PSS 5370 Converting Fibers Into Yarn SPINNING SYSTEMS

Total Page:16

File Type:pdf, Size:1020Kb

PSS 5370 Converting Fibers Into Yarn SPINNING SYSTEMS Textile Process PSS 5370 1) Spinning ¾ Converting fibers into yarn Converting Fibers into Yarn 2) Weaving/Knitting Mourad Krifa, Ph. D. ¾ Converting yarn to fabric Research Assistant Professor Head of Textile Research 3) Dyeing Dept. of Plant and Soil Science ¾ Applying color to fiber, yarn or fabric 4) Finishing ¾ Applying chemical or mechanical treatments on yarns or fabrics to impart special properties PSS 5370: Converting Fibers into Yarn SPINNING SYSTEMS • There are 4 spinning systems depending on the fiber: SPINNING SYSTEMS The cotton system The worsted system The woollen system The semi-worsted system THE COTTON SPINNING SYSTEM THE WORSTED SYSTEM • Most widely used • For fibers with a mean length of 40-200 mm • Fibers with mean fiber length of 15-50 mm • Process for wool, man-made staple fiber and their blends • Process cotton, man-made staple fiber and their blends • Lean yarns with well-defined twist and well- ordered fibers, used in the manufacture of high- • Yarn can be either carded or combed quality apparel fabrics (suitings) 1 THE WOOLLEN SYSTEM THE SEMI-WORSTED SYSTEM • For fibers with a mean length of 25-80 mm • For fibers with a mean length of 75-150 mm • Process for wool, waste fibers, reprocessed • Process for long wool, man-made fibers and fibers, man-made fibers and their blends their blends. • May be used for: • No combing Hand knitting yarn Carpet yarns • Produces coarse yarn for carpets and upholstery Apparel items (women’s dressweare, men’s jackets) fabrics • Hairy, felt-like fabrics because of the fiber arrangement and fullness of the yarns SPINNING SYSTEMS CONVERTING FIBERS INTO YARN Fundamental Processing steps: Common to all spinning systems Open Clean CONVERTING FIBERS INTO YARN CONVERTING FIBERS INTO YARN Align Attenuate Parallelize Twist 2 CONVERTING FIBERS INTO YARN Wind Package FACTS ABOUT COTTON • Cotton has for long (and still is) the dominant PSS 5370 textile fiber in the world. • Its dominance is being reduced by the competition of manufactured fibers • Cotton is cultivated in many parts of the world but a few countries dominate the market. THE COTTON SYSTEM COTTON MARKET 64,000 54,000 COTTON MARKET 44,000 40,000 35,000 34,000 30,000 24,000 Consumption (1000 tons) 25,000 Cotton (1000 tons) 14,000 20,000 ICAC Consumption15,000 (1000 tons) 4,000 Non-Cotton (1000 tons) 1960 10,000 1962 1964 ICAC 5,000 1966 1968 1970 Cotton share (%) 0 1972 1960 1974 1962 1976 80 1964 1978 1966 1980 1968 1970 1982 70 1972 1984 1974 1986 1976 60 1988 1978 1990 COTTON FIBER PODUCTION: HARVESTING 1980 1982 1992 50 1984 1994 1986 Cotton 1996 1988 Wool 1998 40 1990 Chemical (non-cellulosic) Chemical (cellulosic) 2000 1992 2002 1994 Cotton market share (%) 1996 2004 30 1998 2006 2000 2010 2002 20 2004 2006 Manual Picker Stripper 3 COTTON FIBER PODUCTION: SEED COTTON THE COTTON SPINNING SYSTEM Compressed bale Yarn (bobbin / package) THE COTTON SPINNING SYSTEM THE SPINNING MILL From the Bale to the Yarn Raw Material: Highly pressed bales for optimum Roving Roving Ring Spinning transport and storage Fiber Bale Opener Opening Rotor Spinning Carding Drawing Sliver Feeder Cleaning Air-jet spinning ¾ Opening transforms the pressed bales into processable Blending material Combing Yarn forming ¾ Cleaning takes place during opening Rotor Spinning Bale Laydown (mix) Drawing Sliver Air-jet spinning ¾ Opened, cleaned material is processed into yarn Preparation for spinning Roving Roving Ring Spinning General Outline of Yarn Spinning Process THE COTTON SPINNING SYSTEM Bale Opening Mixing/Feeding Preparation for carding Opening-Cleaning Cleaning/Opening Opening & Cleaning Blowroom Blending Opening the compressed bales of fibers Carding into smaller