Electron Mean Free Path Fitted Over a Wide Energy Range
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VISCOSITY of a GAS -Dr S P Singh Department of Chemistry, a N College, Patna
Lecture Note on VISCOSITY OF A GAS -Dr S P Singh Department of Chemistry, A N College, Patna A sketchy summary of the main points Viscosity of gases, relation between mean free path and coefficient of viscosity, temperature and pressure dependence of viscosity, calculation of collision diameter from the coefficient of viscosity Viscosity is the property of a fluid which implies resistance to flow. Viscosity arises from jump of molecules from one layer to another in case of a gas. There is a transfer of momentum of molecules from faster layer to slower layer or vice-versa. Let us consider a gas having laminar flow over a horizontal surface OX with a velocity smaller than the thermal velocity of the molecule. The velocity of the gaseous layer in contact with the surface is zero which goes on increasing upon increasing the distance from OX towards OY (the direction perpendicular to OX) at a uniform rate . Suppose a layer ‘B’ of the gas is at a certain distance from the fixed surface OX having velocity ‘v’. Two layers ‘A’ and ‘C’ above and below are taken into consideration at a distance ‘l’ (mean free path of the gaseous molecules) so that the molecules moving vertically up and down can’t collide while moving between the two layers. Thus, the velocity of a gas in the layer ‘A’ ---------- (i) = + Likely, the velocity of the gas in the layer ‘C’ ---------- (ii) The gaseous molecules are moving in all directions due= to −thermal velocity; therefore, it may be supposed that of the gaseous molecules are moving along the three Cartesian coordinates each. -
Physical Mechanism of Superconductivity
Physical Mechanism of Superconductivity Part 1 – High Tc Superconductors Xue-Shu Zhao, Yu-Ru Ge, Xin Zhao, Hong Zhao ABSTRACT The physical mechanism of superconductivity is proposed on the basis of carrier-induced dynamic strain effect. By this new model, superconducting state consists of the dynamic bound state of superconducting electrons, which is formed by the high-energy nonbonding electrons through dynamic interaction with their surrounding lattice to trap themselves into the three - dimensional potential wells lying in energy at above the Fermi level of the material. The binding energy of superconducting electrons dominates the superconducting transition temperature in the corresponding material. Under an electric field, superconducting electrons move coherently with lattice distortion wave and periodically exchange their excitation energy with chain lattice, that is, the superconducting electrons transfer periodically between their dynamic bound state and conducting state, so the superconducting electrons cannot be scattered by the chain lattice, and supercurrent persists in time. Thus, the intrinsic feature of superconductivity is to generate an oscillating current under a dc voltage. The wave length of an oscillating current equals the coherence length of superconducting electrons. The coherence lengths in cuprates must have the value equal to an even number times the lattice constant. A superconducting material must simultaneously satisfy the following three criteria required by superconductivity. First, the superconducting materials must possess high – energy nonbonding electrons with the certain concentrations required by their coherence lengths. Second, there must exist three – dimensional potential wells lying in energy at above the Fermi level of the material. Finally, the band structure of a superconducting material should have a widely dispersive antibonding band, which crosses the Fermi level and runs over the height of the potential wells to ensure the normal state of the material being metallic. -
Key Elements of X-Ray CT Physics Part 2: X-Ray Interactions
Key Elements of X-ray CT Physics Part 2: X-ray Interactions NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2006 Photoelectric Effect • Photoe- absorption is the preferred interaction for X-ray imging. 