resonance concept is weighted new volume of the Physical Review would connection with the analysis of tides, and so his towards German scientists. That was interesting feature at least one resonance curve — the work was also subsequently ignored, and failed for me. My knowledge of Arnold Sommerfeld characteristic absorption peak in the spectral to have any impact on mechanics in general, — learned as a physics student in the United region around the natural internal frequency of either in physics or engineering. States, mostly from his appearance in textbooks some probed oscillatory system. And yet, the of quantum mechanics — centres on his modern familiarity of the concept obscures an The gradual relativistic improvements to the Bohr model unusual history of extremely slow recognition, acceptance of of the atom, which played an important role full appreciation taking some 300 years. As Jörn in the early or ‘old’ quantum theory. Perhaps resonance Bleck-Neuhaus of the University of Bremen this was his most important contribution. notes in a recent historical review (preprint at as a mechanical But it’s fascinating to learn that in 1902, as a https://arxiv.org/abs/1811.08353; 2018), few phenomenon only young professor at a key technology institute in scientific ideas of comparable importance have took place as a Aachen, Sommerfeld played an important role come to be appreciated so slowly. result of dramatic in pushing engineers to recognize the practical In the mid-seventeenth century, Galileo failures in bridges importance of mechanical resonance — then noted that one man pulling in the right way on and machines. largely unknown. a heavy pendulum could drive it into such large Sommerfeld did so, in part, through a motion that it could then readily lift six men dramatic experiment. In the experiment, he into the air. No doubt others had seen similar Indeed, all along, until the very late arranged for a wobbly table to support a heavy effects before; Galileo recorded it. He could nineteenth century, scientists were reluctant machine. Increasing the power supplied could offer no mathematical treatment, however, and to use the term ‘resonance’ in connection with make the machine run faster, but only to a point. came to some very incorrect conclusions about anything except acoustic phenomena, where As increasing power pushed the machine faster what happens when a periodic force drives it originated. Use of the word in other fields and faster, approaching the resonance frequency a naturally oscillatory system. In particular, — especially in mechanics and the analysis of the table, onlookers could see that the extra he concluded that the resulting motion could of vibrations in machines — always included energy only made the table vibrate more violently. never be made to deviate from natural inherent some disclaimer that the link was “only by Sommerfeld, as Bleck-Neuhaus notes, “did not frequency of the oscillating system. This view, analogy”, despite the formal equivalence of fail to say that this would mean an increase of the apparently, suited his belief that the tides could the fundamental dynamical equations. fuel bill without getting anything but the risk of not be driven by the forcing of the Moon, but Use of the concept only spread with damaging the machine and the building.” The must have some other origin. the recognition of resonance-like effects phenomenon became known as the ‘Sommerfeld Despite founding classical and celestial in general acoustic systems by Rayleigh effect.’ Only later did Sommerfeld move to the mechanics, Isaac Newton never engaged and Helmholtz in the 1860s, followed University of Munich and found his hugely directly with the issue of the driven motion by experiments of William Thomson influential school of theoretical physics. of a non-astronomical harmonic mechanical demonstrating the natural resonant behaviour One of the more surprising things in system. The first modern understanding of of LC circuits. In 1885, the German physicist science is how obvious certain principles the matter — and correction of Galileo’s error Anton Overbeck entitled a paper ‘On a can seem, once understood, when they were — awaited the development of calculus in the phenomenon with electrical oscillations anything but obvious before. This history eighteenth century, when Leonard Euler solved which is similar to resonance’. As it turns out, of resonance is another good example — the problem using a differential equation much Overbeck was the first scientist ever to record the idea is obvious now to any engineering like we would write down today. He concluded the famous resonance curve, showing the undergraduate, but it challenged the best that, in the off-resonance condition, the motion voltage excited at different frequencies, and minds in science for over three centuries. ❐ of a driven oscillatory system lacking friction the peak due to resonant interaction. or damping would exhibit two components at Not soon, Heinrich Hertz linked such Mark Buchanan different frequencies — the forced frequency resonance phenomena to the generation and the natural frequency of the driven system. of propagating electromagnetic waves, and Published online: 1 March 2019 He also considered the case of resonant match Guglielmo Marconi soon exploited them https://doi.org/10.1038/s41567-019-0458-z NATURE PHYSICS | VOL 15 | MARCH 2019 | 203 | www.nature.com/naturephysics 203.