masses, opening fiber tufts Breaker Drawing progressively into smaller and lighter Lap-winding/Combing flocks, removing trash, dust and foreign Finisher Drawing material. Roving Rotor Spinning Ring Spinning Winding 4 OPENING-CLEANING Hopper Feeder Bale Opening Evener roll Stripper roll • Remove straps and wraps • Side cleaning (contamination, improper e c i t bale handleing) t a l Feed table d e k • Bale opener - Fiber feeder i p S ¾ Parallel hoppers Feed lattice Source: Trutzschler Parallel Hoppers Bale Feeding • Bale opener - Fiber feeder ¾ Parallel hopers ¾ Top feeder Blending: Sandwich mixing Source: McCreight Bale Top Feeder Trützschler Blendomat BDT 020 Bale Opener Take-off unit Source: Trutzschler 5 THE SPINNING MILL Opening & Cleaning Roving Roving Ring Spinning • Bale opener - Fiber feeder Fiber Bale Opener Opening Rotor Spinning • Coarse opener / cleaner Carding Drawing Sliver Feeder Cleaning Air-jet spinning Blending ¾ Removal of heavy and large impurities Combing Yarn forming Rotor Spinning Bale Laydown (mix) Drawing Sliver Air-jet spinning Preparation for spinning Roving Roving Ring Spinning Coarse Opening/Cleaning Rieter UniClean B10 Coarse opener/cleaner Beating / striking Opening & Cleaning Opening & Cleaning Feed funnel Feed duct • Fiber feeder / Bale opener • Coarse opener/cleaner Mixing chamber • Mixing chamber Material suction funnel ¾ Variability within / between bales Opening rolls Source: Trutzschler 6 Principle of Tandem Mixing Trützschler Multi-mixer MCM 6 Source: Trutzschler Opening & Cleaning Mixing & Cleaning • Fiber feeder / Bale opener • Coarse opener / cleaner • Mixing chamber • Fine opener / cleaner ¾ Intensive action: smaller impurities Principle of Cleaning Illustrative Arrangement of a Cleaner Fiber Mote knife Deflector blade Trash, waste Suction hood Spiked roll Coarse saw- Medium saw- Fine saw-tooth tooth roll tooth roll roll Source: Trutzschler 7 Specialized Cleaners Trützschler Dust Trützschler Extraction Cleanomat System Specialized Cleaners Trützschler Securomat SCFO Camera Nozzle Waste suction Specialized Cleaners Cameras Exhaust Nozzles Source: Trützschler Source: Trutzschler 8 Opening & Cleaning: Trash Removal Opening & Cleaning: Dust Removal 160 800 Raw Fiber Card Chute Raw Fiber Card Chute 140 700 120 600 100 500 80 400 60 300 Dust Count / g Count Dust Trash Count / g Count Trash 40 200 20 100 0 0 Cleaning Efficiency Opening & Cleaning: Neps Creation 800 Raw Fiber Card Chute 700 600 500 400 300 Neps Count / g Neps Count 200 100 0 Source: Trützschler Opening & Cleaning: Seed Coat Opening & Cleaning: Fiber Damage Neps 25 40 Raw Fiber Card Chute Raw Fiber Card Chute 20 35 15 30 10 25 Neps Count / g Neps Count 5 20 0 by (%) number Content Fiber Short 15 9 Opening & Cleaning THE COTTON SPINNING SYSTEM • Opened the compressed bales progressively Compressed bale into small tufts • Mixed / Blended the cotton Opening / Cleaning • Cleaned the cotton • Created imperfections (neps) Fiber Tufts / Flocks • Damaged the fiber (breakage) General Outline of Yarn Spinning Process THE SPINNING MILL Bale Opening Mixing/Feeding Preparation for carding Opening-Cleaning Cleaning/Opening Blowroom Roving Roving Ring Spinning Blending Fiber Bale Opener Opening Rotor Spinning Carding Drawing Sliver Carding Feeder Cleaning Air-jet spinning Blending Breaker Drawing Combing Yarn forming Lap-winding/Combing Rotor Spinning Bale Laydown (mix) Drawing Sliver Air-jet spinning Finisher Drawing Preparation for spinning Roving Roving Ring Spinning Roving Rotor Spinning Ring Spinning Winding THE COTTON SPINNING SYSTEM THE COTTON SPINNING SYSTEM Carding Carding Carding is the process of individualizing and “The card is the heart of spinning” “parallelizing” the fibers by the action of “Well-carded is half-spun” moving surfaces clothed with wires and teeth. 