2 - •Rem.:Eb Z ; characteristic x-rays and/or Auger e preferredinhigh Zmaterial. • Probability of photoe- absorption Z3/E3 (Z = atomic no.) provide contrast according to different Z. • Due to the absorption of the incident x-ray without scatter, maximum subject contrast arises with a photoe- effect interaction No scattering contamination better contrast • Explains why contrast as higher energy x-rays are used in the imaging process - • Increased probability of photoe absorption just above the Eb of the inner shells cause discontinuities in the attenuation profiles (e.g., K-edge) NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2017 Photoelectric Effect NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2017 X-ray Cross Section and Linear Attenuation Coefficient • Cross section is a measure of the probability (‘apparent area’) of interaction: (E) measured in barns (10-24 cm2) • Interaction probability can also be expressed in terms of the thickness of the material – linear attenuation coefficient: (E) = fractional number of photons removed (attenuated) from the beam after traveling through a unit length in media by absorption or scattering -1 - • (E) [cm ]=Z[e /atom] · Navg [atoms/mole] · 1/A [moles/gm] · [gm/cm3] · (E) [cm2/e-] • Multiply by 100% to get % removed from the beam/cm • (E) as E , e.g., for soft tissue (30 keV) = 0.35 cm-1 and (100 keV) = 0.16 cm-1 NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2017 Calculation of the Linear Attenuation Coefficient To the extent that Compton scattered photons are completely removed from the beam, the attenuation coefficient can be approximated as The (effective) Z value of a material is particular important for determining . -
Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 Kev to 100 Gev*
1 of Stanaaros National Bureau Mmin. Bids- r'' Library. Ml gEP 2 5 1969 NSRDS-NBS 29 . A111D1 ^67174 tioton Cross Sections, i NBS Attenuation Coefficients, and & TECH RTC. 1 NATL INST OF STANDARDS _nergy Absorption Coefficients From 10 keV to 100 GeV U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS T X J ". j NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro- physics -—Cryogenics. -
Gamma, X-Ray and Neutron Shielding Properties of Polymer Concretes
Indian Journal of Pure & Applied Physics Vol. 56, May 2018, pp. 383-391 Gamma, X-ray and neutron shielding properties of polymer concretes L Seenappaa,d, H C Manjunathaa*, K N Sridharb & Chikka Hanumantharayappac aDepartment of Physics, Government College for Women, Kolar 563 101, India bDepartment of Physics, Government First grade College, Kolar 563 101, India cDepartment of Physics, Vivekananda Degree College, Bangalore 560 055, India dResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India Received 21 June 2017; accepted 3 November 2017 We have studied the X-ray and gamma radiation shielding parameters such as mass attenuation coefficient, linear attenuation coefficient, half value layer, tenth value layer, effective atomic numbers, electron density, exposure buildup factors, relative dose, dose rate and specific gamma ray constant in some polymer based concretes such as sulfur polymer concrete, barium polymer concrete, calcium polymer concrete, flourine polymer concrete, chlorine polymer concrete and germanium polymer concrete. The neutron shielding properties such as coherent neutron scattering length, incoherent neutron scattering lengths, coherent neutron scattering cross section, incoherent neutron scattering cross sections, total neutron scattering cross section and neutron absorption cross sections in the polymer concretes have been studied. The shielding properties among the studied different polymer concretes have been compared. From the detail study, it is clear that barium polymer concrete is good absorber for X-ray, gamma radiation and neutron. The attenuation parameters for neutron are large for chlorine polymer concrete. Hence, we suggest barium polymer concrete and chlorine polymer concrete are the best shielding materials for X-ray, gamma and neutrons. Keywords: X-ray, Gamma, Mass attenuation coefficient, Polymer concrete 1 Introduction Agosteo et al.11 studied the attenuation of Concrete is used for radiation shielding. -
GASEOUS STATE SESSION 8: Collision Parameters
COURSE TITLE : PHYSICAL CHEMISTRY I COURSE CODE : 15U5CRCHE07 UNIT 1 : GASEOUS STATE SESSION 8: Collision Parameters Collision Diameter, • The distance between the centres of two gas molecules at the point of closest approach to each other is called the collision diameter. • Two molecules come within a distance of - Collision occurs 0 0 0 • H2 - 2.74 A N2 - 3.75 A O2 - 3.61 A Collision Number, Z • The average number of collisions suffered by a single molecule per unit time per unit volume of a gas is called collision number. Z = 22 N = Number Density () – Number of Gas Molecules per Unit Volume V Unit of Z = ms-1 m2 m-3 = s-1 Collision Frequency, Z11 • The total number of collisions between the molecules of a gas per unit time per unit volume is called collision frequency. Collision Frequency, Z11 = Collision Number Total Number of molecules ퟐ Collision Frequency, Z11 = ퟐ흅흂흈 흆 흆 Considering collision between like molecules ퟏ Collision Frequency, Z = ½ ퟐ흅흂흈ퟐ흆 흆 = 흅흂흈ퟐ흆ퟐ 11 ퟐ -1 -3 Unit of Z11 = s m The number of bimolecular collisions in a gas at ordinary T and P – 1034 s-1 m-3 Influence of T and P ퟏ Z = 흅흂흈ퟐ흆ퟐ 11 ퟐ RT Z = 222 11 M ZT11 at a given P 2 Z11 at a given T 2 ZP11 at a given T 2 at a given T , P Z11 For collisions between two different types of molecules. 1 Z = 2 2 2 2 122 1 2 MEAN FREE PATH, FREE PATH – The distance travelled by a molecule between two successive collisions. -