Recommended publications
  • 14 Mass on a Spring and Other Systems Described by Linear ODE
    14 Mass on a spring and other systems described by linear ODE 14.1 Mass on a spring Consider a mass hanging on a spring (see the figure). The position of the mass in uniquely defined by one coordinate x(t) along the x-axis, whose direction is chosen to be along the direction of the force of gravity. Note that if this mass is in an equilibrium, then the string is stretched, say by amount s units. The origin of x-axis is taken that point of the mass at rest. Figure 1: Mechanical system “mass on a spring” We know that the movement of the mass is determined by the second Newton’s law, that can be stated (for our particular one-dimensional case) as ma = Fi, X where m is the mass of the object, a is the acceleration, which, as we know from Calculus, is the second derivative of the displacement x(t), a =x ¨, and Fi is the net force applied. What we know about the net force? This has to include the gravity, of course: F1 = mg, where g is the acceleration 2 P due to gravity (g 9.8 m/s in metric units). The restoring force of the spring is governed by Hooke’s ≈ law, which says that the restoring force in the opposite to the movement direction is proportional to the distance stretched: F2 = k(s + x), here minus signifies that the force is acting in the opposite − direction, and the distance stretched also includes s units. Note that at the equilibrium (i.e., when x = 0) and absence of other forces we have F1 + F2 = 0 and hence mg ks = 0 (this last expression − often allows to find the spring constant k given the amount of s the spring is stretched by the mass m).
    [Show full text]
  • Vibration and Sound Damping in Polymers
    GENERAL ARTICLE Vibration and Sound Damping in Polymers V G Geethamma, R Asaletha, Nandakumar Kalarikkal and Sabu Thomas Excessive vibrations or loud sounds cause deafness or reduced efficiency of people, wastage of energy and fatigue failure of machines/structures. Hence, unwanted vibrations need to be dampened. This article describes the transmis- sion of vibrations/sound through different materials such as metals and polymers. Viscoelasticity and glass transition are two important factors which influence the vibration damping of polymers. Among polymers, rubbers exhibit greater damping capability compared to plastics. Rubbers 1 V G Geethamma is at the reduce vibration and sound whereas metals radiate sound. Mahatma Gandhi Univer- sity, Kerala. Her research The damping property of rubbers is utilized in products like interests include plastics vibration damper, shock absorber, bridge bearing, seismic and rubber composites, and soft lithograpy. absorber, etc. 2R Asaletha is at the Cochin University of Sound is created by the pressure fluctuations in the medium due Science and Technology. to vibration (oscillation) of an object. Vibration is a desirable Her research topic is NR/PS blend- phenomenon as it originates sound. But, continuous vibration is compatibilization studies. harmful to machines and structures since it results in wastage of 3Nandakumar Kalarikkal is energy and causes fatigue failure. Sometimes vibration is a at the Mahatma Gandhi nuisance as it creates noise, and exposure to loud sound causes University, Kerala. His research interests include deafness or reduced efficiency of people. So it is essential to nonlinear optics, synthesis, reduce excessive vibrations and sound. characterization and applications of nano- multiferroics, nano- We can imagine how noisy and irritating it would be to pull a steel semiconductors, nano- chair along the floor.