10 THE COTTON SPINNING SYSTEM THE COTTON SPINNING SYSTEM Carding Carding • Fundamental concept dates from • Reduces fibers to their individual state to enable: the 1770’s 9Arranging and parallelizing the fibers • Production rate increased from 9Creating a linear structure about 5 kg/h to up to 220 kg/h 9Reducing the mass per unit length 9Eliminating impurities and imperfections THE COTTON SPINNING SYSTEM THE COTTON SPINNING SYSTEM Carding Tasks Carding Requirements ¾ Fiber feeding ¾ Deliver a cohesive structure: Sliver ¾ Fiber opening ÎThe first cohesive product ¾ Fiber combing ¾ Deliver an even sliver: constant mass per unit length ÎFiber individualization & orientation ¾ Minimum sliver faults ¾ Cleaning: trash and dust removal, Î Feed stock must be very even ¾ Neps disentanglement and removal ¾ Short fibers removal ¾ Sliver formation THE COTTON CARD THE COTTON CARD Fiber feeding Opened fiber flocks: Feed Chute Fiber feeding • Raw material supplied from opening room via pipe ducting into the reserve chute of the card Feed Stock Opening / Cleaning • Electronic pressure regulator ensures Reserve Chute constant height of material in the reserve Feed roller • The feed roller pushes the material into Pneumatic conveyors the opening roller Opening roller • The opening roller plucks out fine flocks and ejects them into the feed chute Carding Feed Chute Source: Trutzschler Source: Trutzschler 11 THE COTTON CARD THE COTTON CARD Fiber feeding Opened fiber flocks: Feed Chute Fiber Opening Opening / Cleaning Fiber batt Fiber Batt Feed Chute Licker-in / Carding Taker-in Feeding Arrangement Source: Trutzschler Source: Trutzschler THE COTTON CARD THE COTTON CARD Fiber opening Fiber opening • Licker-in / Taker-in: roller with sawtooth or pin clothing which opens the fiber batt and present it to the carding zones of the • Multiple-roller Licker-in systems Î Progressive action main cylinder • Optimize cleaning: Mote knives Main cylinder • Optimize waste control Fiber batt Licker-in Mote knife Source: Trutzschler THE COTTON CARD THE
Recommended publications
  • Textile Industry Needs Christopher D
    The Journal of Cotton Science 21:210–219 (2017) 210 http://journal.cotton.org, © The Cotton Foundation 2017 ENGINEERING & GINNING Textile Industry Needs Christopher D. Delhom, Vikki B. Martin, and Martin K. Schreiner ABSTRACT lthough the immediate customer of the gin is Athe cotton producer, the end user of the ginned The immediate customers of cotton gins are lint is the textile mill, retailers, and eventually the the producers; however, the ultimate customers consumer. Thus, it is essential for the ginner to are textile mills and consumers. The ginner has satisfy both the producers and the textile industry. the challenging task to satisfy both producers and Consequently, the ginner needs to be aware of the the textile industry. Classing and grading systems needs of the textile industry. are intended to assign an economic value to the The intent of the cotton classing and grading bales that relates to textile mill demands and the system is to assign an economic value to the bale that quality of the end product. International textile documents its properties as it relates to the quality of mills currently are the primary consumers of U.S. the end product. Since the last edition of the Cotton cotton lint where it must compete against foreign Ginners Handbook in 1994, the customers of U.S. origins. International textile mills manufacture cotton have changed radically, shifting from primar- primarily ring-spun yarns, whereas domestic mills ily domestic to international mills. International mills manufacture predominantly rotor spun yarns. Pro- have been accustomed primarily to hand-harvested ducers and ginners must produce cottons to satisfy cotton that has been processed at slow ginning all segments of the industry, i.e., domestic and in- rates.