Superconductivity
Superconductivity • Superconductivity is a phenomenon in which the resistance of the material to the electric current flow is zero. • Kamerlingh Onnes made the first discovery of the phenomenon in 1911 in mercury (Hg). • Superconductivity is not relatable to periodic table, such as atomic number, atomic weight, electro-negativity, ionization potential etc. • In fact, superconductivity does not even correlate with normal conductivity. In some cases, a superconducting compound may be formed from non- superconducting elements. 2 1 Critical Temperature • The quest for a near-roomtemperature superconductor goes on, with many scientists around the world trying different materials, or synthesizing them, to raise Tc even higher. • Silver, gold and copper do not show conductivity at low temperature, resistivity is limited by scattering and crystal defects. 3 Critical Temperature 4 2 Meissner Effect • A superconductor below Tc expels all the magnetic field from the bulk of the sample perfectly diamagnetic substance Meissner effect. • Below Tc a superconductor is a perfectly diamagnetic substance (χm = −1). • A superconductor with little or no magnetic field within it is in the Meissner state. 5 Levitating Magnet • The “no magnetic field inside a superconductor” levitates a magnet over a superconductor. • A magnet levitating above a superconductor immersed in liquid nitrogen (77 K). 6 3 Critical Field vs. Temperature 7 Penetration Depth • The field at a distance x from the surface: = − : Penetration depth • At the critical temperature, the penetration length is infinite and any magnetic field can penetrate the sample and destroy the superconducting state. • Near absolute zero of temperature, however, typical penetration depths are 10–100 nm. 8 4 Type I Superconductors • Meissner state breaks down abruptly. -
Simulation of Electron Spectra for Surface Analysis (SESSA) Version 2.1 User's Guide
NIST NSRDS 100 Simulation of Electron Spectra for Surface Analysis (SESSA) Version 2.1 User’s Guide W.S.M. Werner W. Smekal C.J. Powell This publication is available free of charge from: https://doi.org/10.6028/NIST.NSRDS.100-2017 NIST NSRDS 100 Simulation of Electron Spectra for Surface Analysis (SESSA) Version 2.1 User’s Guide W.S.M. Werner W. Smekal Institute of Applied Physics Vienna University of Technology, Vienna, Austria C.J. Powell Materials Measurement Science Division Material Measurement Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.NSRDS.100-2017 December 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology This publication is available free of charge from https://doi.org/10.6028/NIST.NSRDS.100-2017 Disclaimer The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high-quality copy of the database and to verify that the data contained therein have been selected on the basis of sound scientifc judgement. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the database. For a literature citation, the database should be viewed as a book published by NIST. The citation would therefore be: W.S.M. Werner, W. Smekal and C. J. Powell, Simulation of Electron Spectra for Surface Analysis (SESSA) - Version 2.1 National Institute of Standards and Technology, Gaithersburg, MD (2016). -
Thermodynamics Guide Definitions, Guides, and Tips Definitions What Each Thermodynamic Value Means Enthalpy of Formation
Thermodynamics Guide Definitions, guides, and tips Definitions What each thermodynamic value means Enthalpy of Formation Definition The enthalpy required or released during formation of a molecule from its elements. H2(g) + ½O2(g) → H2O(g) ∆Hºf(H2O) Sign: ∆Hºf can be positive or negative. Direction: From elements to product. Phase: The phase of the product being formed can be anything, but the elemental starting materials must be in their elemental standard phase. Notes: • RC&O Appendix 1 collects these values. • Limited by what values are experimentally available. • Knowing the elemental form of each atom is helpful. Ionization Enthalpy (IE) Definition The enthalpy required to remove one electron from an atom or ion. Li(g) → Li+(g) + e– IE(Li) Sign: IE is always positive — removing electrons from proximity of nucleus requires enthalpy input Direction: IE goes from atom to ion/electron pair. Phase: IE is a gas phase property. Reactants and products must be gas phase. Notes: • Phase descriptors are not generally given to an electron. • Ionization energy is taken to be identical to ionization enthalpy. • The first IE of Li(g) is shown above. A second, third, or higher IE can also be determined. Removing each additional electron costs even more enthalpy. Electron Affinity (EA) Definition How much enthalpy is gained when an electron is added to an atom or ion. (How much an atom “wants” an electron). Cl(g) + e– → Cl–(g) EA(Cl) Sign: EA is always positive, but the enthalpy is negative: ∆Hºrxn < 0. This is because of how we describe the property as an “affinity”. -
