A mathematical model for the germinal center morphology and affinity maturation Michael Meyer-Hermann Institut f¨ur Theoretische Physik, TU Dresden, D-01062 Dresden, Germany E-Mail:
[email protected] Abstract: During germinal center reactions the appearance of two specific zones is ob- served: the dark and the light zone. Up to now, the origin and function of these zones are poorly understood. In the framework of a stochastic and discrete model several possi- ble pathways of zone development during germinal center reactions are investigated. The importance of the zones in the germinal center for affinity maturation, i.e. the process of antibody optimization is discussed. arXiv:physics/0203021v1 [physics.bio-ph] 7 Mar 2002 1 1 Introduction Germinal centers (GC) are an important part of the humoral immune response. They develop after the activation of B-cells by antigens. Such activated B-cells migrate into the follicular system where they begin a monoclonal expansion in the environment of follicular dendritic cells (FDC). This phase of pure centroblast multiplication is followed by a phase of intense hypermutation and proliferation which leads to a larger repertoire of different centroblast types. This seems to be the basis of the affinity maturation process, i.e. the optimization process of the antibodies with respect to a given antigen during germinal center reactions. Antigen fragments are presented on the surface of the FDCs which enables antibody presenting cells to interact with them. It is widely believed that centroblasts do not present antibodies (Han et al., 1997). Accordingly, the selection process must begin after the differentiation of centroblasts to centrocytes (the initiation of this differentiation process is still unclear) which do neither proliferate nor mutate but which present antibodies.