    [Show full text]
  • Determination of Dehairing, Carding, Combing and Spinning Difference from Lama Type of Fleeces
    International Journal of Applied Science and Technology Vol. 2 No. 1; January 2012 Determination of dehairing, carding, combing and spinning difference from Lama type of fleeces Franka1, E.N., Hicka, M.V.H. and Adotb, O. a.- SUPPRAD2 Program, Catholic University of Córdoba, Argentina b.- SUPPRAD Program. Habitat Foundation, Buenos Aires, Argentina Abstract Mixed fleeces as Llama fleeces, require a special textile process known as dehairing. This process behaves differently according to the Lama type of fleeces dehaired. Dehairing generates structural modifications on textile raw material as it eliminates the longer and straighter (coarser) fibres. This has a marked effect on the following worsted or woolen spinning processes. This work was designed for to test these effects with the objective to report how the type of fleeces affects dehairing, worsted or woolen combing and spinning performances. From a textile behavior point of view, a higher fiber diameter variation was detected in double coated fleeces than in luster fleeces. Luster fleeces have a lower bulk potential than double coated fleeces and a lower comb yield due to the higher dehairing effect. It is also this type that produces less ends protruding from the yarn, which may account in part for their diminished prickle effect. Key words: Lama fibre, textile trials, bristle, prickle, coarse fibres. 1. Introduction A characteristic peculiar to the fibre of South American Camelids (SAC) is the presence of a mixed fleece. This is the reason for their textiles processing requiring „dehairing‟ to achieve a superior quality product, because this process consists in the removal of the coarser fibers (Russel, 1990).
    [Show full text]
  • All Hands Are Enjoined to Spin : Textile Production in Seventeenth-Century Massachusetts." (1996)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1996 All hands are enjoined to spin : textile production in seventeenth- century Massachusetts. Susan M. Ouellette University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Ouellette, Susan M., "All hands are enjoined to spin : textile production in seventeenth-century Massachusetts." (1996). Doctoral Dissertations 1896 - February 2014. 1224. https://scholarworks.umass.edu/dissertations_1/1224 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. UMASS/AMHERST c c: 315DLDb0133T[] i !3 ALL HANDS ARE ENJOINED TO SPIN: TEXTILE PRODUCTION IN SEVENTEENTH-CENTURY MASSACHUSETTS A Dissertation Presented by SUSAN M. OUELLETTE Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY February 1996 History ALL HANDS ARE ENJOINED TO SPIN: TEXTILE PRODUCTION IN SEVENTEENTH-CENTURY MASSACHUSETTS A Dissertation Presented by SUSAN M. OUELLETTE Approved as to style and content by: So Barry/ J . Levy^/ Chair c konJL WI_ Xa LaaAj Gerald McFarland, Member Neal Salisbury, Member Patricia Warner, Member Bruce Laurie, Department Head History (^Copyright by Susan Poland Ouellette 1996 All Rights Reserved ABSTRACT ALL HANDS ARE ENJOINED TO SPIN: TEXTILE PRODUCTION IN SEVENTEENTH-CENTURY MASSACHUSETTS FEBRUARY 1996 SUSAN M. OUELLETTE, B.A., STATE UNIVERSITY OF NEW YORK PLATTSBURGH M.A., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Barry J.
    [Show full text]
  • Solutions for Textile Industry
    Solutions for Textile Industry Textile MARKETS & APPLICATIONS Textile 3 Textile Preparation Process Page 4 to 9 Spinning & Yarn Finishing Page 10 to 17 Fabric production Page 18 to 21 The widest range of solutions for Textile processing and machinery Bonfiglioli also provides solutions for: Being one of the leading companies in drive technology and a reliable long-term partner with extensive know-how in the textile machine sector, Bonfiglioli drive FOOD & BEVERAGE specialists work side by side with your machine experts to develop tailored and PROCESSING forward-thinking integrated solutions for your requirements. This covers the entire drive including solutions for Industry 4.0 Applications. LOGISTICS & INDUSTRIAL CRANES Our drive system portfolio has the suitable features to respond to the demanding environment typical of the textile sector, characterized by air polluted by fibers, high ambient temperatures and management of occasionally mains failures. PACKAGING PROCESSES This, combined with a comprehensive range of Professional Services, enables us to fulfill your requirements with tailored solutions aimed at minimizing the WAREHOUSE & Total Cost of Ownership of plants through significant reduction of maintenance MATERIAL HANDLING efforts, energy consumption, and process downtimes. www.bonfiglioli.com Products for all types of textile applications: • Bale opening • Synthetic Yarn extrusion • Doubling & Twisting • Cleaning & Blending • Roving • Dyeing • Carding • Ring spinning • Direct warper/Beaming machine • Pre drawing • Air-jet spinning • Weaving • Lapping • Rotor spinning • Warp knitting • Combing • Winding • Cutting machine 4 Preparation Process Cleaning & Blending 1 Page 6 Synthetic Yarn Extrusion Page 9 4 Carding Page 7 2 www.bonfiglioli.com Textile 5 Combing Page 8 3 6 Preparation Process Cleaning & Blending 1 Bonfiglioli product range presents the suitable features to operate in the harsh environment conditions, such as high dust and humidity, typical of the preparation phase.