    [Show full text]
  • Dynamic Manipulation of Mechanical Resonators in the High Amplitude Regime Through Optical Backaction
    Dynamic manipulation of mechanical resonators in the high amplitude regime through optical backaction Mahmood Bagheri, Menno Poot, Mo Li, Wolfram P. H. Pernice, Hong X. Tang Department of Electrical Engineering, Yale University, New Haven, CT 06511 Cavity optomechanics enables active manipulation of mechanical resonators through backaction cooling and amplification1,2. This ability to control mechanical motion with retarded optical forces has recently spurred a race towards realizing a mechanical resonator in its quantum ground state3,4,5,6,7,8,9. Here, instead of quenching optomechanical motion, we demonstrate high amplitude operation of nanomechanical resonators by utilizing a highly efficient phonon generation process. In this regime, the nanomechanical resonators gain sufficient energy from the optical field to overcome the large energy barrier of a double well potential, leading to nanomechanical slow-down and zero frequency singularity, as predicted by early theories10. Besides fundamental studies and interests in parametric amplification of small forces11, optomechanical backaction is also projected to open new windows for studying discrete mechanical states12,13 and to foster applications14,15,16,17. Here we realize a non-volatile mechanical memory element, in which bits are written and reset via optomechanical backaction by controlling the mechanical damping across the barrier. Our study casts a new perspective on the energy dynamics in coupled mechanical resonator – cavity systems and enables novel functional devices that utilize the principles of cavity optomechanics. Classical and quantum dynamics of nanomechanical systems promise new applications in nanotechnology18,19 and fundamental tests of quantum mechanics in mesoscopic objects2,9. Recent development of nanoscale electromechanical (NEMS) and optomechanical systems has enabled cooling of mechanical systems to their quantum ground state7,8, which brings the possibility of quantum information processing with mechanical devices20,21.
    [Show full text]
  • Tuning the Resonant Frequency and Damping of an Electromagnetic Energy Harvester Using Power Electronics Paul D
    Tuning the Resonant Frequency and Damping of an Electromagnetic Energy Harvester Using Power Electronics Paul D. Mitcheson Member, IEEE, Tzern T. Toh, Kwok H. Wong, Steve G. Burrow Member, IEEE and Andrew S. Holmes Member, IEEE Abstract—In order to maximize power density, the resonant magnetic transduction mechanism (represented by a parasitic frequency of an energy harvester should be equal to the source inductance and resistance, Larm and Rarm, respectively, and excitation frequency and the electrical damping set equal to a transformer). The resistor, inductor and capacitor on the the parasitic damping. These parameters should be adjustable during device operation because the excitation characteristics can primary-side of the transformer represent parasitic damping change. This brief presents, for the first time, a power electronic Dp, spring constant k, and proof mass, m, respectively. A interface that is capable of continual adjustment of the damping resistor, RL, is connected to the secondary windings to form and the resonant frequency of an energy harvester by controlling a typical electrical load, and its value determines the electrical real and reactive power exchange between the electrical and damping of the transducer and therefore the generated power mechanical domains while storing the harvested energy in a bat- tery. The advantages of this technique over previously proposed for a given source excitation of frequency ω and amplitude Y0. methods are the precise control over the tuning parameters of the Clearly, the addition of the reactive components, LL and CL electrical system and integrated rectification within the tuning in Fig. 1 is also possible, and the reason for this is explained interface.
    [Show full text]
  • The Role of Mechanical Resonance in Physiological Tremor
    THE ROLE OF MECHANICAL RESONANCE IN PHYSIOLOGICAL TREMOR by CARLIJN ANDREA VERNOOIJ A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Sport, Exercise & Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham December 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The origin of physiological tremor has been studied for many years. Several central and spinal mechanisms which provide an oscillatory input to the muscles have been proposed. Nevertheless, any neural control signal inevitably has to work upon a resonant peripheral system involving the series-coupled elastic muscle-tendon complex and the inertia of the limb. In this thesis I look into the potential role for mechanical resonance to explain tremor. First, I show that the resonant component of hand tremor depends on the velocity of hand movement. Movement reduces muscle stiffness (a process called muscle thixotropy) and the tremor frequency falls. Second, I demonstrate that rhythmic tremor is abolished when eliminating resonance by recording tremor in isometric conditions. Third, I replaced EMG by an artificial drive.