Gamma-Ray Interactions with Matter
2 Gamma-Ray Interactions with Matter G. Nelson and D. ReWy 2.1 INTRODUCTION A knowledge of gamma-ray interactions is important to the nondestructive assayist in order to understand gamma-ray detection and attenuation. A gamma ray must interact with a detector in order to be “seen.” Although the major isotopes of uranium and plutonium emit gamma rays at fixed energies and rates, the gamma-ray intensity measured outside a sample is always attenuated because of gamma-ray interactions with the sample. This attenuation must be carefully considered when using gamma-ray NDA instruments. This chapter discusses the exponential attenuation of gamma rays in bulk mater- ials and describes the major gamma-ray interactions, gamma-ray shielding, filtering, and collimation. The treatment given here is necessarily brief. For a more detailed discussion, see Refs. 1 and 2. 2.2 EXPONENTIAL A~ATION Gamma rays were first identified in 1900 by Becquerel and VMard as a component of the radiation from uranium and radium that had much higher penetrability than alpha and beta particles. In 1909, Soddy and Russell found that gamma-ray attenuation followed an exponential law and that the ratio of the attenuation coefficient to the density of the attenuating material was nearly constant for all materials. 2.2.1 The Fundamental Law of Gamma-Ray Attenuation Figure 2.1 illustrates a simple attenuation experiment. When gamma radiation of intensity IO is incident on an absorber of thickness L, the emerging intensity (I) transmitted by the absorber is given by the exponential expression (2-i) 27 28 G. -
Thermodynamic State, Specific Heat, and Enthalpy Function 01 Saturated UO Z Vapor Between 3000 Kand 5000 K
Februar 1977 KFK 2390 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Thermodynamic State, Specific Heat, and Enthalpy Function 01 Saturated UO z Vapor between 3000 Kand 5000 K H. U. Karow Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor GESELLSCHAFT FÜR KERNFORSCHUNG M. B. H. KARLSRUHE KERNFORSCHUNGS ZENTRUM KARLSRUHE KFK 2390 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Thermodynamic State, Specific Heat, and Enthalpy Function of Saturated U0 Vapor between 3000 K 2 and 5000 K H. U. Karow Gesellschaft für Kernforschung mbH., Karlsruhe A summarized version of s will be at '7th Symposium on Thermophysical Properties', held the NBS at Gaithe , 1977 Thermodynamic State, Specific Heat, and Enthalpy Function of Saturated U0 2 Vapor between 3000 K and 5000 K Abstract Reactor safety analysis requires knowledge of the thermophysical properties of molten oxide fuel and of the thermal equation-of state of oxide fuel in thermodynamic liquid-vapor equilibrium far above 3000 K. In this context, the thermodynamic state of satu rated U0 2 fuel vapor, its internal energy U(T), specific heats Cv(T) and C (T), and enthalpy functions HO(T) and HO(T)-Ho have p 0 been determined by means of statistical mechanics in the tempera- ture range 3000 K .•• 5000 K. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contri bution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma - different from the nonionized neutral vapor component with perfect gas kinetic behavior up to about 5000 K. -
2016 SPRING Semester Midterm Examination for General Chemistry I
2016 SPRING Semester Midterm Examination For General Chemistry I Date: April 20 (Wed), Time Limit: 19:00 ~ 21:00 Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page. Professor Class Student I.D. Number Name Name Problem points Problem points TOTAL pts 1 /8 6 /12 2 /9 7 /8 3 /6 8 /15 /100 4 /8 9 /16 5 /8 10 /10 ** This paper consists of 15 sheets with 10 problems (page 13 - 14: constants & periodic table, page 15: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet. Please write down the unit of your answer when applicable. You will get 30% deduction for a missing unit. NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점답안지 분배 및 이의신청 일정) 1. Period, Location, and Procedure 1) Return and Claim Period: May 2 (Mon, 19: 00 ~ 20:00 p.m.) 2) Location: Room for quiz session 3) Procedure: Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it) If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, attach it to your mid-term paper with a stapler. Give them to TA. (The claim is permitted only on the period.