    [Show full text]
  • Analysis of the Performance of Sewing Threads Manufactured from Conventional and Compact Ring-Spun Yarns
    Sevil Yeşilpınar Analysis of the Performance of Sewing Dokuz Eylul University Threads Manufactured from Conventional Department of Textile Engineering 35100 Bornova, İzmir, Turkey E-mail: [email protected] and Compact Ring-spun Yarns Abstract The compact spinning system produces a yarn structure which is different from the structure of conventional spun yarn as the result of the elimination of the spinning triangle. New perspectives introduced by compact spinning have proved their worth in all textile processes, from yarn production to the finishing stages. In this study, the seam strengths of sewing threads produced by conventional and compact spun-ring systems were investigated together with strength tests before and after washing. The results were evaluated with SPSS software. It was found out that the difference between the seam strength of sewing threads produced from conventional ring and compact yarns were not of major statistical significance, and nor was the difference in seem strength before and after washing. Additionally, the effect of the gassing process on compact sewing threads was established. The results allow us to recommende that the gassing process should not be applied to sewing threads made of compact yarns. Key words: seam strength, compact yarn, sewing thread, gassing. distinctive features of compact yarns. In the compact spinning system, elimi- The basic alteration in the compact spin- nating the spinning triangle almost en- ning system, which is the modified form tirely in the yarn formation zone allows of the ring spinning system, is that the even very short fibres to contribute to drawing system of compact spinning ma- strength in this zone where fibres have chine finishes with a condensation zone no twist.
    [Show full text]
  • Impact of Doubling and Auto Leveling in Draw Frame on the Quality of Rotor-Spun Yarns
    Crimson Publishers Research Article Wings to the Research Impact of Doubling and Auto leveling in Draw Frame on the Quality of Rotor-Spun Yarns Subrata Kumar Saha and Jamal Hossen* Department of Textile Engineering, Ahsanullah University of Science and Technology, Te- jgaon I/A, Dhaka 1208, Bangladesh Abstract ISSN: 2578-0271 This study explores the impact of doubling and auto leveling in draw frame on the quality of rotor yarns. Virgin cotton of Ivory Coast (55%) and waste cotton (dropping-1: 25% and dropping-2: 20%) used as raw material. Rotor-spun yarns of 20 Ne were manufactured from the slivers produced from carding machine, of slivers and rotor yarns such as Um%, CVm%, Imperfections (thick place, thin place, and neps), and countbreaker strength draw frame, product and (CSP) finisher were draw tested frame and analyzed.without and The with Um%, auto CVm% leveler. of different The quality sliver parameters gradually decreased due to the action of doubling and auto leveler. In yarns, Um%, CVm% showed a similar trend as slivers. Thick places, thin places and neps also exhibited the decreasing pattern with the increase of sliver doubling and the use of auto leveler. The quality of yarns improved with the increase of doubling ofand doubling yarns produced and auto from leveling. finisher draw frame sliver with auto leveler showed the best result. The reason can be attributed to the most evened out sliver with better fiber orientation due to the combined action Keywords: Doubling; Auto leveler; Neps; Imperfections *Corresponding author: Jamal Hossen, Department of Textile Engineering, Ahsanullah University of Science and Introduction Technology, Tejgaon I/A, Dhaka 1208, Bangladesh The textile industry belongs to the oldest industrial branches and maintaining its sustained growth for improving the quality of human life.