    [Show full text]
  • In April 1831, a Brigade of Soldiers Marched in Step Across England's Broughton Suspension Bridge
    In April 1831, a brigade of soldiers marched in step across England's Broughton Suspension Bridge. According to accounts of the time, the bridge broke apart beneath the soldiers, throwing dozens of men into the water. After this happened, the British Army reportedly sent new orders: Soldiers crossing a long bridge must "break stride," or not march in unison, to stop such a situation from occurring again. Structures like bridges and buildings, although they appear to be solid and immovable, have a natural frequency of vibration within them. A force that's applied to an object at the same frequency as the object's natural frequency will amplify the vibration of the object in an occurrence called mechanical resonance. Sometimes your car shakes hard when you hit a certain speed, and a girl on a swing can go higher with little effort just by swinging her legs. The same principle of mechanical resonance that makes these incidents happen also works when people walk in lockstep across a bridge. If soldiers march in unison across the structure, they apply a force at the frequency of their step. If their frequency is closely matched to the bridge's frequency, the soldiers' rhythmic marching will amplify the vibrational frequency of the bridge. If the mechanical resonance is strong enough, the bridge can vibrate until it collapses from the movement. A potent reminder of this was seen in June 2000, when London's Millennium Bridge opened to great fanfare. As crowds packed the bridge, their footfalls made the bridge vibrate slightly. "Many pedestrians fell spontaneously into step with the bridge's vibrations, inadvertently amplifying them," according to a 2005 report in Nature.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Notes on the Critically Damped Harmonic Oscillator Physics 2BL - David Kleinfeld
    Notes on the Critically Damped Harmonic Oscillator Physics 2BL - David Kleinfeld We often have to build an electrical or mechanical device. An understand- ing of physics may help in the design and tuning of such a device. Here, we consider a critically damped spring oscillator as a model design for the shock absorber of a car. We consider a mass, denoted m, that is connected to a spring with spring constant k, so that the restoring force is F =-kx, and which moves in a lossy manner so that the frictional force is F =-bv =-bx˙. Prof. Newton tells us that F = mx¨ = −kx − bx˙ (1) Thus k b x¨ + x + x˙ = 0 (2) m m The two reduced constants are the natural frequency k ω = (3) 0 m and the decay constant b α = (4) m so that we need to consider 2 x¨ + ω0x + αx˙ = 0 (5) The above equation describes simple harmonic motion with loss. It is dis- cussed in lots of text books, but I want to consider a formulation of the solution that is most natural for critical damping. We know that when the damping constant is zero, i.e., α = 0, the solution 2 ofx ¨ + ω0x = 0 is given by: − x(t)=Ae+iω0t + Be iω0t (6) where A and B are constants that are found from the initial conditions, i.e., x(0) andx ˙(0). In a nut shell, the system oscillates forever. 1 We know that when the the natural frequency is zero, i.e., ω0 = 0, the solution ofx ¨ + αx˙ = 0 is given by: x˙(t)=Ae−αt (7) and 1 − e−αt x(t)=A + B (8) α where A and B are constants that are found from the initial conditions.
    [Show full text]
  • Mechanical Stabilisation of Superconducting Quarter Wave Resonators A
    MECHANICAL STABILISATION OF SUPERCONDUCTING QUARTER WAVE RESONATORS A. Facco, INFN- Laboratori Nazionali di Legnaro, via Romea 4, 35020 Legnaro (Padova) Italy; V. Zviagintsev, ITEP, B. Cheremushkinskaya 25, Moscow,117259, Russia. Abstract in the case of white noise; on the other hand, when a 42 Hz mechanical vibration is applied for a long enough A device which is capable to reduce significantly the time, the frequency error can reach such an amplitude amplitude of mechanical vibrations in superconducting that the phase-lock system capabilities are exceeded. In quarter wave resonators was designed, constructed and the ALPI linac cryostats this condition can appear, for a tested. This device can eliminate the necessity of fast few minutes, almost everyday; this could make the tuners and related electronics in many superconducting operation of many resonators at the same time cavities, resulting in a significant cost saving both in the problematic. We have exploited a new approach to this construction and in the operation of superconducting low problem: we have added to the resonator a mechanical beta linacs. dissipator, capable to absorb energy from the dangerous mechanical mode and, consequently, to reduce its 1 INTRODUCTION amplitude. One problem in this approach is the difficulty Mechanical stability is a very important requirement in of building a device with a linear, or at least smooth, superconducting cavities; their very small rf bandwidth, a response at liquid helium temperature; another problem is consequence of their very high quality factor, makes very that new resonant modes could be easily introduced by difficult to lock them to an external frequency, requiring adding to the resonator new parts.