    [Show full text]
  • 7. Wool Combing
    7. Wool Combing Errol Wood Learning objectives On completion of this topic you should be able to: • Outline the objectives of wool combing • Describe the design of a typical rectilinear comb • Explain the steps in rectilinear combing – feeding, initial combing, final combing and drawing off, and sliver formation • Discuss the means by which noils are removed, and the balance required in setting the amount to be removed • Explain the purpose of re-combing • Calculate: tear ratio, noil(%), romaine, regain and combing production • Discuss the factors that affect the combing quality of fine wools Key terms and concepts Combing (Nobel and rectilinear), nips per minute, doublings, noils, finisher gilling, packaging, re- combing, tear, noil(%), romaine, percent fibres less than 30 mm, combing production. Introduction to the topic Wool combing is a comprehensive term when used in its widest sense, and it embraces all the operations carried out in a topmaking plant. It includes the processes of raw wool scouring, drying, carding, backwashing and preparer gilling. Then follows the actual combing operation and the sequence of topmaking processes concludes with two gilling steps called top finishing (or finisher gilling). Combing is not included in the semiworsted or woollen processing routes. Wool combing, the single process, is indispensable in the manufacture of a worsted yarn. The card has disentangled the fibres in the mass of scoured wool and has mixed them in a roughly parallel formation. However, during the carding process many fibres will have been broken, and the card sliver will consist of a variety of fibre lengths. Some vegetable matter will have been removed but fragments remain.
    [Show full text]
  • Australian Superfine Wool Growers Association Inc
    AustrAliAn superfine Wool Growers’ Association inc. AustrAliAn superfine Wool Growers Association inc. AnnuAl 2015-2016 www.aswga.com 1 | Annual 2015/2016 Australian Wool Innovation On-farm tools for woolgrowers Get involved in key initiatives such as: • Join an AWI-funded Lifetime Ewe Management group to lift production - www.wool.com/ltem • Join your state’s AWI extension network - www.wool.com/networks • Benchmark your genetic progress with MERINOSELECT - www.wool.com/merinoselect • Reducing wild dog predation through coordinated action - www.wool.com/wilddogs • Training shearers and woolhandlers - www.wool.com/shearertraining • Enhanced worm control through planning - www.wool.com/wormboss • Getting up to scratch with lice control - www.wool.com/lice • Flystrike protection and prevention - www.wool.com/fl ystrike VR2224295 www.wool.com | AWI Helpline 1800 070 099 Disclaimer: Whilst Australian Wool Innovation Limited and its employees, offi cers and contractors and any contributor to this material (“us” or “we”) have used reasonable efforts to ensure that the information contained in this material is correct and current at the time of its publication, it is your responsibility to confi rm its accuracy, reliability, suitability, currency and completeness for use for your purposes. To the extent permitted by law, we exclude all conditions, warranties, guarantees, terms and obligations expressed, implied or imposed by law or otherwise relating to the information contained in this material or your use of it and will have no liability to you, however arising and under any cause of action or theory of liability, in respect of any loss or damage (including indirect, special or consequential loss or damage, loss of profi t or loss of business opportunity), arising out of or in connection with this material or your use of it.
    [Show full text]
  • Notes from Judith Mackenzie's Class on Spinning Icelandic Fibers
    Icelandic Sheep Breeders of North America Volume 5, Number 1 Winter 2001 Article #2 Editor, Kathy Hayes Notes from Judith Mackenzie’s Class on Spinning Icelandic Fibers Susan Mongold Weaving makes the lightest fabrics. Using a brush like a scrub brush on the woven fabric after it is woven (or knitted), will produce a long fur-type nap. The tog makes very attractive rug warp. Icelandic locks can actually be separated into up to 5 different lengths and diameters. Each layer gets progressively finer as the length gets shorter. The last or finest coat (thel) is like cashmere. The shortest undercoat, or bottom coat, the down, makes a perfect lace yarn. Lace is best made from a 2-ply yarn as the undulated surface of the 2-ply yarn helps to lock or hold the stich in place. A rounder, smoother 3-ply yarn has a smoother and more slippery surface and will not hold the pattern as well. In order to have the fibers slip easily in the spinning process, spin from the tip end of a lock, then ply from the butt end and knit from the tip end. This will give the easiest spinning experience as you are taking advantage of the lay of the scales on the wool fibers. The most important thing in a spinning fiber is the “hand.” hand is the soft silky feel of the fiber to your hand or how it feels when you handle it. It has little bearing on the fiber diameter. Even a very fine fiber can have a rough hand, while a coarse fiber can have a nice hand.