    [Show full text]
  • Low Frequency Damping Control for Power Electronics-Based AC Grid Using Inverters with Built-In PSS
    energies Article Low Frequency Damping Control for Power Electronics-Based AC Grid Using Inverters with Built-In PSS Ming Yang 1, Wu Cao 1,*, Tingjun Lin 1, Jianfeng Zhao 1 and Wei Li 2 1 School of Electrical Engineering, Southeast University, Nanjing 210096, China; [email protected] (M.Y.); [email protected] (T.L.); [email protected] (J.Z.) 2 NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China; [email protected] * Correspondence: [email protected] Abstract: Low frequency oscillations are the most easily occurring dynamic stability problem in the power system. With the increasing capacity of power electronic equipment, the coupling coordination of a synchronous generator and inverter in a low frequency range is worth to be studied further. This paper analyzes the mechanism of the interaction between a normal active/reactive power control grid-connected inverters and power regulation of a synchronous generator. Based on the mechanism, the power system stabilizer built in the inverter is used to increase damping in low frequency range. The small-signal model for electromagnetic torque interaction between the grid-connected inverters and the generator is analyzed first. The small-signal model is the basis for the inverters to provide damping with specific amplitude and phase. The additional damping torque control of the inverters is realized through a built-in power system stabilizer. The fundamentals and the structure of a built-in power system stabilizer are illustrated. The built-in power system stabilizer can be realized through the active or reactive power control loop.
    [Show full text]
  • Tuning of a Vibration Absorber with Shunted Piezoelectric Transducers
    Arch Appl Mech (2016) 86:1715–1732 DOI 10.1007/s00419-014-0972-5 SPECIAL Oliver Heuss · Rogério Salloum · Dirk Mayer · Tobias Melz Tuning of a vibration absorber with shunted piezoelectric transducers Received: 16 December 2013 / Accepted: 19 November 2014 / Published online: 13 December 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract In order to reduce structural vibrations in narrow frequency bands, tuned mass absorbers can be an appropriate measure. A quite similar approach which makes use of applied piezoelectric elements, instead of additional oscillating masses, are the well-known resonant shunts, consisting of resistances, inductances, and possibly negative capacitances connected to the piezoelectric element. This paper presents a combined approach, which is based on a conventional tuned mass absorber, but whose characteristics can be strongly influenced by applying shunted piezoceramics. Simulations and experimental analyses are shown to be very effective in predicting the behavior of such electromechanical systems. The vibration level of the absorber can be strongly attenuated by applying different combinations of resistant, resonant, and negative capacitance shunt circuits. The damping characteristics of the absorber can be changed by applying a purely resistive or resonant resistant shunt. Additionally, the tuning frequency of the absorber can be adapted to the excitation frequency, using a negative capacitance shunt circuit, which requires only the energy to supply the electric components. Keywords Shunt damping · Tuned mass absorber · Active vibration control · Semi-active · Frequency tuning 1 Introduction Tuned vibration absorbers [1] are common means of vibration reduction in many technical applications. Basically, those devices are single degree of freedom oscillators comprising of a spring-damper element and of an inertial mass.
    [Show full text]
  • Tuned Mass Damper Systems
    ConCh04v2.fm Page 217 Thursday, July 11, 2002 4:33 PM C H A PT E R 4 Tuned Mass Damper Systems 4.1 INTRODUCTION A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper that is attached to a structure in order to reduce the dynamic response of the structure. The frequency of the damper is tuned to a particular structural frequency so that when that frequency is excited, the damper will resonate out of phase with the structural motion. Energy is dissipated by the damper inertia force acting on the structure. The TMD concept was first applied by Frahm in 1909 (Frahm, 1909) to reduce the rolling motion of ships as well as ship hull vibrations. A theory for the TMD was presented later in the paper by Ormondroyd and Den Hartog (1928), followed by a detailed discussion of optimal tuning and damping parameters in Den Hartog’s book on mechanical vibrations (1940). The initial theory was applicable for an undamped SDOF system subjected to a sinusoidal force excitation. Extension of the theory to damped SDOF systems has been investigated by numerous researchers. Significant contributions were made by Randall et al. (1981), Warburton (1981, 1982), Warburton and Ayorinde (1980), and Tsai and Lin (1993). This chapter starts with an introductory example of a TMD design and a brief description of some of the implementations of tuned mass dampers in building structures. A rigorous theory of tuned mass dampers for SDOF systems subjected to harmonic force excitation and harmonic ground motion is discussed next.
    [Show full text]