    [Show full text]
  • Need for Lap Preparation
    Need for Lap preparation: The combers are fed with a small lap produced by combining several slivers. The raw material delivered by the card is unsuitable for combing as regards both form and fiber arrangement. If card slivers were just combined and fed to the comber, true nipping by the nipper plates would occur only on the high points, with the risk that the nippers could not retain the less firmly compressed edge zones of the slivers asshown in the below fig. This is because the slivers are not flattened. The fibres could then be pulled out as clumps by the circular combs during combing operation. A sheet with the greatest possible degree of evenness in cross section, with uniform thickness is therefore required as in-feed to the comber. Effect of fibre presentation: The fiber arrangement must also be taken into account, i.e. in this case the disposition of the hooks. If the comber is to straighten hooks, as it is intended to, then the fibers must be presented to it with leading hooks. The carded slivers have trailing hooks as the majority hooks (more than 50%) as the sliver emerges out of the calendar rollers in the carding machine. Each time the sliver is packed in a can and taken out, the majority hooks change. For example, as the sliver is withdrawn from the card can, the original trailing hooks (as the sliver went into the can) are now counted as the leading hooks as can be seen in Fig. Hence, at this stage majority hooks are the leading hooks.
    [Show full text]
  • Seritechnics
    Seri­Technics Historical Silk Technologies Edition Open Access Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Samuel Gfrörer, Klaus Thoden, Malte Vogl The Edition Open Access (EOA) platform was founded to bring together publication ini­ tiatives seeking to disseminate the results of scholarly work in a format that combines tra­ ditional publications with the digital medium. It currently hosts the open­access publica­ tions of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initia­ tives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Seri­Technics Historical Silk Technologies Dagmar Schäfer, Giorgio Riello, and Luca Molà (eds.) Studies 13 Max Planck Research Library for the History and Development of Knowledge Studies 13 Editorial Team: Gina Partridge­Grzimek with Melanie Glienke and Wiebke Weitzmann Cover Image: © The British Library Board. (Yongle da dian 永樂大典 vol.
    [Show full text]
  • Combing Operator Jumentumvelitan En Iriure
    EYE ON IT Current Industry QUALIFICATIONS PACK - OCCUPATIONAL STANDARDS FOR TEXTILE Trends SECTOR Suscipit, vicispraesenterat feugaitepulae, Contents validusindolesduisenimconsequ atgenitus at. Sed, conventio, 1. Introduction and Contacts..….……….……..….P.1 What are aliquip 2. Qualifications Pack……….………………............P.2 accumsanadipiscingaugueblan Occupational Standards(OS)? 3. Glossary of Key Terms…….……..……….……...P.3 dit minim abbasoppetocommov. 4. NOS Units…………………………………………………P.5 Aptentnullaaliquipcamurut Enim neo velitadsumodio, OS describe what consequataptentnisl in voco multo, in individuals need consequat.Adipsdiscing magna commoveoquibuspremotamene to do, know and jumentumvelitiriureobruo.damnum rathuic.Occuro uxor dolore, ut understand in pneum. at praemittooptosisudo, order to carry out Introduction Aptentnullaaliquipcamurutconsequatl opesfeugiatiriurevalidus.Sino a particular job oremaptentnisl magna lenis vulputate, role or function Qualifications Pack – Combing Operator jumentumvelitan en iriure. Loquor, valetudoilleabbascogosaluto vulputatemeusindolesiaceo, ne quod, esseillum, OS are SECTOR: TEXTILE secundum, letatioloremconventio.Letalisnib performance dolusdemoveointerddficoproprius.In hiustumtransverberobene, standards that SUB-SECTOR: SPINNING consequatosquadfsenudflla eratvulputateenimessesisudoer individuals must SECTOR: INFORMATION TECHNOLOGY- INFORMATION TECHNOLOGY ENABLED SERVICES (IT- magna.Aptentnullaaliquipcamurutans at. achieve when OCCUPATION: SPINNINGITES) PREPARATORY ces Helpdesk Attendant dl as consequataptentnisl
    [Show full text]